The Role of Active Learning in Sequential Decision Making

Daniel Lizotte University of Waterloo

Plan

- Discuss "Active Learning" background
- Formalize "Active Action Choice" framework
- Propose an algorithm for AAC, give Bad News and Good News

- Optimal Experimental Design
- Focuses on predictive performance
- Many different settings
- Terminology has not converged

X 1	X2	X3	 Xp	У
0	1	0	 0	
0	1	1	 1	
1	0	1	 1	
1	1	1	 1	
0	1	0	 0	
0	0	0	 0	
1	1	1	 1	

X 1	X2	X3	 Xp	У
0	1	0	 0	
0	1	1	 1	1
1	0	1	 1	
1	1	1	 1	
0	1	0	 0	
0	0	0	 0	
1	1	1	 1	

X 1	X2	X3	 Xp	У
0	1	0	 0	0
0	1	1	 1	1
1	0	1	 1	
1	1	1	 1	
0	1	0	 0	
0	0	0	 0	
1	1	1	 1	

X 1	X2	X3	 Xp	У
0	1	0	 0	0
0	1	1	 1	1
1	0	1	 1	
1	1	1	 1	
0	1	0	 0	
0	0	0	 0	1
1	1	1	 1	

X 1	X2	X3	 Xp	У
0	1	0	 0	0
0	1	1	 1	1
1	0	1	 1	
1	1	1	 1	1
0	1	0	 0	
0	0	0	 0	1
1	1	1	 1	

X 1	X2	X3	 Xp	У
0	1	0	 0	0
0	1	1	 1	1
1	0	1	 1	0
1	1	1	 1	1
0	1	0	 0	1
0	0	0	 0	1
1	1	1	 1	0

X 1	X2	X3	 Xp	У
				0
				1
				0
				1
				1
				1
				0

X 1	X2	X3	 Xp	У
0				0
				1
				0
				1
				1
				1
				0

X 1	X2	X3	 Xp	У
0		0		0
				1
				0
				1
				1
				1
				0

X 1	X2	X3	 Xp	У
0		0		0
				1
				0
		1		1
				1
				1
				0

X 1	X2	X3	 Xp	У
0		0		0
				1
				0
		1	 1	1
				1
				1
				0

X 1	X2	X3	 Xp	У
0		0		0
		1		1
				0
		1	 1	1
				1
				1
				0

X 1	X2	X3	 Xp	У
0		0		0
		1	 1	1
				0
		1	 1	1
				1
				1
				0

X 1	X2	X3	 Xp	У
0		0		0
		1	 1	1
				0
		1	 1	1
				1
0				1
				0

X 1	X2	X3	 Xp	У
0		0		0
		1	 1	1
				0
		1	 1	1
				1
0		0		1
				0

X 1	X2	X3	 Xp	У
0		0	 0	0
		1	 1	1
				0
		1	 1	1
				1
0		0		1
				0

X 1	X2	X3	 Xp	У
0		0	 0	0
	1	1	 1	1
				0
		1	 1	1
				1
0		0		1
				0

X 1	X2	X3	 Xp	У
0		0	 0	0
	1	1	 1	1
				0
		1	 1	1
				1
0		0	 0	1
				0

X 1	X2	X3	 Xp	У
0		0	 0	0
	1	1	 1	1
	0			0
		1	 1	1
				1
0		0	 0	1
				0

X 1	X2	X3	 Xp	У
0		0	 0	0
	1	1	 1	1
	0	1		0
		1	 1	1
				1
0		0	 0	1
				0

X 1	X2	X3	 Xp	У
0		0	 0	0
	1	1	 1	1
	0	1		0
		1	 1	1
		0		1
0		0	 0	1
				0

X 1	X2	X3	 Xp	У
0		0	 0	0
	1	1	 1	1
	0	1		0
		1	 1	1
		0		1
0	0	0	 0	1
				0

X 1	X2	X3	 Xp	У
0		0	 0	0
	1	1	 1	1
	0	1		0
	1	1	 1	1
		0		1
0	0	0	 0	1
				0

X 1	X2	X3	 Xp	У
0		0	 0	0
	1	1	 1	1
	0	1		0
	1	1	 1	1
	1	0		1
0	0	0	 0	1
				0

X 1	X2	X3	 Xp	У
0	1	0	 0	0
0	1	1	 1	1
1	0	1	 1	0
1	1	1	 1	1
0	1	0	 0	1
0	0	0	 0	1
1	1	1	 1	0

X 1	X2	X3	 Xp	У
				"?"

X 1	X2	X3	 Xp	У
0				"?"

X 1	X2	X3	 Xp	У
0			 1	"?"

X 1	X2	X3	 Xp	У
0		1	 1	"?"

X 1	X2	X3	 Xp	У
0	0	1	 1	"1"

Action Choice in a DTR

- We define Q(x,a) to be the expected reward achieved by taking action a in state x = (x1, x2, ..., xp) and following with the optimal policy
- Best action in \boldsymbol{x} is $\pi(a) = \operatorname{argmax}_a Q(\boldsymbol{x},a)$
- Assumes **x** is completely observed

Active Action Choice

- Why?
 - Set a budget, still make good decisions
 - Set a bar (regret), be as costeffective as possible

Necessary Tools

Mechanism for choosing an action when covariates are "missing"

- Mechanism for choosing an action when covariates are "missing"
- 2. Mechanism for deciding which covariate to purchase next

- 1. Mechanism for choosing an action when covariates are "missing"
- 2. Mechanism for deciding which covariate to purchase next

 Assumption 1: Access to Q(x,a)

- Assumption 1: Access to Q(x,a)
- This is about *deploying* a DTR, not estimating a DTR

- Assumption 1: Access to Q(x,a)
- This is about *deploying* a DTR, not estimating a DTR
- Someone else did the heavy lifting

 Assumption 2: Access to P(X₁,X₂,...,X_p)

- Assumption 2: Access to P(X₁,X₂,...,X_p)
- Egregious? Maybe.

- Assumption 2: Access to P(X₁,X₂,...,X_p)
- Egregious? Maybe.
 - No parametric assumptions

- Assumption 2: Access to P(X₁,X₂,...,X_p)
- Egregious? Maybe.
 - No parametric assumptions
 - P represents population "at large"; could estimate from other data

- Assumption 2: Access to P(X₁,X₂,...,X_p)
- Egregious? Maybe.
 - No parametric assumptions
 - P represents population "at large"; could estimate from other data
 - Interesting problems down that road

 Maximize expected reward, expectation taken over the missing covariates

 $\arg\max_{a} \mathbb{E}_{\mathbf{X}_{m}|\mathbf{x}_{o}} \left[Q((\mathbf{X}_{m}, \mathbf{x}_{o}), a) \right]$

Write V(x₀) for the value of the above action knowing x₀

- Mechanism for choosing an action when covariates are "missing"
- 2. Mechanism for deciding which covariate to purchase next

What is the "value" we expect if we decide to pay to reveal x_r?

What is the "value" we expect if we decide to pay to reveal x_r?

 $\mathbb{E}_{X_r | \mathbf{x}_o} \left[\max_a \mathbb{E}_{\mathbf{X}_{m'} | \mathbf{x}_o, x_r} \left[Q((\mathbf{X}_{m'}, \mathbf{x}_o, x_r), a) \right] \right]$

What is the "value" we expect if we decide to pay to reveal x_r?

$$\mathbb{E}_{X_r | \mathbf{x}_o} \left[\max_a \mathbb{E}_{\mathbf{X}_{\mathrm{m}'} | \mathbf{x}_o, x_r} \left[Q((\mathbf{X}_{\mathrm{m}'}, \mathbf{x}_o, x_r), a) \right] \right]$$

- Write $\mathbb{E}_{X_r \mid \mathbf{x}_o} \left[V(\mathbf{x}_o \cup X_r) \right]$
- Note: $\mathbb{E}_{X_r \mid \mathbf{x}_o} \left[V(\mathbf{x}_o \cup X_r) \right] V(\mathbf{x}_o) \ge 0$

 $\mathbb{E}_{X_r|\mathbf{x}_o}\left[V(\mathbf{x}_o \cup X_r)\right] = \mathbb{E}_{X_r|\mathbf{x}_o}\left[\max_a \mathbb{E}_{\mathbf{X}_{m'}|\mathbf{x}_o, x_r}\left[Q((\mathbf{X}_{m'}, \mathbf{x}_o, x_r), a)\right]\right]$

 $\mathbb{E}_{X_r|\mathbf{x}_o}\left[V(\mathbf{x}_o \cup X_r)\right] = \mathbb{E}_{X_r|\mathbf{x}_o}\left[\max_a \mathbb{E}_{\mathbf{X}_{m'}|\mathbf{x}_o, x_r}\left[Q((\mathbf{X}_{m'}, \mathbf{x}_o, x_r), a)\right]\right]$

• If we will only reveal one more covariate, the optimal choice is to reveal $\arg \max_{r} \mathbb{E}_{X_r | \mathbf{x}_o} [V(\mathbf{x}_o \cup X_r)]$

 $\mathbb{E}_{X_r|\mathbf{x}_o}\left[V(\mathbf{x}_o \cup X_r)\right] = \mathbb{E}_{X_r|\mathbf{x}_o}\left[\max_a \mathbb{E}_{\mathbf{X}_{m'}|\mathbf{x}_o, x_r}\left[Q((\mathbf{X}_{m'}, \mathbf{x}_o, x_r), a)\right]\right]$

- If we will only reveal one more covariate, the optimal choice is to reveal $\arg \max_{r} \mathbb{E}_{X_r | \mathbf{x}_o} [V(\mathbf{x}_o \cup X_r)]$
- What if we plan to reveal several more?

Purchasing Policies

- Purchase *x*₁
 - If *x*₁ > 0.743, purchase *x*₂
 - If $x_1^*x_2 < 0.4$, purchase x_4
 - ...
 - Else purchase X₃
 - If *x*₁ + *x*₃ > 3.223, purchase *x*₂

Purchasing Policies

- Purchase *x*₁
 - If *x*₁ > 0.743, purchase *x*₂
 - If $x_1^*x_2 < 0.4$, purchase x_4
 - ...
 - Else purchase *x*₃
 - If *x*₁ + *x*₃ > 3.223, purchase *x*₂

Optimal purchasing is a DTR

"Turtles all the way down?"

- You: "You're really going to make us estimate another DTR to deploy the one we already have?"
- Me: "Maybe..."

• This DTR has a lot of structure; can we exploit it? *Might the optimal pruchasing policy have simple structure?*

How good is the greedy policy?

- What if we repeatedly reveal the x_r for which E_{X_r|x_o} [V(x_o ∪ X_r)] is maximized?
- It is known that this policy is approximately optimal if the objective is *adaptive submodular*.

 "Expected benefit from revealing x_r now is at least as high as revealing it in the future."

 "Expected benefit from revealing x_r now is at least as high as revealing it in the future."

• If $\mathbf{x}_o \subseteq \mathbf{x}_{o'}$, then

 $\mathbb{E}_{X_r|\mathbf{x}_o}\left[V(\mathbf{x}_o \cup X_r)\right] - V(\mathbf{x}_o) \ge \mathbb{E}_{X_r|\mathbf{x}_{o'}}\left[V(\mathbf{x}_{o'} \cup X_r)\right] - V(\mathbf{x}_{o'})$

 "Expected benefit from revealing x_r now is at least as high as revealing it in the future."

• If $\mathbf{x}_o \subseteq \mathbf{x}_{o'}$, then

 $\mathbb{E}_{X_r|\mathbf{x}_o}\left[V(\mathbf{x}_o \cup X_r)\right] - V(\mathbf{x}_o) \ge \mathbb{E}_{X_r|\mathbf{x}_{o'}}\left[V(\mathbf{x}_{o'} \cup X_r)\right] - V(\mathbf{x}_{o'})$

• Limits the "interaction" among feature-reveals

 "Expected benefit from revealing x_r now is at least as high as revealing it in the future."

• If $\mathbf{x}_{o} \subseteq \mathbf{x}_{o'}$, then

 $\mathbb{E}_{X_r|\mathbf{x}_o}\left[V(\mathbf{x}_o \cup X_r)\right] - V(\mathbf{x}_o) \ge \mathbb{E}_{X_r|\mathbf{x}_{o'}}\left[V(\mathbf{x}_{o'} \cup X_r)\right] - V(\mathbf{x}_{o'})$

- Limits the "interaction" among feature-reveals
- Greedy optimization of adaptive submodular functions is (1 1/e) \approx 0.632 of optimal

Is the general objective adaptive submodular?

Is the general objective adaptive submodular?

• No.

Is the general objective adaptive submodular?

• No.

• What if Q is linear in **x**?

Is the general objective adaptive submodular?

• No.

• What if Q is linear in **x**?

• No.

Is the general objective adaptive submodular?

• No.

• What if Q is linear in **x**?

• No.

Okay what if Q is linear in *x* and the X_i are all independent?
Results for Active Action Choice

Is the general objective adaptive submodular?

• No.

• What if Q is linear in **x**?

• No.

 Okay what if Q is linear in x and the X_i are all independent?

• No.

• Pretty bad.

• Pretty bad.

$$P(X_1, X_2, X_3) \sim \mathcal{N}(\mu, \Sigma)$$
$$\mu = (0, 0, 0)^{\mathsf{T}}$$
$$\Sigma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -0.8 \\ 0 & -0.8 & 1 \end{bmatrix}$$
$$Q(x_1, x_2, x_3, a) = a \cdot (x_1/4 - x_2 - x_3)$$
$$a \in \{-1, 1\}$$

• Pretty bad.

• For, $\mathbf{x}_o = \emptyset$ we have values $\approx (0.18, 0.16, 0.16)$

$$P(X_1, X_2, X_3) \sim \mathcal{N}(\mu, \Sigma)$$
$$\mu = (0, 0, 0)^{\mathsf{T}}$$
$$\Sigma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -0.8 \\ 0 & -0.8 & 1 \end{bmatrix}$$
$$Q(x_1, x_2, x_3, a) = a \cdot (x_1/4 - x_2 - x_3)$$
$$a \in \{-1, 1\}$$

• Pretty bad.

• For, $\mathbf{x}_o = \emptyset$ we have values $\approx (0.18, 0.16, 0.16)$

• So reveal *x*¹

$$P(X_1, X_2, X_3) \sim \mathcal{N}(\mu, \Sigma)$$
$$\mu = (0, 0, 0)^{\mathsf{T}}$$
$$\Sigma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -0.8 \\ 0 & -0.8 & 1 \end{bmatrix}$$
$$Q(x_1, x_2, x_3, a) = a \cdot (x_1/4 - x_2 - x_3)$$
$$a \in \{-1, 1\}$$

- Pretty bad.
- For, $\mathbf{x}_o = \emptyset$ we have values $\approx (0.18, 0.16, 0.16)$
- So reveal x₁

$$P(X_1, X_2, X_3) \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = (0, 0, 0)^{\mathsf{T}}$$

$$\Sigma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -0.8 \\ 0 & -0.8 & 1 \end{bmatrix}$$

$$Q(x_1, x_2, x_3, a) = a \cdot (x_1/4 - x_2 - x_3)$$

$$a \in \{-1, 1\}$$

Then select x₂ or x₃. Value of this policy is about 0.25.

- Pretty bad.
- For, $\mathbf{x}_o = \emptyset$ we have values $\approx (0.18, 0.16, 0.16)$
- So reveal x₁

$$P(X_1, X_2, X_3) \sim \mathcal{N}(\mu, \Sigma)$$
$$\mu = (0, 0, 0)^{\mathsf{T}}$$
$$\Sigma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -0.8 \\ 0 & -0.8 & 1 \end{bmatrix}$$
$$Q(x_1, x_2, x_3, a) = a \cdot (x_1/4 - x_2 - x_3)$$
$$a \in \{-1, 1\}$$

- Then select x₂ or x₃. Value of this policy is about 0.25.
- Value of "purchase x₂ and x₃" is 0.5

Where do we go from here?

- Heuristics / Modified Greedy?
 - Most promising: Consider simultaneously revealing *sets* of features. (Solves previous example.)
- Go after the optimal purchasing policy using RL
- In both cases, will want to leverage problem-specific structure

Summary

- Inroduced Active Action Choice
 - Related to "Active Learning,"
 "Budgeted Learning," "Active Diagnosis", ...
- Shown that this problem is not submodular, cannot get the (1-1/e) greedy approximation bound
- In light of this, suggested avenues for policies that avoid the greedy catastrophe

References

- K. Deng, J. Pineau and S.A.Murphy (2011). <u>Active Learning for Developing</u> <u>Personalized Treatment.</u> Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11). AUAI Press 161-8. <u>Presentation slides.</u>
- K. Deng, J. Pineau and S.A.Murphy (2011). <u>Active Learning for Personalizing</u> <u>Treatment.</u>Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011 IEEE Symposium on. 11-15 April 2011, pages 32-39. <u>Presentation slides.</u>
- Daniel Golovin, Andreas Krause, "Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization", In Journal of Artificial Intelligence Research (JAIR), vol. 42, pp. 427-486, 2011.
- <u>A. Kapoor</u>, <u>R. Greiner</u>. "Reinforcement Learning for Active Model Selection". <u>Utility-</u> <u>Based Data Mining (UBDM)</u>, August 2005.
- Daniel Lizotte, Omid Madani, and Russell Greiner. <u>Budgeted learning of naïve-Bayes</u> <u>classifiers.</u> In 19th Conference on Uncertainty in Artificial Intelligence (UAI), 2003.
- <u>G. L. Nemhauser</u>, L. A. Wolsey and M. L. Fisher. An analysis of approximations for maximizing submodular set functions I, Mathematical Programming 14 (1978), 265– 294