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Motivation: 
Symptoms and Side-Effects in Schizophrenia

• Many treatments available for treating schizophrenia (dozens)

• Evidence-based medicine would look at outcomes, recommend a 
sequence of treatments: schizophrenia is chronic

• At least two important objectives: 

• Maximize symptom reduction, minimize weight gain

• Treatments that provide the best symptom reduction induce 
the worst weight gain, and vice-versa

• Different doctors and patients have very different preferences about 
relative importance of outcomes

• How can we recommend a sequence of treatments that 
accommodates these preferences?
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Recommending Sequences of Treatment:
Dynamic Treatment Regimes

• A dynamic treatment regime is a sequence of rules for choosing a 
sequence of treatments for a patient 

• Input: patient’s current “state,” “features,” or “covariates,” e.g. 
previous treatments, response to those previous treatments, 
genetic markers, family history, ...

• Output: treatment choice or “action” for that point in time

• Each rule in the sequence uses the most up-to-date state information

• In an optimal DTR, actions are chosen to maximize the patient’s total 
expected outcome or “reward.”
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Learning a Dynamic Treatment Regime From Data

• (S1,A1,S2,A2,R) for each individual

• Sj - “State” - Patient covariates (previous txts, response,...)

• Aj - “Action” - Treatment offered to the patient

• R - “Reward” - Clinical outcome

• Actions Aj have known randomization probability

• The Proposed DTR,

     π = {π1:S1 → A1, π2:S2 → A2}, 

should have high value Vπ = Eπ[R].  (π stands for “Policy”)
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Learning a Dynamic Treatment Regime From Data

• Q-Learning

• Generalization of regression to multiple stages

• Backwards induction (dynamic programming)

• Conditional expectations approximated using regression

• Development

• Computing Science: Watkins (1989), Sutton & Barto (1998), 
Ernst (2005),...

• Operations Research: Bertsekas & Tsitsiklis (1996),...

• Statistics: Murphy (2003), Zhao et al.(2009), Robins (2004),..

• One of many methods that are part of “Reinforcement Learning”
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• For two stages, the optimal value V* = maxπ Vπ can be written as

• V* = E[ maxa1 E[ maxa2 E[ R | S2, A2 = a2 ] | S1, A1 = a1 ]]

• Define Stage 2 Q-function Q2(S2,A2) = E[ R | S2, A2 ]

• V* = E[ maxa1 E[ maxa2 Q2(S2,a2) | S1, A1 ]]

• Define Stage 1 Q-function Q1(S1,A1) = E[ maxa2 Q2(S2,a2) | S2, A2 ]

• V* = E[ maxa1 Q1(S1,a1) ]

• Plan: Estimate Q2(S2,a2) and Q1(S1,a1), use argmax to estimate π*
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• V* = E[ maxa1 E[ maxa2 E[ R | S2, A2 = a2 ] | S1, A1 = a1 ]]

• S21, S22 are features of S2, A2 ∈ {-1,1}

• Regress R on S21, S22, A2, giving

• Notice                                         is an estimator of 

Q̂2(S2,A2) = β̂T
21S21 + β̂T

22S22A2

π̂2(S2) = argmaxa2 Q̂2(S2, a2)

V̂2(S2) = maxa2 Q̂2(S2, a2) maxa2 Q2(S2, a2)
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Q-Learning at Stage 1

• V* = E[ maxa1 E[ maxa2 Q2(S2,a2) | S1, A1 ]]

• Plug in     for maxa2 Q2

• S11, S12 are features of S1, A1 ∈ {-1,1}

• Regress           on S11, S12, A1, giving

•                          is our estimate of the optimal DTR

Q̂1(S1,A1) = β̂T
11S11 + β̂T

12S12A1

π̂1(S1) = argmaxa1 Q̂1(S1, a1)

V̂2(S2)

V̂2

π̂ = {π̂1, π̂2}
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“Definition” of R

• Idealized picture presented earlier:

• (S1,A1,S2,A2,R) for each individual, find π to maximize Vπ = Eπ[R].

• More truthful picture:

• (O1,A1,O2,A2,O3) for each individual

• Must define St = St(O1:t,A1:t-1), R = R(O1,O2,O3)

• St(O1:t,A1:t-1) may be chosen by expert knowledge, or by model 
selection techniques (e.g. Gunter (2009), Qian (2010))

• R(O1,O2,O3), in many cases, is not obvious

• The “correct” R may depend on individual preferences

• May not correspond to a single “measurement”
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From Dynamic Treatment Regime to 
Clinical Decision Support

• Q-learning gives us 

• As part of a Clinical Decision Support system,
doctor provides a patient’s st, and      recommends an action

• Some causes for concern:

• Estimation error in 

• Recommend a set of actions depending on confidence, i.e. 
eliminate bad actions

• Definition of R does not reflect desired outcome

• Consider a set of R during Q-learning

• “Inverse Preference Elicitation”

Q̂t(St ,At)

π̂ = {π̂1, π̂2}

π̂t
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Considering a Set of Reward Definitions

• Identify a pair of important rewards (Coded higher is better)

• R(0) reflects symptoms

• R(1) reflects weight control

• Transform both to percentiles w.r.t. baseline population

• Convex set of reward definitions:

{R(δ) ≡ (1 - δ)⋅R(0) +  δ⋅R(1) | 0 ≤ δ ≤ 1}

• δ identifies a reward definition, gives 

• Depending on δ,     “cares more” about optimizing R(0) or R(1)

• For δ = 0.5,     “cares” equally about both

π̂

{Q̂1, Q̂2}, π̂ = {π̂1, π̂2}

π̂
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• One approach: “Preference Elicitation”

• Try to determine the decision-maker’s true value of δ via 
time tradeoff, standard gamble, visual analog scales,...

• Use Q-learning, suggest an action based on state and elicited δ
• There is much debate about how well this works

• Says nothing about pros and cons of available treatments

• Our approach: “Inverse Preference Elicitation”

• Given state, report, for each action, 
the range of δ for which that action is optimal

• Patient/clinician selects an action using this information

• “This is what your choice of action says about your 
preferences.”
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Example Output:
Inverse Preference Elicitation

• Take R(δ) ≡ (1 - δ)⋅R(0) +  δ⋅R(1)

• Use Q-learning to find optimal actions given every possible δ,
i.e. estimate                                 for all δ ∈ [0, 1]. 

• Given state, report, for each action, 
the range of δ for which that action is optimal.

• Fortunately we don’t need to explicitly solve for every δ.

Care about
Symptoms

Care about
Weight Gain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ

Tradeoffs For Which Each Treatment is Optimal: s = −1
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Q̂t(St ,At , δ), π̂t(St , δ)
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Algorithm for Cell Mean Models: Preview

• No smoothing of estimated Q: St are discrete

• R(δ) ≡ (1 - δ)⋅R(0) + δ⋅R(1)

•                    is sample mean of R(δ) over tuples where 

• Therefore                    is linear in δ

•               is continuous and piecewise linear in δ by pointwise max

•               is piecewise constant in δ

•                    is continuous and piecewise linear in δ
• Average of              over tuples where 

Q̂2(s2, a2, δ) S2 = s2,A2 = a2

Q̂2(S2,A2, δ)

V̂2(S2, δ)

π̂2(S2, δ)

Q̂1(s1, a1, δ)

V̂2(S2, δ) S1 = s1,A1 = a1
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•                    is linear in δ, represented by pair of sample means

• Two “representations”: Line representation, point representation

• Each “cell mean” is a function of δ
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•                    is linear in δ, represented by pair of sample means

• Two “representations”: Line representation, point representation

• Each “cell mean” is a function of δ
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•                    is linear in δ, represented by pair of sample means

• Two “representations”: Line representation, point representation

• Each “cell mean” is a function of δ

Pointwise Maximum Over Actions

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

R(0)

R
(1

)

(0.2,0.7)
(0.5,0.6)

(0.8,0.2)

(0.3,0.4)

Q−function: Point Representation

0.2

0.4

0.6
0.7

0 0.25 0.5 0.75 1

0.2
0.3

0.5

0.8

Q−function: Line Representation

δ

(1
 −

 δ
) R

(0
)  +

 δ
 R

(1
)

a

a

a

a

a

a

aa

a

a

a

aQ̂2(s, a, δ)

Q̂2(s, a, δ)
Q̂2(s, a, δ)

Q̂2(s, a, δ)

Q̂2(s2, a2, δ)



•               is continuous and piecewise linear in δ
• Point-based representation has computational advantage

• Knots identified by convex hull
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Pointwise Average Over Next State
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•                    is continuous and piecewise linear in δ
• Average of              over tuples where
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•                    is continuous and piecewise linear in δ
• Average of              over tuples where

• Line-based representation has computational advantage
• Identify regions where                               are simultaneously linear
• Compute averages at knots between regions
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Pointwise Maximum Over Actions
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•                    is continuous and piecewise linear in δ
• We know where the pieces are

• Identify regions where                                     are simultaneously 
linear

Pointwise Maximum Over Actions
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•                    is continuous and piecewise linear in δ
• We know where the pieces are

• Identify regions where                                     are simultaneously 
linear

• We know how to take pointwise argmax of linear functions
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•                    is continuous and piecewise linear in δ
• We know where the pieces are

• Identify regions where                                     are simultaneously 
linear

• We know how to take pointwise argmax of linear functions

• This yields                .  Done!

Pointwise Maximum Over Actions
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Summary: 
Q-Learning with Multiple Reward Definitions
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• Summary:

• Pointwise max over actions turns      into 

• Use point representation, convex hull
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• Summary:

• Pointwise max over actions turns      into 

• Use point representation, convex hull

• Pointwise average over state turns      into 

• Use line representation, average at knots
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• Summary:

• Pointwise max over actions turns      into 

• Use point representation, convex hull

• Pointwise average over state turns      into 

• Use line representation, average at knots

• Can take pointwise argmax of       to get 
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• Summary:

• Pointwise max over actions turns      into 

• Use point representation, convex hull

• Pointwise average over state turns      into 

• Use line representation, average at knots

• Can take pointwise argmax of       to get 

• Works for arbitrary number of stages

Summary: 
Q-Learning with Multiple Reward Definitions
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• How complex are the functions?

•               is cts. and piecewise linear in δ, with             pieces
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• T stages: At stage t,               has                             pieces
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Computational Complexity

• How complex are the functions?

•               is cts. and piecewise linear in δ, with             pieces

•                   is cts. and piecewise linear in δ with                  pieces

• T stages: At stage t,               has                             pieces

• To compute 

• using the line representation takes

• using the point representation takes 

• point based approach by Barret & Narayanan 2008

V̂2(S2, δ)

Q̂1(s1, a1, δ)

V̂ t(St , δ)

O(|A|)

O(|S||A|)

O(|S|T−t |A|T−t)

O(|S|T−t |A|T−t · |S||A|)

Õ((|S|T−t |A|T−t)2 · |S||A|)

Q̂t−1(st−1, at−1, δ)



Computational Complexity

• Previous work: took                                         time using pt. rep. 

• Relies on convexity in δ of 

• Our algorithm is faster, does not require convexity

• Can be used with linear regression models

Õ((|S|T−t |A|T−t)2 · |S||A|)
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• In least-squares regression, each coefficient is linear in the targets

•  

• For t = T, targets are R(δ) ≡ (1 - δ)⋅R(0) + δ⋅R(1), which is linear in δ
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Algorithm for Linear Regression:
Executive Summary

• At each timepoint t, define 

• In least-squares regression, each coefficient is linear in the targets

•  

• For t = T, targets are R(δ) ≡ (1 - δ)⋅R(0) + δ⋅R(1), which is linear in δ
•           is linear in δ

• For t < T, targets are                    , which is piecewise linear in δ
•           is piecewise linear in δ
• But not necessarily convex, so previous method would not work

β̂ = (XTX )−1XTy

β̂T (δ)

V̂t+1(St+1, δ)

β̂t(δ)
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Algorithm for Linear Regression:
Executive Summary

• At each timepoint t, define 

• In least-squares regression, each coefficient is linear in the targets

•  

• For t = T, targets are R(δ) ≡ (1 - δ)⋅R(0) + δ⋅R(1), which is linear in δ
•           is linear in δ

• For t < T, targets are                    , which is piecewise linear in δ
•           is piecewise linear in δ
• But not necessarily convex, so previous method would not work

• Time complexity to compute                                           from 
is 

β̂ = (XTX )−1XTy

β̂T (δ)

V̂t+1(St+1, δ)

β̂t(δ)

Q̂t(St ,At , δ; β̂t(δ)) = cTst ,at β̂t(δ)

O(nT−t |A|T−t · n|A|)
Q̂t−1(St−1,At−1, δ; β̂t−1(δ)) V̂t(St , δ)



Example: CATIE

• Large (n = 1460) comparative effectiveness trial funded by NIMH

• Compares medications for treatment of schizophrenia

• Most patients randomized two times:

• First to one of 5 actions

• Then, if desired, to one of 5 different actions

• Details are quite complicated

• Following is a highly simplified analysis

• Overall, the results are consistent with what is known in the literature

• Rewards: PANSS (symptoms) versus BMI (weight gain side-effect)



Example: CATIE Exploratory Analysis

δ

Lower PANSS at baselineModerate PANSS at baselineHigher PANSS at baseline



Example: CATIE Exploratory Analysis

Lower PANSS at phase entry

Moderate PANSS at phase entry

Higher PANSS at phase entry

δ



Example: CATIE-based Decision Aid

Recommendation given  
State and Preference

Strong Preference for Symptom 
Relief over Weight Control

Mild Preference for Symptom 
Relief over Weight Control

Mild Preference for Weight  
Control over Symptom Relief

Strong Preference for Weight 
Control over Symptom Relief

Lower PANSS  
at Entry to Phase 1

Olanzapine Olanzapine  
or Ziprasidone

Ziprasidone Ziprasidone

Moderate PANSS  
at Entry to Phase 1

Olanzapine Olanzapine  
or Ziprasidone

Ziprasidone Ziprasidone

Higher PANSS  
at Entry to Phase 1

Olanzapine Olanzapine Olanzapine  
or Ziprasidone

Ziprasidone

Lower PANSS  
at Entry to Phase 2

Clozapine Clozapine Clozapine, Risperidone, or  
Ziprasidone

Ziprasidone

Moderate PANSS  
at Entry to Phase 2

Clozapine Clozapine Clozapine Clozapine  
or Ziprasidone

Higher PANSS  
at Entry to Phase 2

Clozapine Clozapine Clozapine Clozapine  
or Ziprasidone

• One possibility for a decision aid is a very coarse version of the plots:

• Thanks to: Holly Wittemann, Brian Zikmund-Fisher for this idea



Future Work

• Evaluating the “Inverse Preference Elicitation” Idea

• MTurk Evaluation

• The Algorithms and Methods

• Measures of Uncertainty

• More flexible models / Approximation algorithms

• More reward definitions

• Clinical Science Applications



Amazon Mechanical Turk

• Mechanism for 
recruiting and paying 
users to do 
“Human Intelligence 
Tasks” - HITs

• Popular for running 
survey experiments 
(demographics at 
least as good as 
undergrads 
[Paolacci, Chandler, 
Ipeirotis 2010])



Amazon Mechanical Turk

• Our experiment will compare eliciting δ using a slider 
with directly eliciting an action using a decision aid.

• User will perform one of four different (similar and boring) sub-tasks, 
each one with different payoff and time required

• The choice of action determines the sub-task, and also affects the 
workload of all the subsequent subtasks - 
myopic decision making is sub-optimal.

• Competing preferences:

• Save time vs. Make money

• We will compare the appeal of the two methods

• Plan to go live January 2011



Future Work - Measures of Uncertainty

• Optimal policies for fixed δ do not reflect possible estimation error 
in             , or equivalently, uncertainty about 

• Even for fixed δ, constructing confidence intervals for  
requires care when t < T

• Because of the max operator used in Q-learning, estimators 
                   are non-regular at earlier time points

• Work in progress by Laber, Lizotte, Qian, Murphy addresses this

• Presentation of uncertainty information requires more thought
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Future Work - More Reward Definitions

• For backups: Allowing 3 reward definitions is feasible using methods 
from computational geometry (have already implemented)

• Representing non-convex continuous piecewise linear functions in 
high dimensions is difficult

• Making use of a three-reward analysis for decision making will be 
more complex



Future Work - Clinical Science

1.Schizophrenia

• Symptom reduction versus functionality, or weight gain

2.Major Depressive Disorder

• Symptom reduction versus weight gain, other side-effects

3.Type 2 Diabetes

• Future disease complications versus drug side-effects



Questions

• Supported by National Institute of Health 
grants R01 MH080015 and P50 DA10075

• Daniel J. Lizotte, Michael Bowling, and Susan A. Murphy. 
Efficient Reinforcement Learning with Multiple Reward Functions for 
Randomized Clinical Trial Analysis. Proceedings of the Twenty-Seventh 
International Conference on Machine Learning (ICML), 2010.

• Related work:

Barrett, L. and Narayanan, S. Learning all optimal policies with multiple criteria. 
In Proceedings of the 25th International Conference on Machine Learning 2008.
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