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Non-identifiability of parameters is a well-recognized problem in classical statistics, and Bayesian statisticians have long
recognized the importance of exchangeability assumptions in making statistical Inferences. A seemingly unrelated
problem in epidemiology is that of confounding: bias in estimation of the effects of an exposure on disease risk, due to
inherent differences in risk between exposed and unexposed individuals. Using a simple deterministic model for
exposure effects, a logical connection is drawn between the concepts of identifiability, exchangeability, and
confounding. This connection allows one to view the problem of confounding as arising from problems of identifiability,
and reveals the exchangeability assumptions that are implicit in confounder control methods. It also provides further
justification for confounder definitions based on comparability of exposure groups, as opposed to coHapsJbility-based
definitions.

While confounding is widely recognized as one of the
central problems in epidemiological research, a review
of the literature will reveal little consistency among the
definitions of confounding or confounder.1"10 The
definitions appearing over the past decade or so can,
however, be roughly divided into two broad categories:
the first, which we shall call 'comparability-based',
considers confounding as arising from inherent
differences in risk between exposed and unexposed
populations (where 'inherent' means differences that
would exist even if exposure was entirely absent from
both populations); the second, which we shall call
'collapsibility-based', considers confounding as arising
from differences between certain stratified (con-
ditional) statistical measures of association, and the
corresponding crude (unconditional or 'collapsed')
measure. Miettinen's1 and Rothman's2 definitions fall
in the former category, while those of Yanagawa3 and
Boivin and Wacholder10 fall in the latter. (Some books
offer definitions falling in the former category but then
employ analysis methods based on the latter, eg, Klein-
baum et a/7).

To our knowledge, no one has presented a theory of
epidemiological confounding based on a model for
individual effects—a somewhat surprising state of
affairs, since a theory of synergy and antagonism has
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been derived from such models." Nevertheless, we
shall here use a simple deterministic model of effects to
derive such a theory. Using this model, it appears that
confounding is a manifestation of a problem of non-
identifiability of parameters—where non-identifiability
is given the deterministic analogue of its statistical
meaning (ie, distinct values for the unknown
parameters of interest may determine the same data
distribution).12 The usual no-confounding assumptions
that render the parameters identifiable may be viewed
as exchangeability assumptions—where exchange-
ability is given the deterministic analogue of its
subjective Bayesian13 meaning (ie, the same data would
be expected if the exposure states of the groups had
been exchanged). The deterministic development has
been chosen to limit the length and technical level of the
presentation; nevertheless, analogous results are
obtainable under a stochastic model.

CAUSAL CONFOUNDING UNDER A
DETERMINISTIC MODEL
Identifiability and Exchangeability in
Individual Observations
Consider a situation in which we wish to study the
effect of a binary exposure factor on the risk of a
disease over a specified period at risk. There are four
possible types of individuals, according to their
response to the presence and absence of exposure.
Letting one indicate disease occurs and zero indicate
disease does not occur over the period, we can tabulate
these types as follows:
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"Common" description of type Exposed Unexposed

Type 1. No effect (individual "doomed"11) 1 I
Type 2. Exposure causative (individual

susceptible) I 0
Type 3. Exposure preventive (individual

susceptible) 0 1
Type 4. No effect (individual immune to

disease") 0 0

Suppose we observe a single exposed man over the
risk period. If he gets the disease, without further
information we cannot tell if he is Type 1 (would have
got the disease regardless of exposure) or Type 2
(exposure caused the disease). If he does not get the
disease, we cannot tell if he is Type 3 (exposure
prevented the disease) or Type 4 (would not have got
the disease). In other words, no matter what we
observe, we cannot tell if exposure had an effect. This
problem is one of non-identifiability: different possi-
bilities for the effect predict identical data distribu-
tions, and so we cannot identify the effect from the
data (here, the data comprise the observed outcome for
one man).

Suppose now we find an unexposed man to observe
over the risk period of interest. We now have four
possible outcomes to our observations: (a) both men
fall ill, (b) only the exposed man falls ill, (c) only the
unexposed man falls ill, (d) neither man falls ill. For the
same reason as before, we cannot tell if exposure had an
effect: if we observe the exposed man to fall ill, it may
be either because he was doomed or because of an
exposure effect; if we do not observe him to fall ill, it
may be because he was immune or because of an
exposure effect. But, if we combine our observations
with the assumption that both individuals are of the
same type, we can deduce whether exposure had an
effect: outcomes (a) and (d) with the assumption imply
no effect, outcome (b) with the assumption implies a
causative exposure effect occurred, and outcome (c)
with the assumption implies a preventive exposure
effect occurred (any exposure effect must, of course,
occur only in the exposed individual).

Thus, the addition of both an observation and an
unexposed individual and an assumption of
equivalence of the individuals (in terms of response
type) renders the effect identifiable: different
possibilities for the effect now predict different data
distributions (where the data now comprise the
observed outcomes for two individuals).

Equivalence of response type may be thought of in
terms of exchangeability of individuals: if the exposure
states of the two individuals had been exchanged, the
same data distribution would have resulted. Thus the

assumption employed to achieve identifiability was one
of exchangeability of the individuals.

Identifiability and Exchangeability in Populations
Suppose now we observed a closed cohort of N, initially
disease-free exposed individuals observed over a
specified risk period, and let pJt j = l to 4, be the
proportion of cohort members of Type j ; suppose we
also observe a closed cohort of No initially disease-free
unexposed individuals to compare to the exposed, and
let Qj, j = 1 to 4, be the proportion of unexposed cohort
members of Type j . Our observations may now be
summarized in a 2x 2 table:

Cases
Non-cases

Totals
Incidence Proportions
Survival Proportions
Incidence Odds

Exposed

Aj = (P| + P2)N]
Bj = (P3 + P4)Nj

IP, =A, /N,
SP, =B,/N|
IO,=A,/Bi

Unexposed

Afl D (Q I "̂ " Q I JNQ

Bn = (Q2 "̂ " Q4) 0

No
IP^Ao/No

There is no way to tell if there was any effect (in the
exposed, of course) from the above data alone: neither
IP,<IP0, IP, = IP0, nor IP|>IP0 imply anything about
p2 or p3. But, if we combine our observations with the
'comparability' assumption that the proportion of each
cohort that would fall ill if exposure is absent is the
same, ie, q,+ q3 = p ,+p 3 , we can deduce that the
incidence-proportion ('risk') difference IPD equals

P2-P3:

IPD = IP, - IP0 = A,/N, - / V N 0 = (p, + P j) - (q, + q3)

so that 1PD>O implies there are some individuals in
which the exposure caused disease (ie, p2X)), and
IPD<0 implies there are some individuals in which the
exposure prevented disease (ie, p3X)). If, however,
IPD = 0 we can only deduce that p2 = p3, not that there
was no effect. Thus, the addition of both observation
of an unexposed cohort and an assumption (of equality
of the incidence proportions of the cohorts when
exposure is absent) rendered our effect parameters (p2

and p3) only partially identifiable. To achieve full
identifiability, we would have to employ another
assumption: for example, additionally assuming
exposure is never causative (p2 = 0) would force IPD = 0
to imply p3 = 0, while additionally assuming exposure is
never preventive (p3 = 0) would force IPD = 0 to imply

The assumption that q i+q 3 = p, + p3 may also be
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seen as a partial exchangeability assumption: it says
that if the exposure states were exchanged, the
value observed for the incidence in the absence of
exposure would have been the same. (Complete
exchangeability—the same incidence-exposure relation
if exposure states were exchanged—would also require

The preceding discussion may be cast in more
familiar epidemiological terms by noting that A, is the
number of cases observed among the exposed, letting
Ei = (Pi + ftJNi be the number of cases that would have
occurred among the exposed had they not been
exposed, and letting £, =(q,+q3)N, = 1PON, be the
number of cases expected among the exposed had they
the same incidence as the unexposed. Then SMR =
A,/E, is the standardized morbidity ratio parameter,
ie, the proportionate increase in incidence produced by
the exposure (among the exposed), and A, /£ , is the
classical 'observed/expected' standardized morbidity
ratio estimate. The condition q i+q 3 = p ,+ p3 is then
equivalent to E, = E,; ie, the condition means the
unadjusted expected value estimated from the
unexposed group is equal to the number of cases that
would have occurred in the exposed group had
exposure been absent. This is one version of Miettinen
and Cook's criterion for no confounding in the absence
of other biases.5

A problem arises in employing the no-confounding
assumption (p, + p3 = q, + q3) in small samples: it may
be numerically impossible to satisfy, even approxi-
mately. For example, if we observed

Exposed Unexposed

Cases
Non-cases

Toials

we would haveq, + q3 = 1/3. But p, +p 3 can only equal
1, 1/2, or 0, and so cannot equal q, + q3. Note that this
problem gradually disappears as either the number
exposed (N,) or number unexposed (No) grows larger:
numerically, q, + q3 and p, + p3 can approximate each
other to within the smaller of 1/N, and 1/NO.

Randomization and Stratification
What can be done to ensure no confounding, in the
sense of p ,+ p3 = q,+q3? The answer is: nothing can
guarantee the condition holds, but some actions will
make it more likely. In the absence of covariate
information, the most effective one is randomization to
exposure status. I f we randomize, we can expect p, + p3

and qi + q3 to differ only in a random fashion, with

smaller differences being more likely than larger ones.
In small samples (such as the preceding example) these
random differences can easily be large, but as the
sample sizes (N, and N,,) grow these random differences
will tend to be smaller, so that when both samples are
large, random differences will in probability be small.

If in the absence of randomization (or despite
randomization) we believe there is confounding, ie,
that p, + p 3 ^ q , +q3 , we might ask if we can identify
subsets of our total study group (N, + No) within which
we believed confounding was nearbly absent, ie, within
which q i+q 3 approximated p1 + p3. If so, we could
conduct our analysis based on partitioning our data
into such subsets (strata). To illustrate, suppose we
have partitioned our data into K subsets; for subset k
let p,k, q,k, P2k, etc. represent the proportions of
individual types within that subset; let N,k> N^
represent the number exposed and unexposed within
that subset;'and let IPok = Qik + cbk be the incidence
proportion among the unexposed within that subset. If
we assume that there is no confounding within subsets,
ie, for all strata qik + Q3k= Piic + P3ki ' l follows that

Pl+P3= I ! (Plk + P3k)N,k/N,

= 1 (q,k + q3k)Nlk/N,= £ iPokN.k/N,,

o r E , = ( p , + p3)Nl

= I IPokN,k.

The content of the second equation should be familiar:
it says that if there is no confounding within strata, the
number of cases that would have occurred among the
exposed if they had not been exposed, E,f may be found
by applying the stratum-specific incidences among the
unexposed to the stratum-specific numbers of exposed
subjects.

It is actually not necessary (or realistic) to require
there be no confounding within strata in order to get no
confounding overall. It is simply necessary that our
stratified estimate of E,, £,, = £ IPok^ik. equal E,.
As the next section shows, this sufficient condition for
no overall confounding may well hold even if con-
founding is complete or severe within most strata.

Small-Stratum Confounding
What if some or all of the strata are so small that
substantial confounding must by numerical necessity
be present in some strata? Consider the following
example: a clinical trial using only twins, in which one
of each twin is randomly allocated to treatment, and in
which some twins are discordant on susceptibility type.
Each pair forms its own stratum, so that there is exactly
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one treated and one untreated person per stratum. This
implies that each of the proportions Pjk and qJk can take
on only the values 0 or 1. Furthermore, within each
stratum one and only one pjk and one and only one qjk

will equal 1. Thus, the quantities Pu + fti and q]lk +
q3k can equal only 0 or 1, and so to analyse within-
stratum confounding we need consider only four
possible combinations of values for these quantities:

Qik + Q3k= ' . i n which case there is
no confounding;

P3k= 1 and Qik+q3k = ° . i n which case
confounding is complete;

Pik + P3k= 0 and q,k + q3k = 1, in which case
confounding is complete, and

Pik + P3k = °iik + Q3k = 0, m which case there
is no confounding.

Suppose there are respectively T, U, V, and W pairs
(strata) exhibiting the combinations of values for
Pu + P3k a n d Qik + Q3k J u s t listed. Having randomized
treatment, we can expect U and V to differ only in a
random fashion, for U and V differ only because of
randomization. Consequently, if the number of pairs is
'large', the difference between U and V will in
probability be small. To see this, write E, and its
stratified estimate E l s in terms of the pair numbers:

E, =
V(O)1

= T + U;

W(O)1
= T + V.

The difference E, — £ls is simply U-V, and the pro-
portionate error due to confounding from using E,s in
place of E, in estimating (say) the SMR = A,/E, would
be

A/E^ -A . /E , U-V

A,/E, T + V

Thus the amount of confounding will be 'small' if
U - V is 'small' relative to T + V. Since ( U - V ) / V
converges to zero in probability as the number of pairs
grows (if any U or V pairs exist), (U - V)/(T+ V) must
become 'small' as T + V becomes 'large'.

More precise meanings can be given to 'small' and
'large' above, but the point of the preceding argument
is this: in a randomized trial, there is a certain positive

likelihood that a given degree of confounding remains
in the adjusted (stratified summary) result because of
confounding within strata; nevertheless, this likelihood
becomes small as either the number of informative
strata becomes large, or as one or more informative
strata become large ('informative strata' here means
strata within which the proportion of Type 2 or 3
individuals in the sampled population is non-zero).
More simply put, 'random' confounding within strata
will tend to cancel across strata, and will diminish in
overall importance as the sample size grows, even if it
remains large within strata.

In the absence of randomization, we have no
probabilistic guarantee that within-stratum confound-
ing will tend to disappear as the strata grow large, or
cancel across strata as the number of strata grows large.
Nevertheless, we must simply assume such cancellation
occurs in order to proceed with the analysis. More
precisely, we must assume that as the sample size grows
the stratified version of the condition for no overall
confounding, ie, that EK = E|, will tend to hold. Again,
this may be viewed as a partial exchangeability
assumption, to the effect that the unexposed incidence
standardized to the first group (£,S/N,) would remain
approximately unchanged if the exposure states of the
two groups had been exchanged.

Extension to Stochastic Models
One can extend the above theory to situations involving
stochastic elements, introduced either via random
sampling, or stochastic individual mechanisms for
disease occurrence. The chief change is that the fixed
population quantities given above (A,, IP,, E,, etc.)
become expected values. Additional statistical con-
siderations arise in construction of estimates of E, .9

CONFOUNDERS
The last section provided a precise definition of
confounding and a motivation for stratification in
constructing unconfounded estimates of effect. Note
that no mention of 'confounder' or 'covariate' was
necessary. Thus we maintain that the notion of con-
founding in causal analysis is more fundamental than
any notion of confounder or covariate control, despite
a tendency of some writers to assume that confounding
is solely the product of'covariate imbalances'. In fact,
the only 'covariate' that could serve as a foundation for
the notion of confounding is the 'ultimate covariate',
ie, the variable which takes on the value one if an
individual is Type 1 or 3 and zero if an individual is
Type 2 or 4. This covariate perfectly predicts the
individual's outcome status if exposure is absent; if it
could be measured, there would be no need for a
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comparison group (since for every exposed individual
one could tell whether the exposure had an effect
merely by comparing the individual's actual outcome to
the individual's value of this covariate). Since one
cannot in general measure the 'ultimate covariate', one
must make do with less perfect predictors of outcome in
the absence of exposure.

One heuristic epidemiological definition defines a
confounder as a variable that, when controlled, yields
an estimate of E, (and hence the SMR parameter) closer
to the true value (ie, less biased) than when it is not
controlled.5 Implicit in this definition is the fact (not
always made explicit) that a variable is a confounder
only relative to everything else that is under control.1

For example, upon control of various medical-care
variables, socioeconomic status might cease to be a
confounder in a perinatal-mortality study. It is perhaps
less widely realized that a variable may become a
confounder upon control of certain other variables (the
example given below illustrates this if one takes the
'ultimate covariate' as the variable in question).

When starting from the preceding definition, many

ing the parameter of interest as a measure of the effect
of exposure.

Occasionally, one sees writings in which the above
properties are taken as defining a confounder (as
opposed to merely being derived properties).6 This is a
mistake, because the above properties are not sufficient
to guarantee a variable is a confounder; in other words,
there can be variables that satisfy all three properties
but for which control is not helpful.14'"

There is also a logical conflict between the definition
based on whether control 'helps' (ie, reduces the net
bias in estimating E,) and the definition based on
whether the above three properties are satisfied: it may
be that a variable satisfies the above properties, but that
the residual confounding left upon its control is greater
than the confounding present when it is not controlled
(indeed, in the absence of randomization such a
situation would not necessarily be unusual).

Example. Suppose (unknown to us) exposure has no
effect, ie, there are no Type 2 or 3 individuals, and that
we measure a risk factor having the following joint
distribution with exposure and type:

Type

1 ('doomed')
4 ('immune')

Total
Incidence

Factor present

Exposed Unexposed

60 70
40 30

100 100
0.60 0.70

Factor absent

Exposed Unexposed

40 180
60 220

100 400
0.40 0.45

Crude

Exposed Unexposed

100 250
100 250

200 500
0.50 0.50

authors deduce the following as necessary properties of
a confounder (assuming there is no selection bias or
misclassification) (cf ref. 5):

(1) It must be predictive of risk among the unexposed
(in the present context, this means it must be pre-
dictive of being 'Type 1 or 3').

(2) It must be associated with exposure in the popula-
tion under study (ie, the cohort in a cohort study,
and the source population of cases and controls in
a case-control study).

Some authors add:
(3) It must not be an intermediate in the causal

sequence from exposure to outcome, or a conse-
quence of the outcome.

The first two properties are implicitly taken as con-
ditional on other controlled factors, and follow
immediately from algebraic arguments based on
collapsibility of the SMR parameter.9 The third
property, however, is a logical consequence of identify-

Note that only the last two lines of the table would be
observable in a real study. From them we can see that
the factor is associated with exposure (100 of 200
exposed have the factor, as opposed to 100 of 500
unexposed), and is predictive of outcome among the
unexposed (among the unexposed, 0.45 of those
without the factor will get the disease, as opposed to
0.70 of those with the factor). Nevertheless, if we fail to
control the factor, we will observe disease in an equal
proportion (1/2) of the exposed and unexposed,
correctly indicating no exposure effect, while if we
control the factor, exposure will incorrectly appear to
be preventive of disease in both strata. More precisely,
we may note that p3 = 0 and thus p, + p3 = P! =0.50 =
q, = q, + q3, so that the crude estimate is uncon-
founded, while E,s = 0.70(100) + 0.45(100) = 115 *
0.50(200) = E,, so that the adjusted estimate is con-
founded. One might explain this phenomenon by
saying that the 'downward' bias left after control of the
factor is cancelled by the 'upward' bias produced by
not controlling the factor, leaving an unbiased crude
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estimate of effect; Robins, however, gives an example
in which risk factor control increases bias but this
explanation fails.16

In practice, one may have no idea whether the bias
produced by failing to control some factor (or factors)
is added to or opposed by any other bias. In most
situations one is much more likely to be certain that the
derived properties 1-3 above are satisfied for a given
factor than to be certain that the control of the factor
actually reduces the net bias in one's estimate. Thus
although properties 1-3 are not sufficient to define a
confounder, they remain practical criteria for screening
out non-confounders (since any confounder must meet
all three criteria).

One point deserves special emphasis, if only because
it was often overlooked in early epidemiological
literature: the property of being a confounder is not
directly verifiable from data.5 As the preceding
example illustrates, what we observe (incidence and
factor distributions) is not sufficient to judge with
certainty whether a factor is a confounder, or how
much confounding it is responsible for. Thus, the
decision of whether to control a factor is subject to
error (even if the factor is known with certainty to
satisfy properties 1-3 given earlier).

COLLAPSIBILITY
Certain authors3'10 employ a definition of confounder
that is based on the statistical notion of 'collapsi-
bility'.14115 In this approach, no reference is made to
individual 'effects', and notions of 'cause' enter only in
the a priori identification of which factors should be
considered potential confounders. (Usually, in the
absence of misclassification or selection bias, a variable
possessing properties (1) and (3) given earlier, ie, a non-
intermediate risk predictor among the unexposed, will
be considered a potential confounder.) One then
considers whether the crude estimator of effect is a
'biased' (or statistically inconsistent) estimator for a
stratified parameter in a statistical model. For example,
a model commonly used in case-control studies asserts
that upon stratification of the underlying source
population on all potential confounders, each stratum-
specific exposure-disease association in the population
would be manifested by an odds ratio (cross-product
ratio) that is common to all strata (ie, homogeneous
across strata). If this common population odds ratio
equals the crude population odds ratio, the odds ratio is
said to be collapsible,14 and the crude odds ratio is said
to be unconfounded.3'10-"

As noted by Miettinen and Cook,3 the identification
of confounding with non-collapsibility (which they
reject) makes the presence or absence of confounding

depend on which parameter is chosen to measure
exposure effect. For example, in a cohort study one
may find the risk difference to be collapsible but the
odds ratio not, so that whether one judged confound-
ing present would depend on which measure one chose.

If, however, one's objective is to compare the
exposed population's actual incidence with its 'null'
incidence (the incidence it would have experienced had
exposure been absent), confounding is present (absent)
if the unexposed incidence does not equal (at least in
expectation) this 'null' incidence. This is the 'com-
parability-based' definition. Using this, one is led, as
Miettinen and Cook were, to reject the odds ratio as a
measure of intrinsic interest and instead employ the risk
ratio and risk difference, for unlike the odds ratio both
the incidence ratio and difference will be collapsible
whenever confounding (in the 'comparability-based'
sense) is absent.3

Even if one defines a confounder as a 'non-
collapsible potential confounder', one should note that
this property is not directly verifiable from the data:
first, the collapsibility referred to is in the statistical
source population,3'14'15 which the observed data only
reflect with error; second, the defining properties of a
potential confounder (properties (1) and (3)) are not
wholly verifiable from the data.

CONCLUSION
We have attempted to trace back to the most simple
level (observation of deterministic outcomes in indi-
viduals) the origin of the epidemiological notion of
confounding. In so doing, we have concluded that the
problem of confounding arises from our inability to
identify (or estimate) from data along the fundamental
causal parameters that determine our observations.
The 'no-confounding' assumptions that render these
parameters at least partially identifiable may be
recognized as assumptions about exchangeability of
individuals or groups. This view leads to a definition of
confounding that is equivalent to the 'comparability-
based' definitions given by certain epidemiologists, and
thus conflicts with 'collapsibility-based' definitions. In
particular, it reinforces the conclusions of Miettinen
and Cook that presence or absence of confounding
should not be equated with absence or presence of
collapsibility, and that confounding should not be
regarded as a parameter-dependent phenomenon. It
also reinforces the notion that the degree of confound-
ing of results is an unknown quantity, not directly
measurable from observed data.
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