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Plan

• Discuss “Active Learning” background

• Formalize “Active Action Choice” 
framework

• Propose an algorithm for AAC, give 
Bad News and Good News



“Active Learning”

• Optimal Experimental Design

• Focuses on predictive performance

• Many different settings

• Terminology has not converged
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“Active Classification”
“Active Diagnosis”
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Action Choice in a DTR

• We define Q(x,a) to be the expected 
reward achieved by taking action a in 
state x = (x1, x2, ..., xp) and following with 
the optimal policy

• Best action in x is π(a) = argmaxa Q(x,a)

• Assumes x is completely observed



Active Action Choice
x1 x2 x3 ... xp a

0 0 1 ... 1 “1”

Txt ActionAvailable at some cost

• Why?

• Set a budget, still make good 
decisions

• Set a bar (regret), be as cost-
effective as possible
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Missing Covariates

• Assumption 1:
Access to Q(x,a)

• This is about deploying a DTR, not 
estimating a DTR

• Someone else did the heavy lifting
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Action Choice from 
Missing Covariates

• Assumption 2:
Access to P(X1,X2,...,Xp)

• Egregious? Maybe.

• No parametric assumptions

• P represents population “at large”; 
could estimate from other data

• Interesting problems down that road



Action Choice from 
Missing Covariates
• Maximize expected reward, 

expectation taken over the 
missing covariates

argmaxa E
X

m
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o

[Q((X

m
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), a)]

• Write V(x0) for the value of the above 
action knowing x0
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Which covariate should 
we purchase next?

• If we will only reveal one more 
covariate, the optimal choice is to 
reveal 
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Which covariate should 
we purchase next?

• If we will only reveal one more 
covariate, the optimal choice is to 
reveal 

• What if we plan to reveal several 
more? 
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Purchasing Policies
• Purchase x1

• If x1 > 0.743, purchase x2

• If x1*x2 < 0.4, purchase x4
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• Else purchase x3

• If x1 + x3 > 3.223, purchase x2
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Purchasing Policies
• Purchase x1

• If x1 > 0.743, purchase x2

• If x1*x2 < 0.4, purchase x4

• ...

• Else purchase x3

• If x1 + x3 > 3.223, purchase x2

• ...

• Optimal purchasing is a DTR



“Turtles all the way 
down?”

• You: “You’re really going to make us 
estimate another DTR to deploy the 
one we already have?”

• Me: “Maybe...”

• This DTR has a lot of structure; can we 
exploit it? Might the optimal pruchasing 
policy have simple structure?



How good is the 
greedy policy?

• What if we repeatedly reveal the xr 
for which                   
is maximized?

• It is known that this policy is 
approximately optimal if the 
objective is adaptive submodular.
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Adaptive 
Submodularity

• “Expected benefit from revealing xr now is at 
least as high as revealing it in the future.”

• If               , then

• Limits the “interaction” among feature-reveals

• Greedy optimization of adaptive submodular 
functions is (1 - 1/e) ≈ 0.632 of optimal
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Results for Active 
Action Choice

• Is the general objective adaptive 
submodular?

• No.

• What if Q is linear in x?

• No.

• Okay what if Q is linear in x and the Xi 
are all independent?

• No.
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How bad can it be?
• Pretty bad.

• For, 
we have values

• So reveal x1

• Then select x2 or x3. Value of this 
policy is about 0.25. 

• Value of “purchase x2 and x3” is 0.5

P (X1, X2, X3) ⇠ N (µ,⌃)

µ = (0, 0, 0)T

⌃ =
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Where do we go from 
here?

• Heuristics / Modified Greedy?

• Most promising: Consider 
simultaneously revealing sets of 
features. (Solves previous example.)

• Go after the optimal purchasing 
policy using RL

• In both cases, will want to leverage 
problem-specific structure



Summary
• Inroduced Active Action Choice

• Related to “Active Learning,” 
“Budgeted Learning,” “Active 
Diagnosis”, ...

• Shown that this problem is not 
submodular, cannot get the (1-1/e) 
greedy approximation bound

• In light of this, suggested avenues for 
policies that avoid the greedy 
catastrophe
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