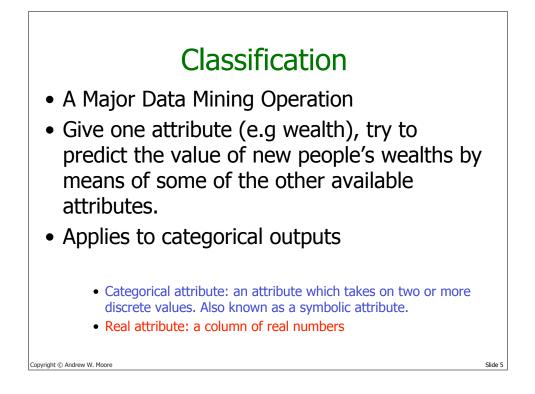
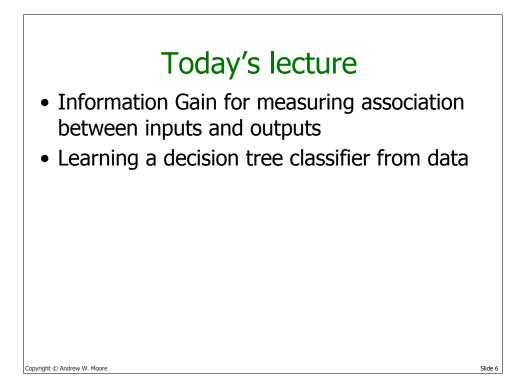


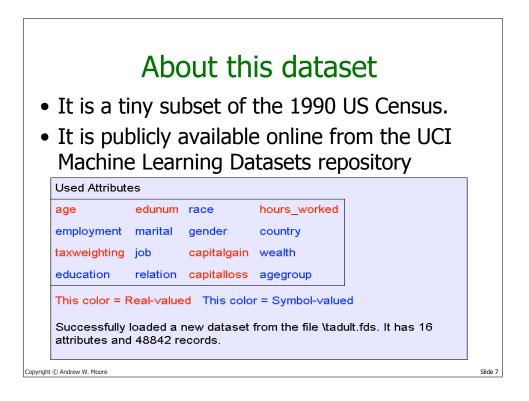
	 Machine Learning Datasets 	
	What is Classification?	
	Contingency Tables	
	OLAP (Online Analytical Processing)	
	What is Data Mining?	
	Searching for High Information Gain	
	Learning an unpruned decision tree recursively	
	Training Set Error	
	Test Set Error	
	Overfitting	
	Avoiding Overfitting	
	Information Gain of a real valued input	
	Building Decision Trees with real Valued Inputs	
	Andrew's homebrewed hack: Binary Categorical Splits	
	Example Decision Trees	
Copyright © Andrew W. Moore		Slide 2

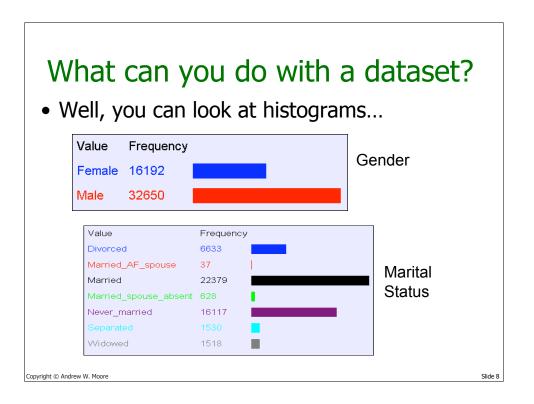
39 State_gov Bachelors 51 Self_emp_r Bachelors 39 Private HS_grad 54 Private 11th 28 Private Bachelors 38 Private Masters 50 Private Masters 31 Private Bachelors 37 Private Bachelors 33 Private Bachelors 34 Private Bachelors 33 Private Assoc_woc 34 Private Assoc_voc 34 Private HS_grad 33 Private HS_grad	13 Never_man 13 Married 9 Divorced 7 Married 13 Married 14 Married 5 Married_sp 9 Married 13 Never_man 13 Never_man 13 Never_man 14 Never_man 15 Never_man 16 Never_man 17 Never_man 18 Never_man	Adm_cleric:Not_in_far Exec_man:Husband Handlers_c Not_in_far Handlers_c Husband Prof_specia:Wife Exec_mans!Wife Other_serviNot_in_far Exec_mans!Husband Prof_specia:Not_in_far Exec_mans!Husband Prof_specia:Not_in_far Exec_mans!Husband Adm_cleric:Own_child Sales Not_in_far Craft_repai:Husband Transport_r Husband Farming_fic Own_child Machine_o JUmmarried	White Male nWhite Male Black Male Black Female Black Female Black Female Black Female Black Female Black Male Number Female White Male Black Male Asian Male Asian Male Asian Male Asian Male Amer_India Male White White Male White Male	16 Jamaica poor 45 United_Statrich 50 United_Statrich 40 United_Statrich 40 United_Statrich 40 India rich 30 United_Statpoor 50 United_Statpoor 40 "MissingVarich 45 Mexico poor 35 United_Statpoor 40 United_Statpoor
38 Private 11th 44 Seft_emp_r Masters 41 Private Doctorate 48,000 recc	⁷ Married 14 Divorced 16 Married Drds, 16	Sales Husband Exec.mancUmmaried Prof_specie Husband	White Male : : : : : : : :	60 United_Starrich

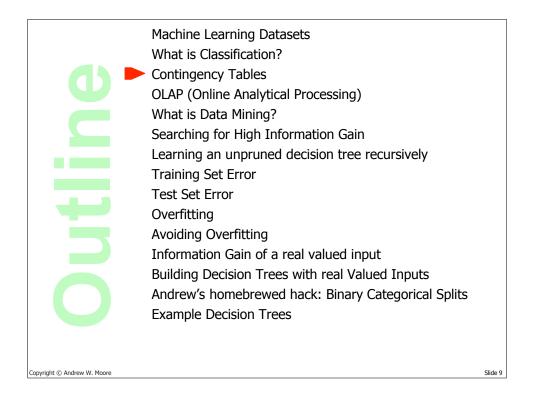
	Machine Learning Datasets	
	What is Classification?	
	Contingency Tables	
	OLAP (Online Analytical Processing)	
	What is Data Mining?	
	Searching for High Information Gain	
	Learning an unpruned decision tree recursively	
	Training Set Error	
	Test Set Error	
	Overfitting	
	Avoiding Overfitting	
	Information Gain of a real valued input	
	Building Decision Trees with real Valued Inputs	
	Andrew's homebrewed hack: Binary Categorical Splits	
	Example Decision Trees	
	•	
Copyright © Andrew W. Moore		Slide 4

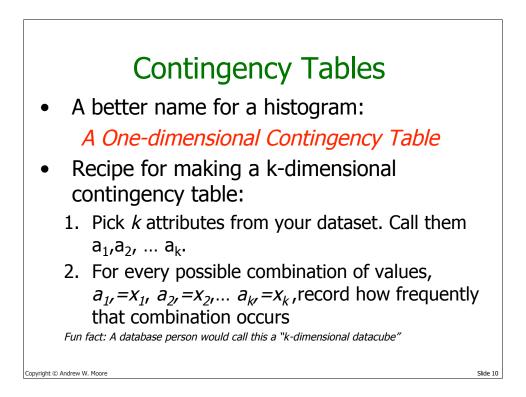




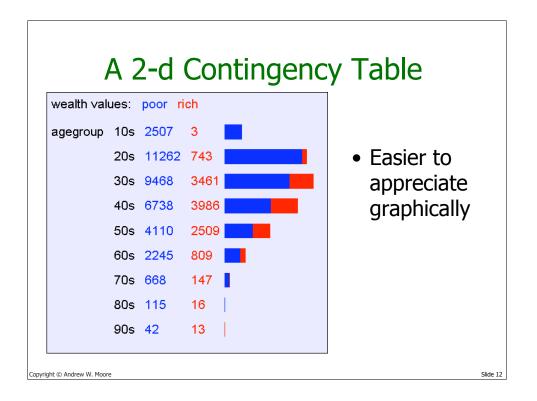


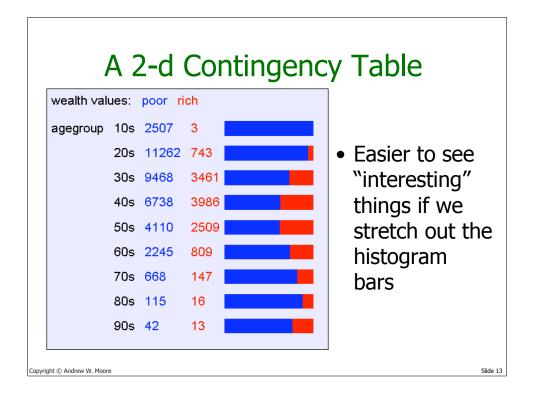




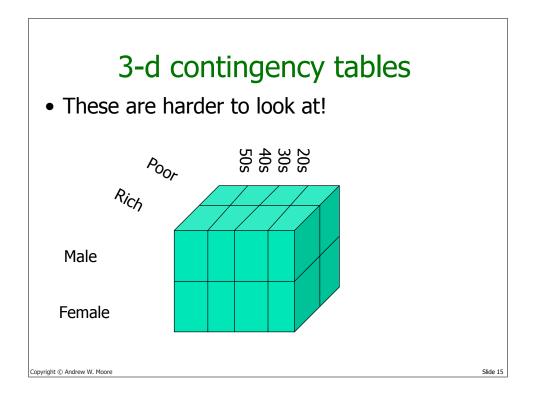


wealth ∨al	ues:	poor ri	ch	
agegroup	10s	2507	3	 For each pair of
	20s	11262	743	values for
	30s	9468	3461	attributes
	40s	6738	3986	(agegroup,wealth
	50s	4110	2509	we can see how
	60s	2245	809	
	70s	668	147	many records
	80s	115	16	match.
	90s	42	13	

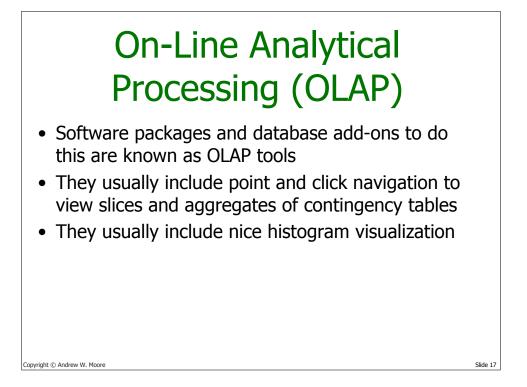


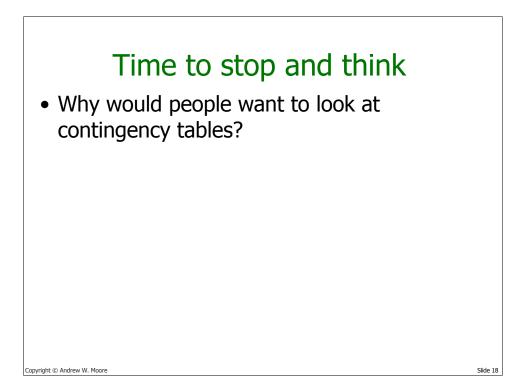


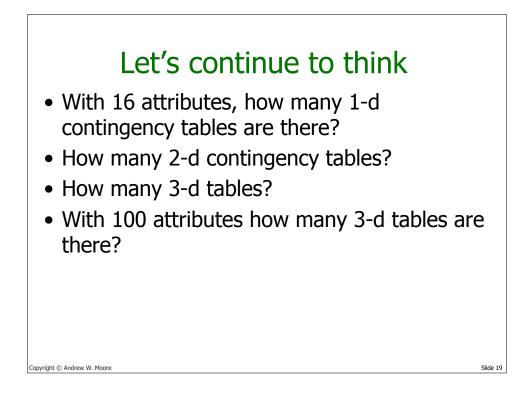
Missing	gValue* Armed_Forces	Exec_	manag	eria	l Hand	dlers_c	leane	rs <mark>Ot</mark> l	her_ser	vice	Prof_s	pecial	ty	Sales		Tran	sport_mov	ring
narital	Divorced	270	1192	0	679	890	90	197	434	762	795	121	664	239	254			
	Married_AF_spouse	5	6	0	4	3	1	1	1	5	4	1	5	0	1			
	Married	928	1495	7	3818	3600	869	724	1469	1088	3182	583	2491	609	1489			
	Married_spouse_absent	45	84	0	77	52	35	32	37	92	64	7	55	9	30			
	Never_married	1242	2360	8	1301	1260	434	1029	872	2442	1849	237	1992	506	486			
	Separated	97	224	0	160	126	23	63	123	275	145	23	146	48	56			
	Widowed	222	250	0	73	155		26	86	259	133	11	151	35	39			

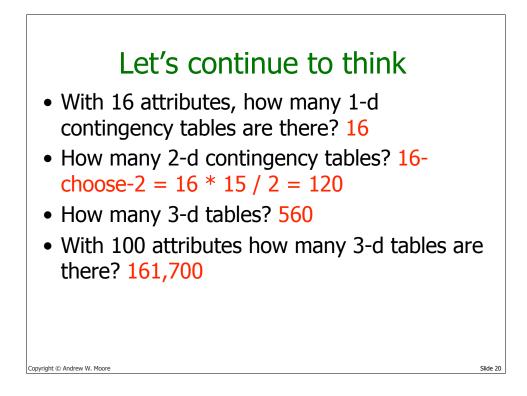


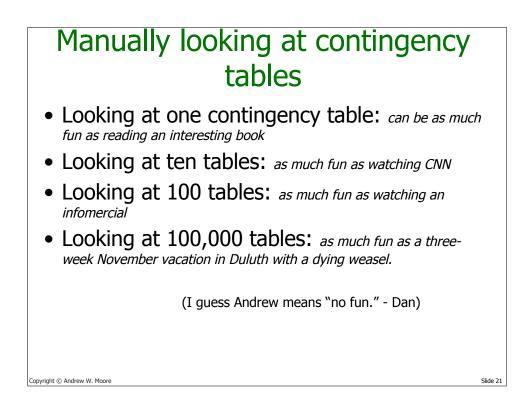
	Machine Learning Datasets	
	What is Classification?	
	Contingency Tables	
	 OLAP (Online Analytical Processing) 	
	What is Data Mining?	
	Searching for High Information Gain	
	Learning an unpruned decision tree recursively	
	Training Set Error	
	Test Set Error	
	Overfitting	
	Avoiding Overfitting	
	Information Gain of a real valued input	
	Building Decision Trees with real Valued Inputs	
	Andrew's homebrewed hack: Binary Categorical Splits	
	Example Decision Trees	
Copyright © Andrew W. Moore		Slide 16

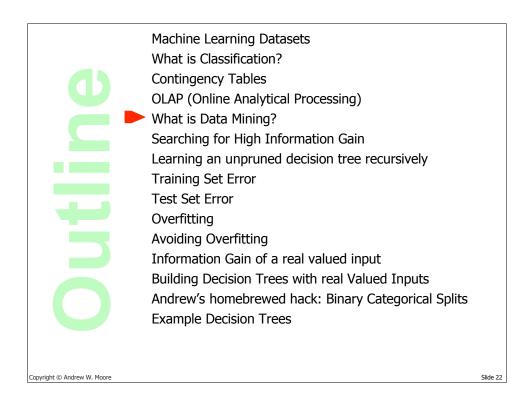


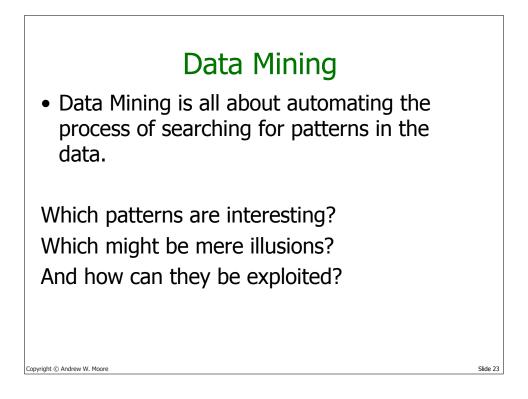


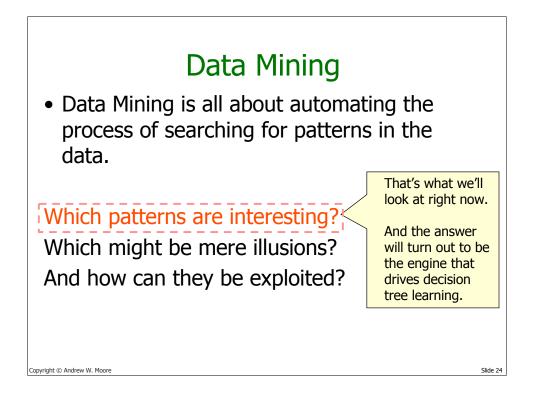


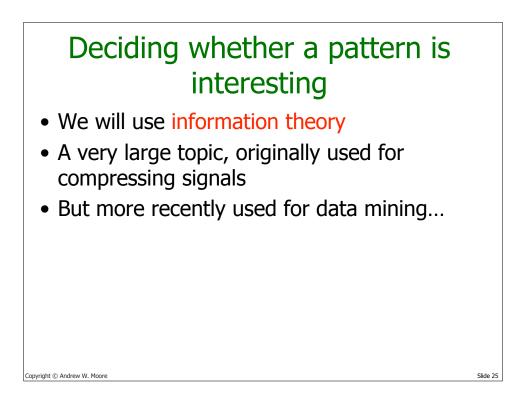










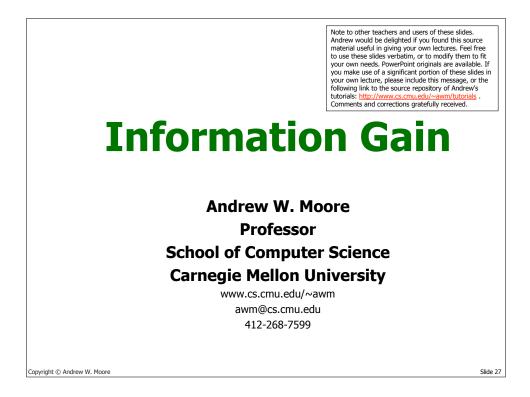


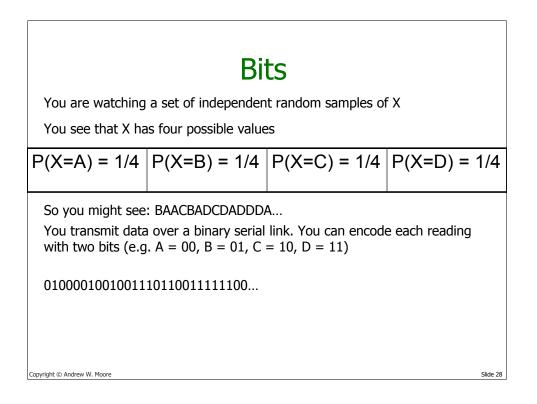
Deciding whether a pattern is interesting

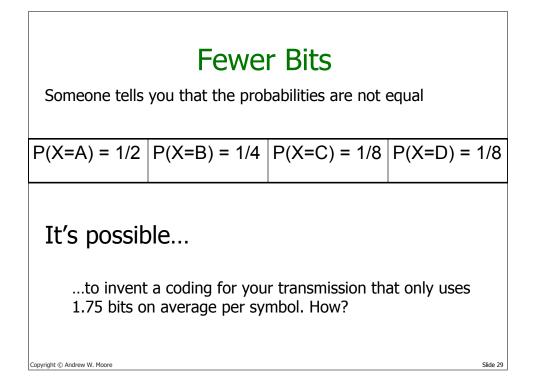
• We will use information theory

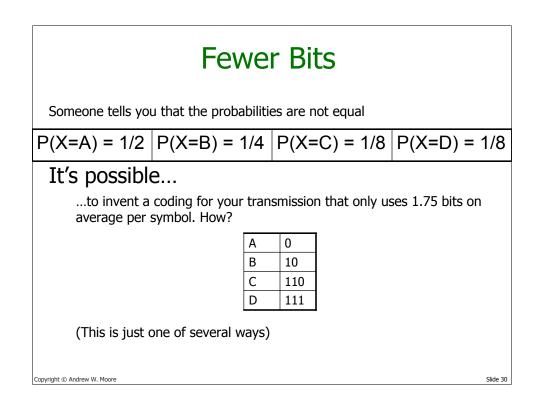
Copyright © Andrew W. Moore

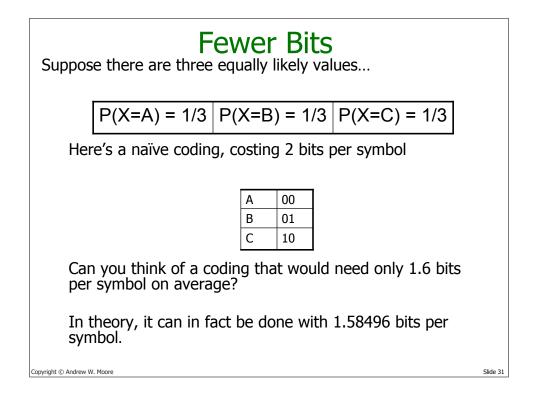
- A very large topic, originally used for compressing signals
- But more recently used for data mining...

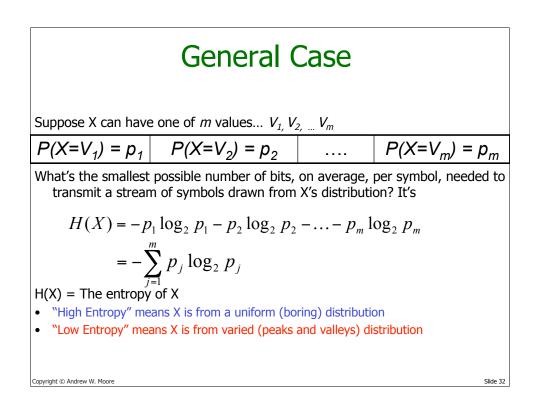


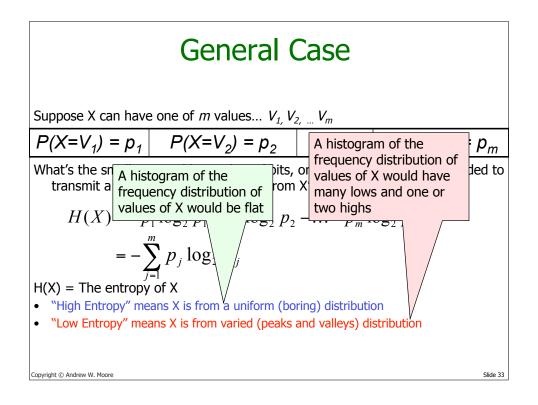


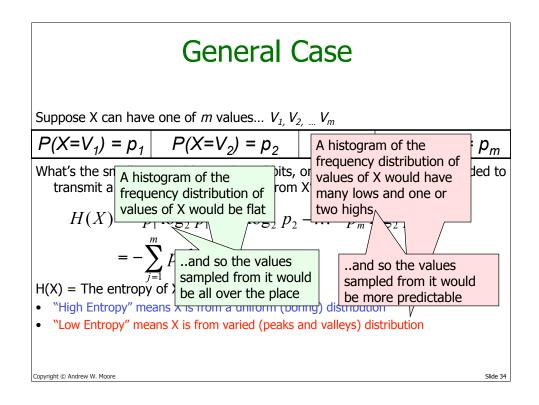












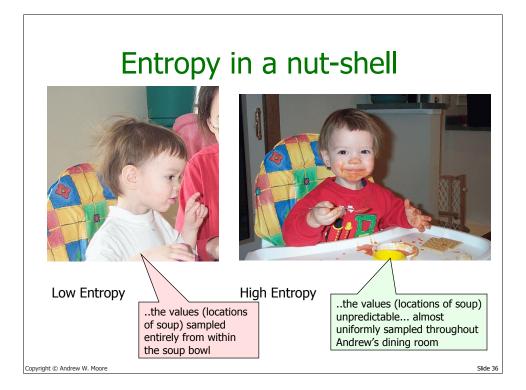
Entropy in a nut-shell

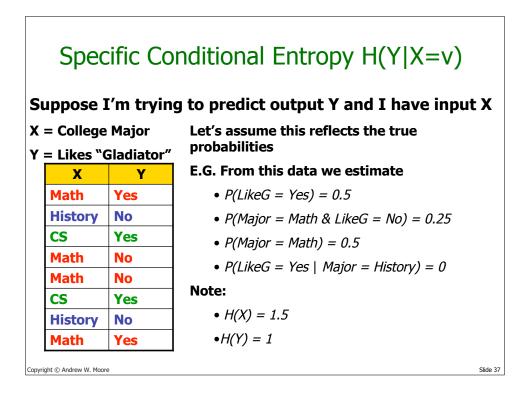
Slide 35

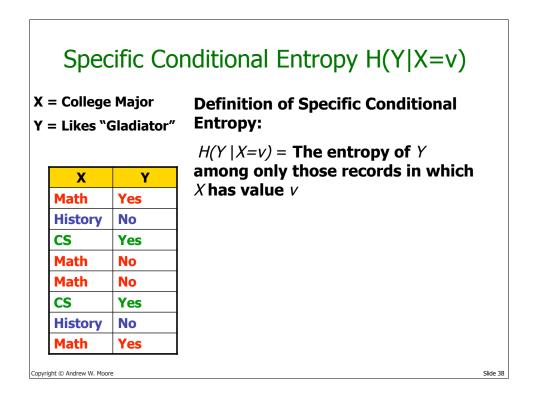
Low Entropy

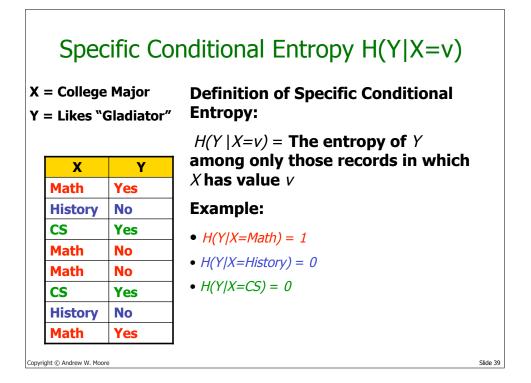
High Entropy

Copyright © Andrew W. Moore





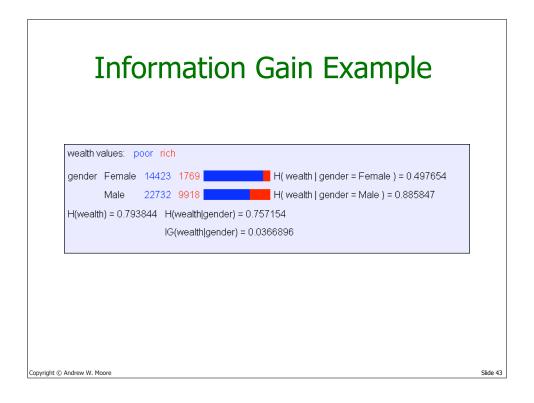


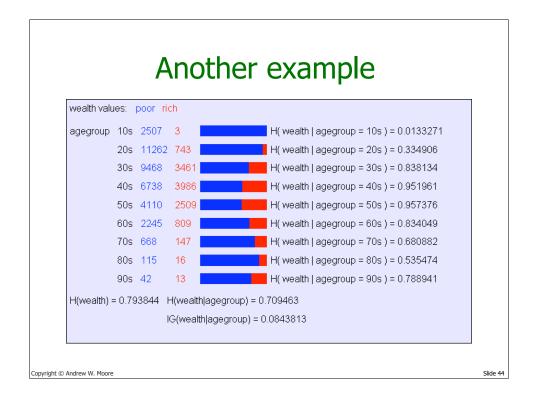


Definition of Conditional Entropy: H(Y X) = The average specific conditional entropy of Y
conditional entropy of Y
= if you choose a record at random what
will be the conditional entropy of Y,
conditioned on that row's value of X
= Expected number of bits to transmit Y if
both sides will know the value of X
$= \Sigma_{i} \operatorname{Prob}(X = v_{i}) H(Y \mid X = v_{i})$

= College	e Major	Definition	of Condition	al Entropy:					
= Likes "(Gladiator"	H(Y X) = The average conditional entropy of Y							
		= Σ _i Prob	$p(X=v_i) H(Y \mid X)$	$(X = V_i)$					
X	Y	2	2	2					
Math	Yes	Example:							
History	No	V,	$Prob(X=v_i)$	$H(Y \mid X = v_i)$					
CS	Yes	Math	0.5	1					
Math	No			1					
Math	No	History	0.25	0					
CS	Yes	CS	0.25	0					
History	No								
Math	Yes	H(Y X) = 0.5	* 1 + 0.25 * 0 +	0.25 * 0 = 0.5					

= College	e Major	Definition of Information Gain:
= Likes "(Gladiator"	IG(Y X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?
X	Y	
Math	Yes	$IG(Y \mid X) = H(Y) - H(Y \mid X)$
History	No	
CS	Yes	Example:
Math	No	• H(Y) = 1
Math	No	
CS	Yes	• H(Y X) = 0.5
History	No	 Thus IG(Y X) = 1 − 0.5 = 0.5
Math	Yes	





= College = Likes "	e Major Gladiator″	Definition of Relative Information Gain:
		<i>RIG(Y</i> <i>X)</i> = I must transmit <i>Y</i> , what fraction of the bits on average would
Х	Y	it save me if both ends of the line
Math	Yes	knew X?
History	No	$RIG(Y \mid X) = H(Y) - H(Y \mid X) / H(Y)$
CS	Yes	
Math	No	Example:
Math	No	• $H(Y X) = 0.5$
CS	Yes	
History	No	• $H(Y) = 1$
Math	Yes	• Thus $IG(Y X) = (1 - 0.5)/1 = 0.5$

What is Information Gain used for?

Suppose you are trying to predict whether someone is going live past 80 years. From historical data you might find...

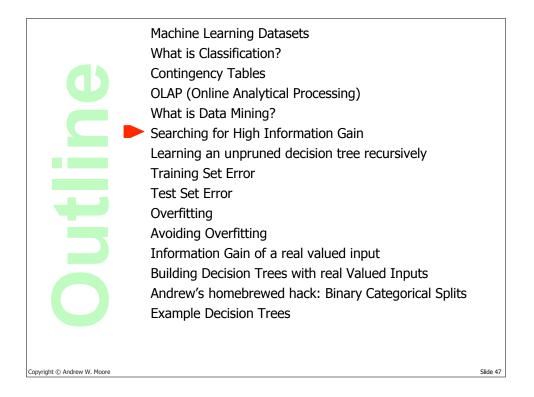
- •IG(LongLife | HairColor) = 0.01
- •IG(LongLife | Smoker) = 0.2
- •IG(LongLife | Gender) = 0.25

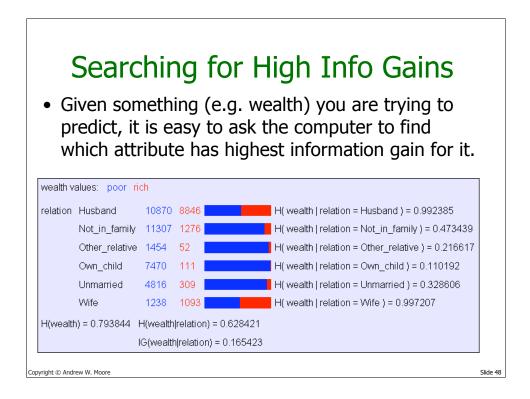
Copyright © Andrew W. Moore

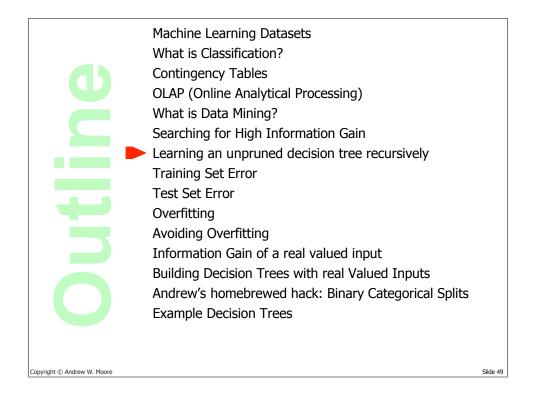
•IG(LongLife | LastDigitOfSSN) = 0.00001

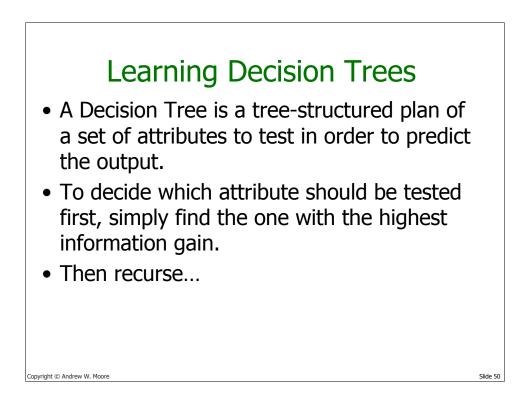
IG tells you how interesting a 2-d contingency table is going to be.

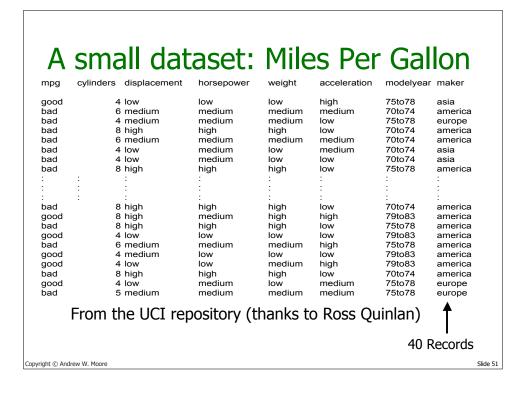
Slide 46



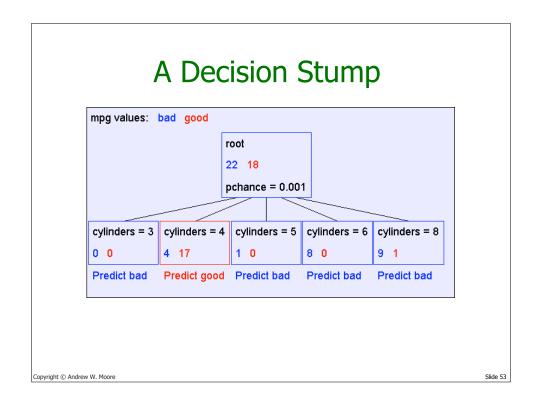


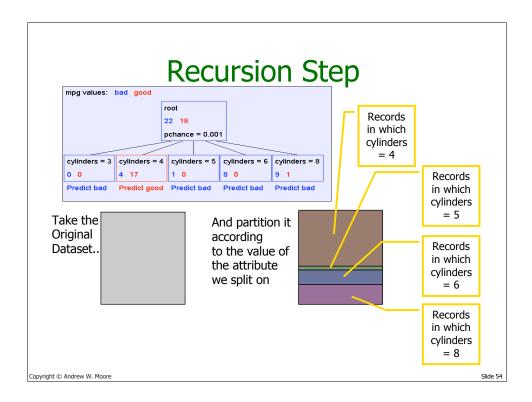


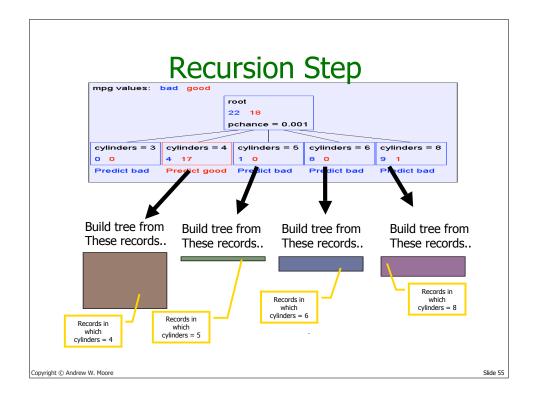


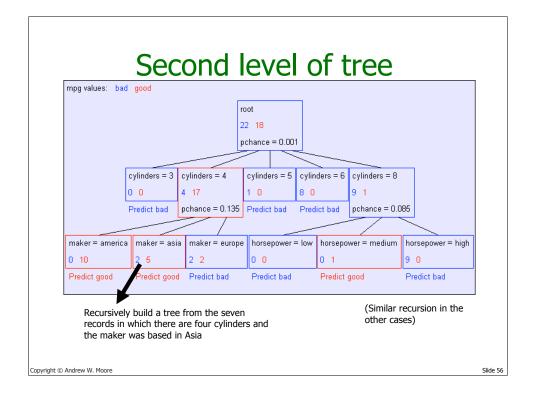


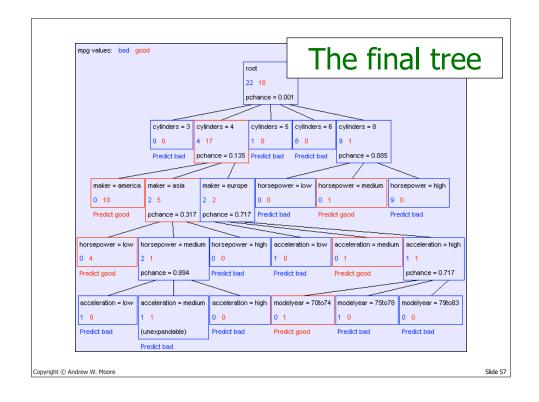


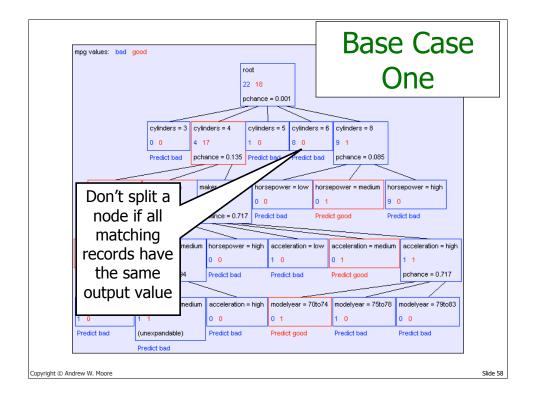


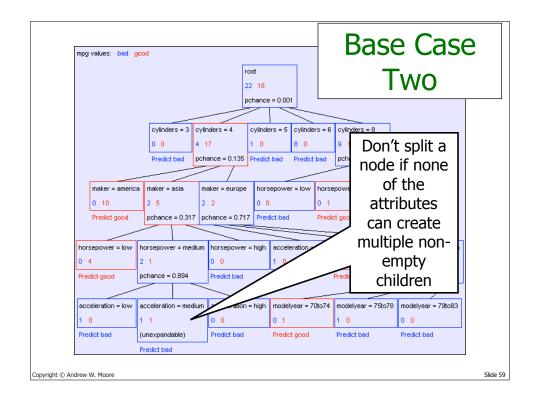


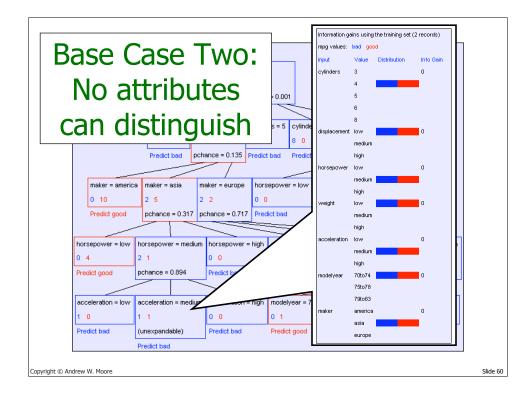


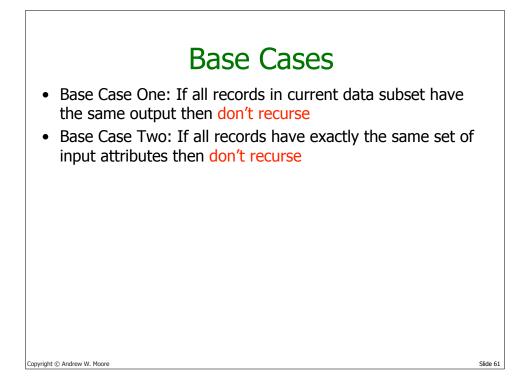


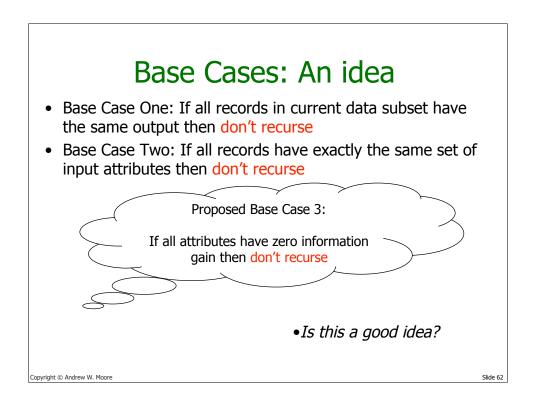


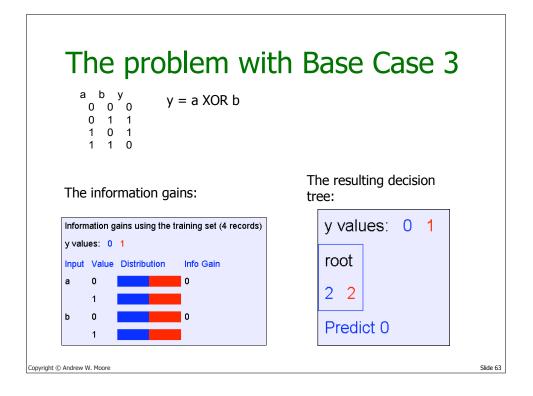


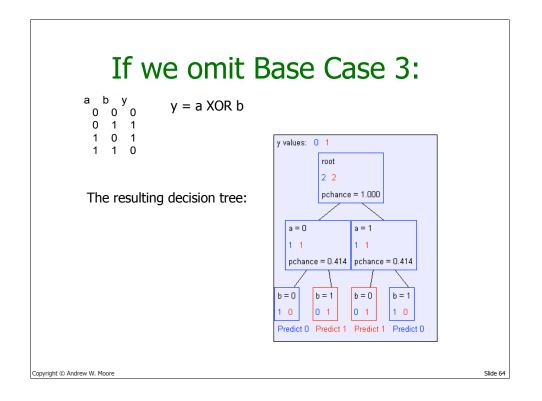


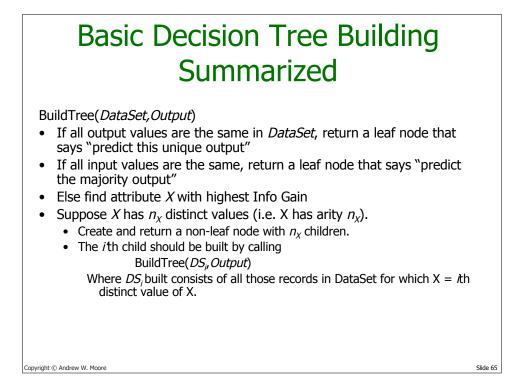


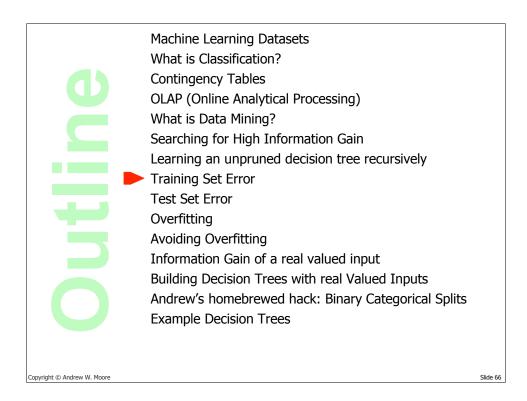


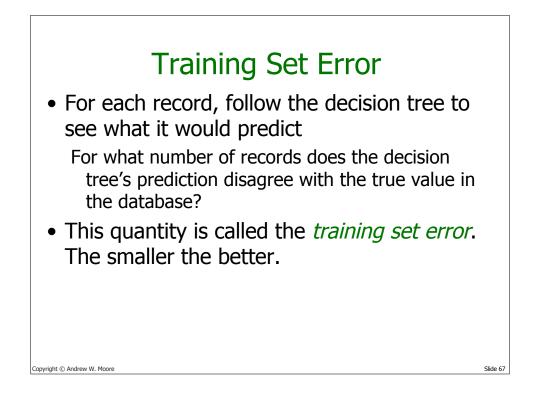




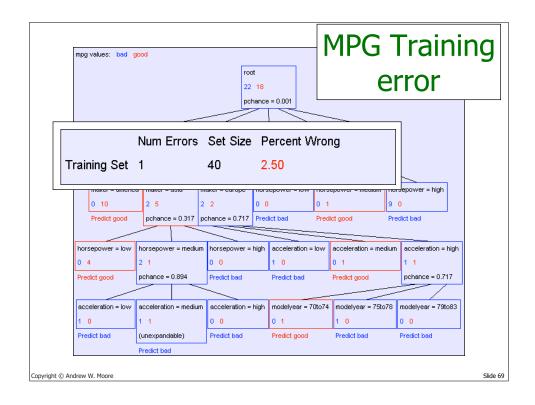




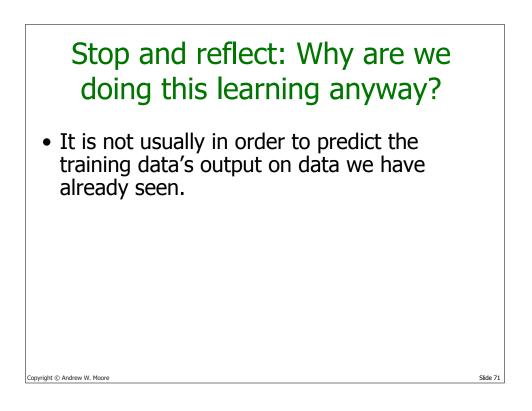


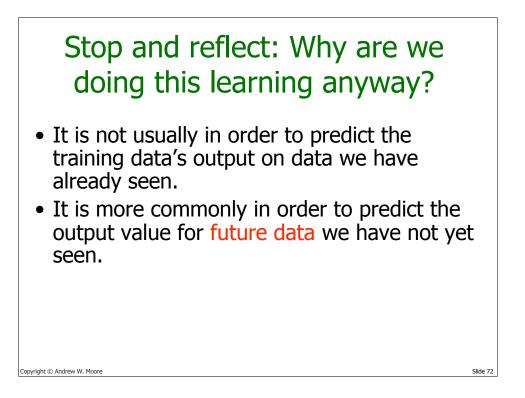


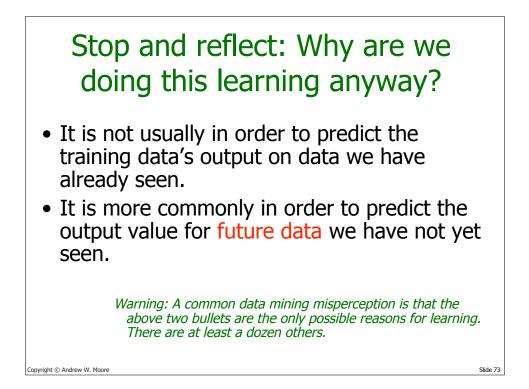
mpg values: bad	good			- [MPG	Traini	ng
		root 22			e	rror	
			ince = 0.001				
		vlinders = 4 cyl 17 1	inders=5 cylin 0 8 0		6 cylinders = 8 9 1		
	Predict bad pc	hance = 0.135 Pre	dict bad Pred	ict bad	pchance = 0.085		
maker = americ			norsepower = lov		· ·	horsepower = high	
0 10 Predict good	_		0 0 Predict bad	0 1 Pred		9 0 Predict bad	
horsepower = low	horsepower = medium	n horsepower = hi	gh acceleration	n = low	acceleration = mediu	um acceleration = high	
0 4 Predict good	2 1 pchance = 0.894	0 0 Predict bad	1 0 Predict bad		0 1 Predict good	1 1 pchance = 0.717	
			Troubt bud				
acceleration = low	acceleration = medium			70to74	i i		
1 0 Predict bad	1 1 (unexpandable)	0 0 Predict bad	0 1 Predict good	4	1 0 Predict bad	0 0 Predict bad	
	Predict bad				i i conce solor	1100001000	
right © Andrew W. Moore							Slide 68

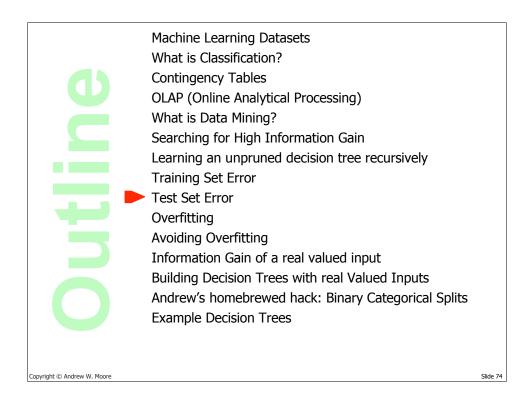


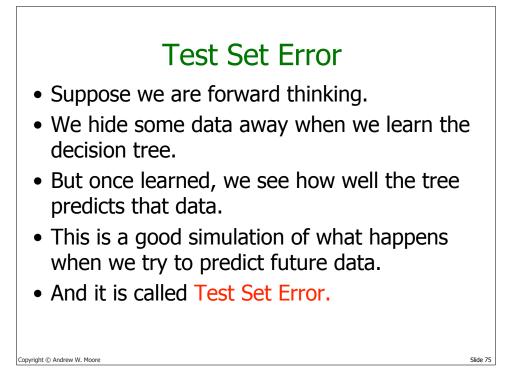




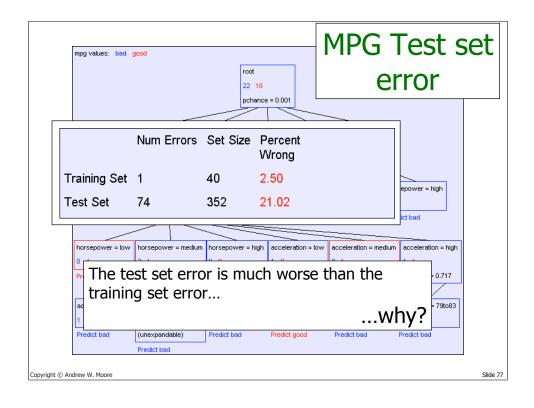


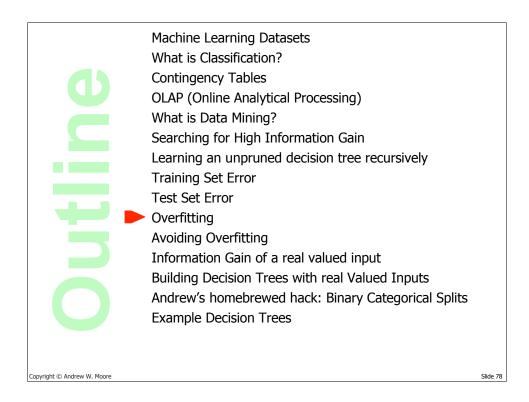


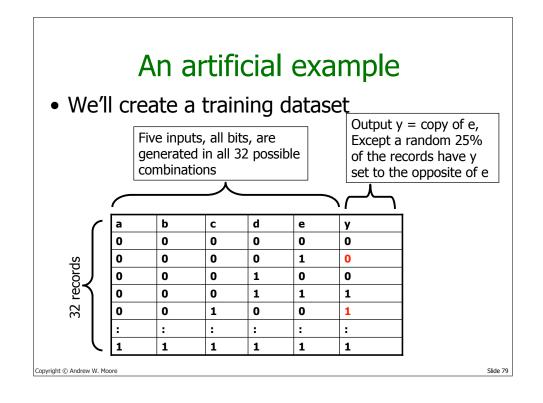


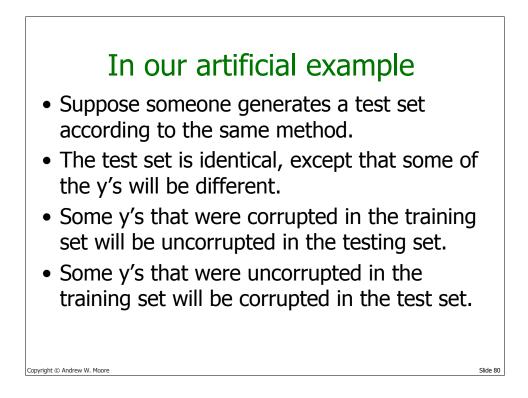


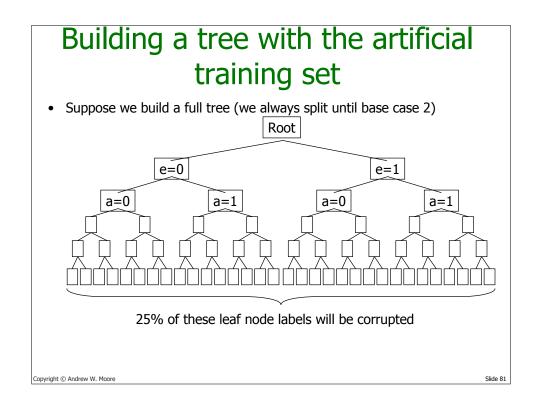
mpg values: bad	good	root 22 18		- MPG ei	Test s rror	set
	Num Errors	Set Size P	ercent Vrong			
Training Set Test Set			.50 1.02		epower = high ict bad	
horsepower = low 0 4 Predict good	horsepower = medium 2 1 pchance = 0.894	horsepower = high 0 0 Predict bad	acceleration = low 1 0 Predict bad	acceleration = medium 0 1 Predict good	acceleration = high 1 1 pchance = 0.717	
acceleration = low 1 0	acceleration = medium	acceleration = high	modelyear = 70to74 0 1	1 modelyear = 75to78	modelyear = 79to83 0 0	
Predict bad	(unexpandable) Predict bad	Predict bad	Predict good	Predict bad	Predict bad	Slide 7

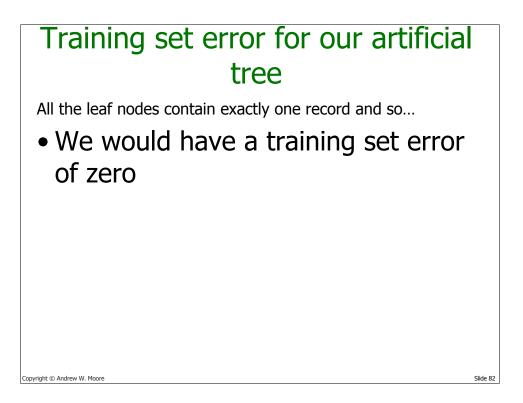








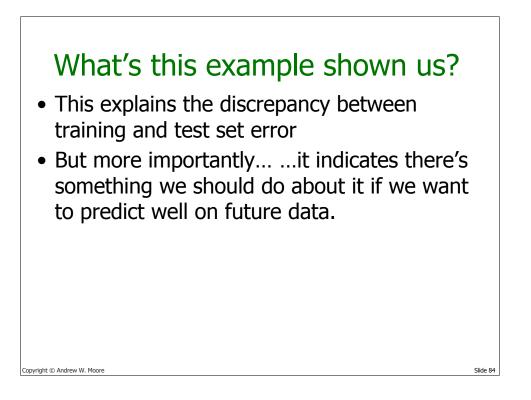




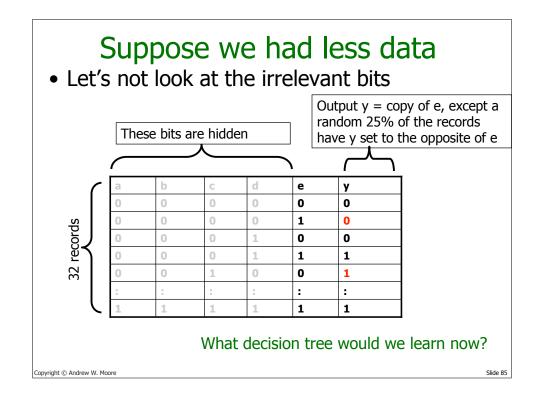
Testing the tree with the test set

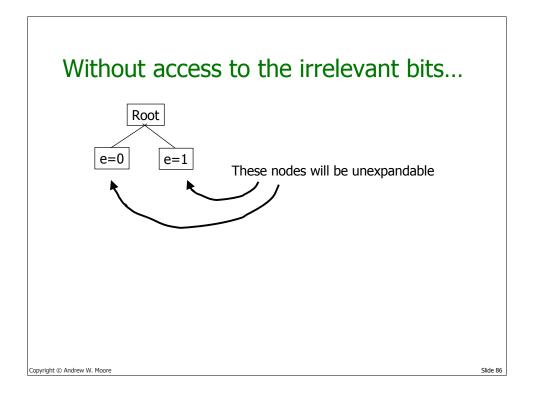
	1/4 of the tree nodes are corrupted	3/4 are fine
1/4 of the test set records are corrupted	1/16 of the test set will be correctly predicted for the wrong reasons	3/16 of the test set will be wrongly predicted because the test record is corrupted
3/4 are fine	3/16 of the test predictions will be wrong because the tree node is corrupted	9/16 of the test predictions will be fine

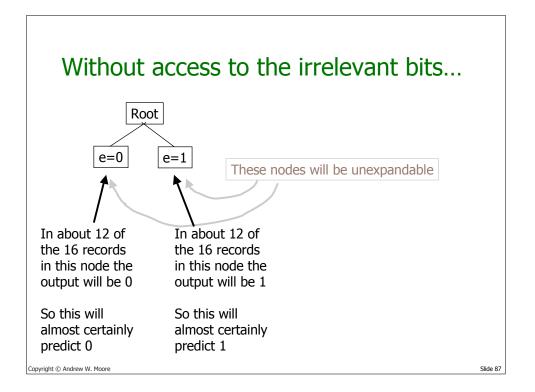
Copyright © Andrew W. Moore



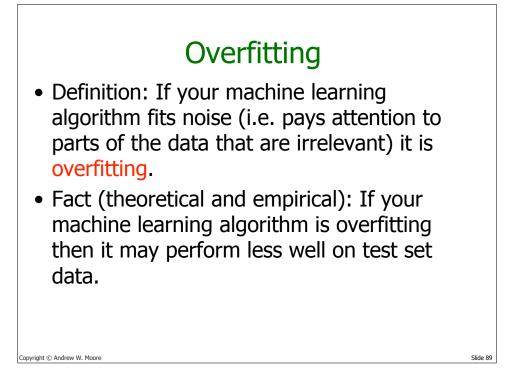
Slide 83

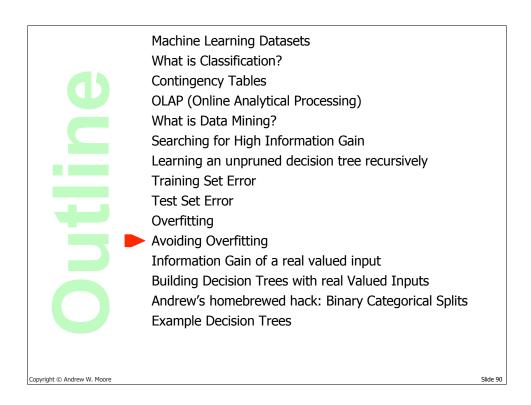


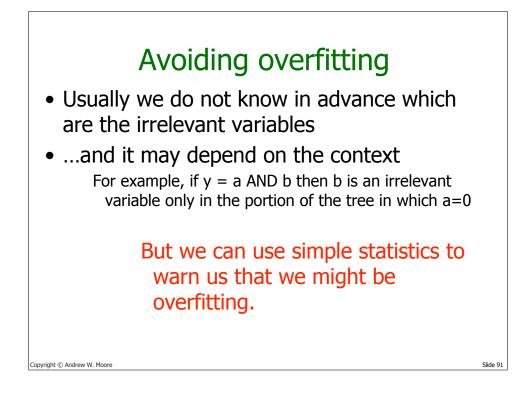


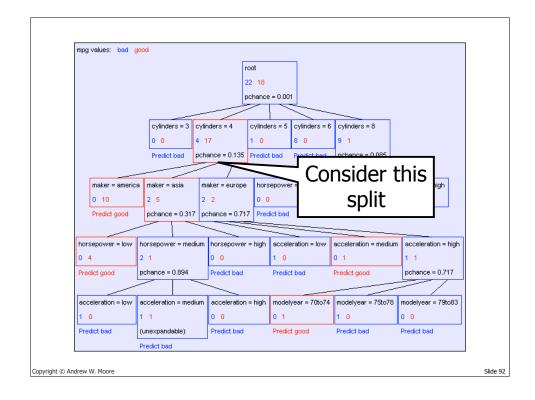


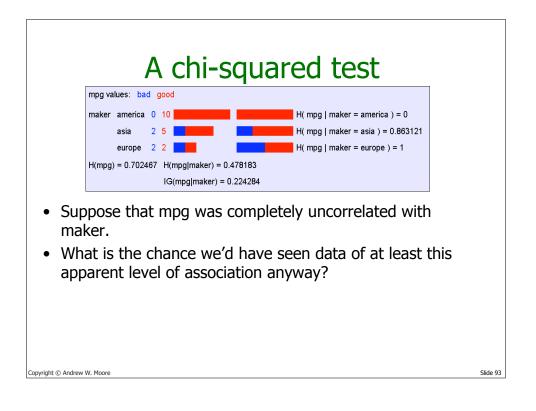
Root =0 e=1		almost certainly none of the tree nodes are corrupted	almost certainly all are fine
=0 e=1	1/4 of the test set records are corrupted	n/a	1/4 of the test set will be wrongly predicted because the test record is corrupted
	3/4 are fine	n/a	3/4 of the test predictions will be fine

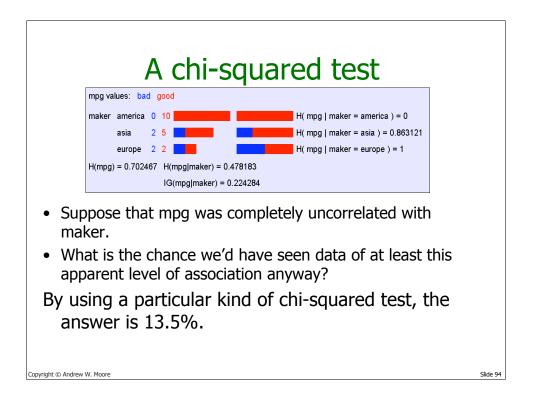












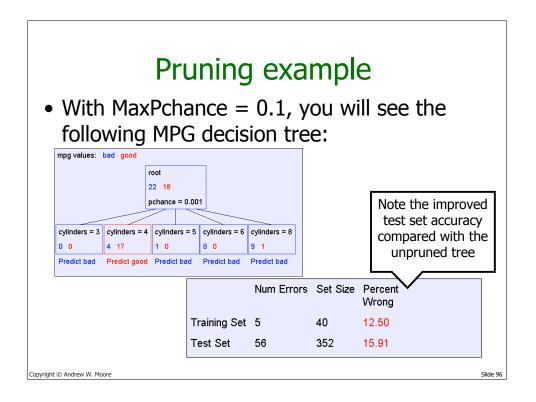
Using Chi-squared to avoid overfitting

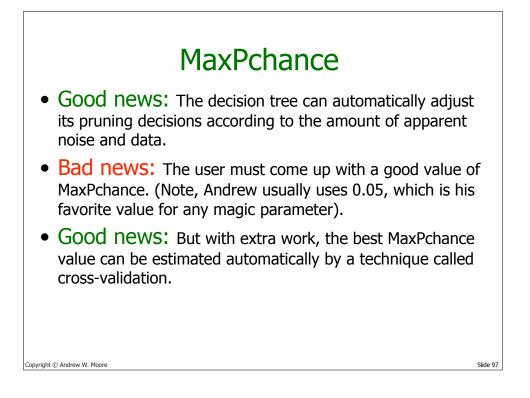
- Build the full decision tree as before.
- But when you can grow it no more, start to prune:
 - Beginning at the bottom of the tree, delete splits in which p_{chance} > MaxPchance.
 - Continue working you way up until there are no more prunable nodes.

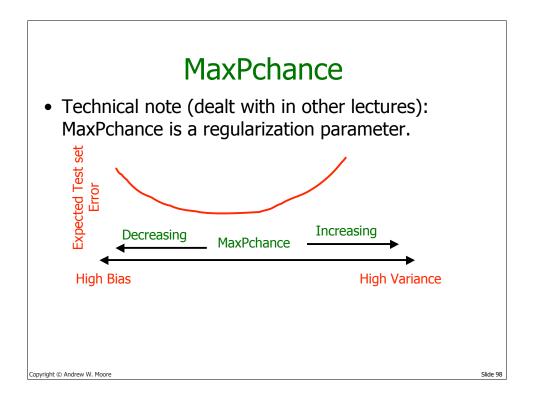
Slide 95

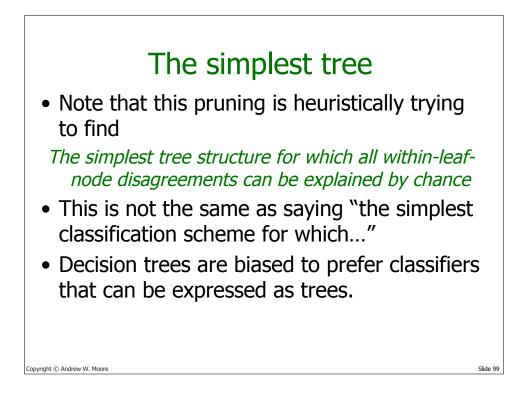
MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise.

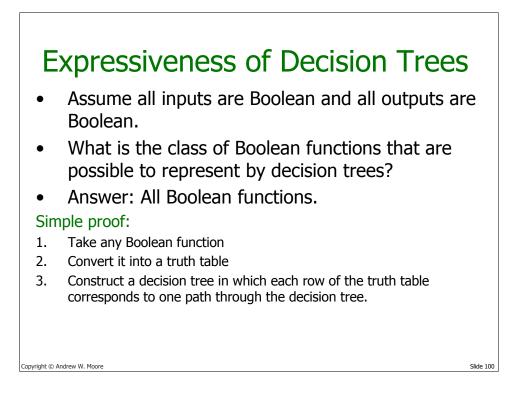
Copyright © Andrew W. Moore

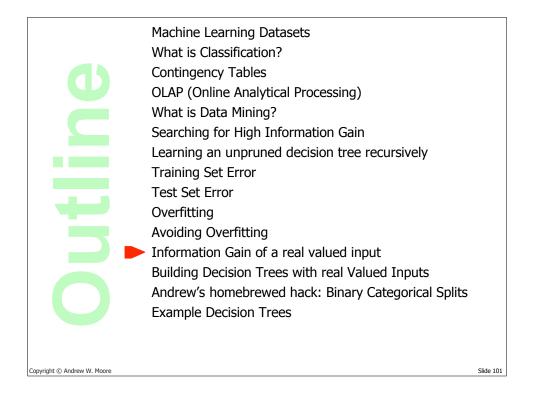


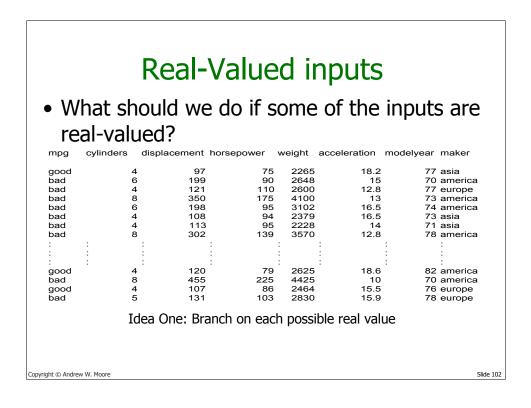


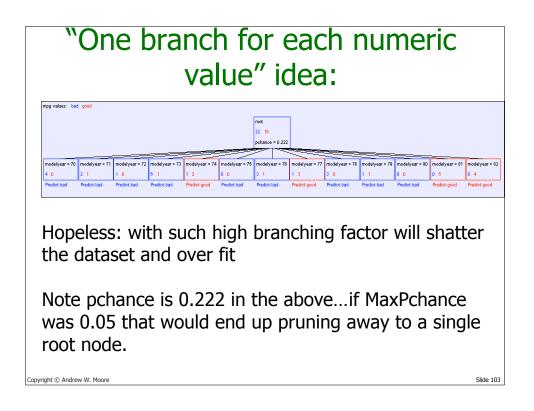


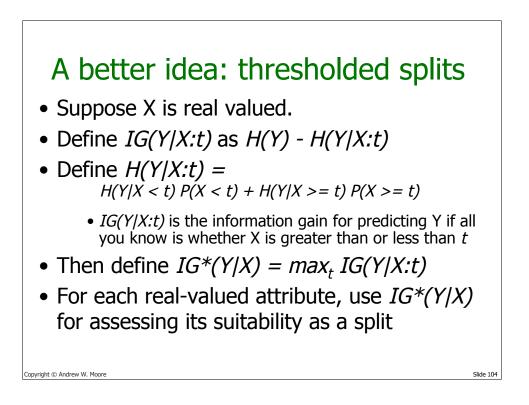


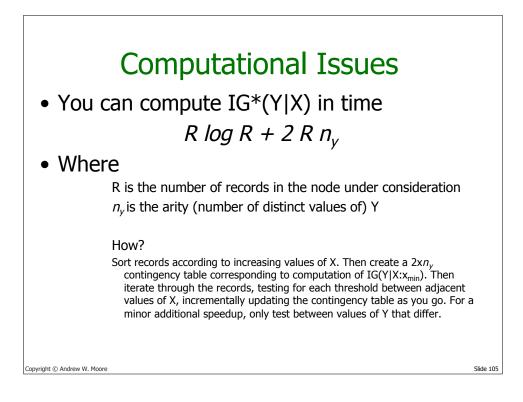


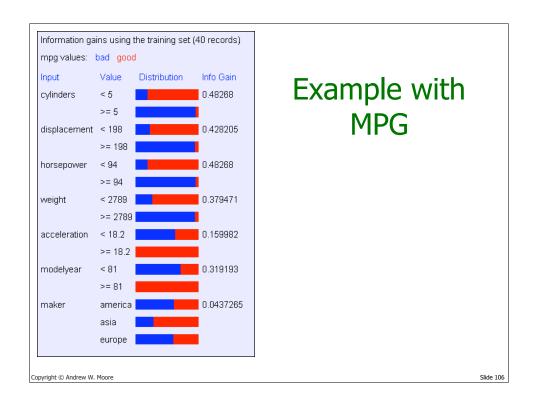


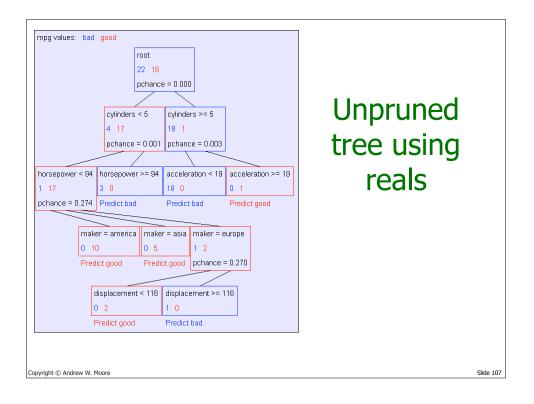


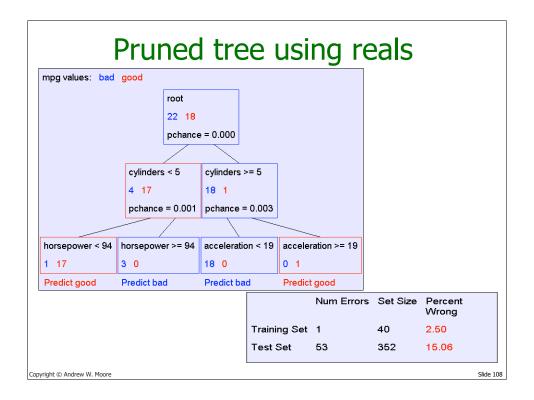


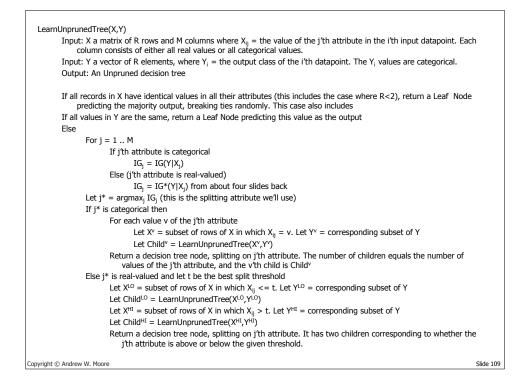


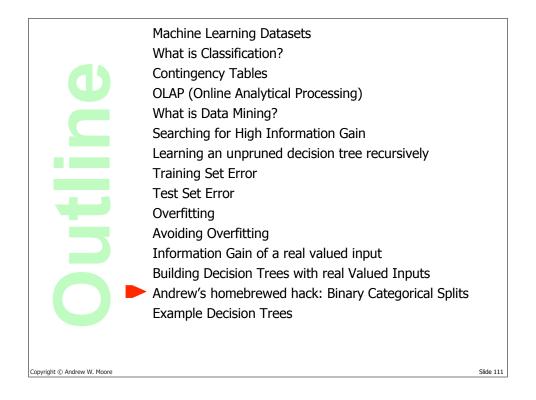


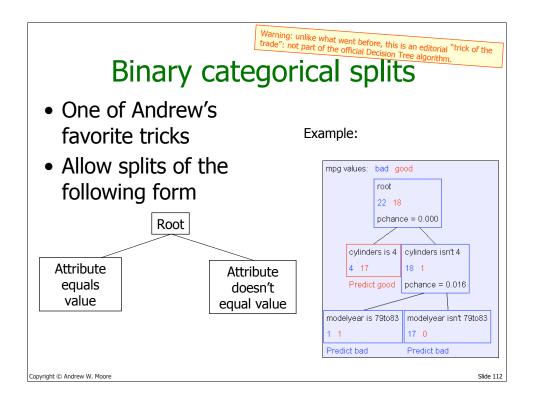


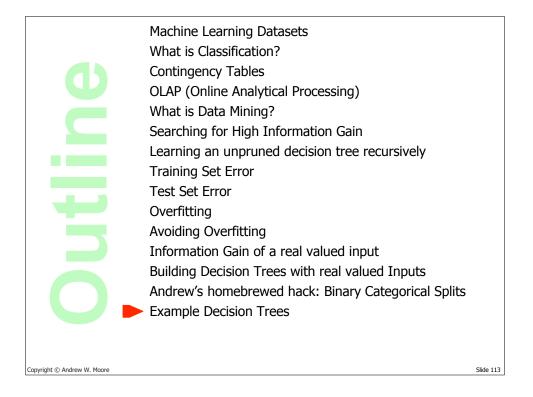


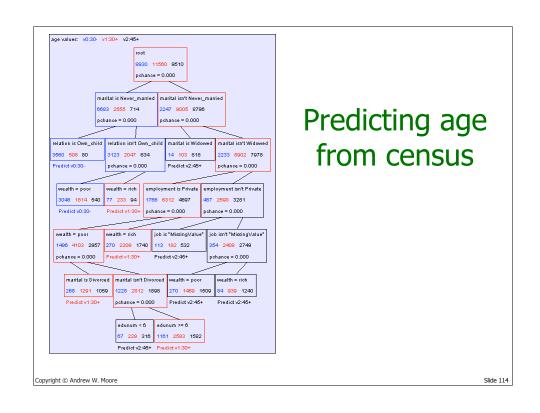


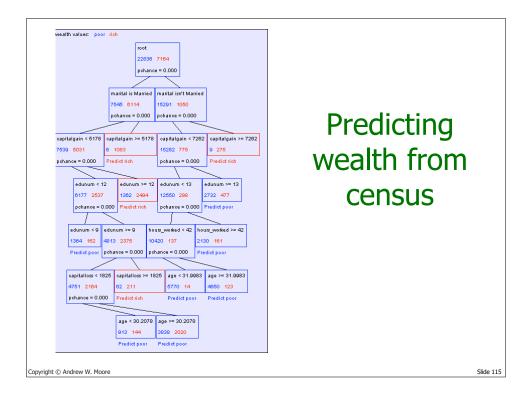


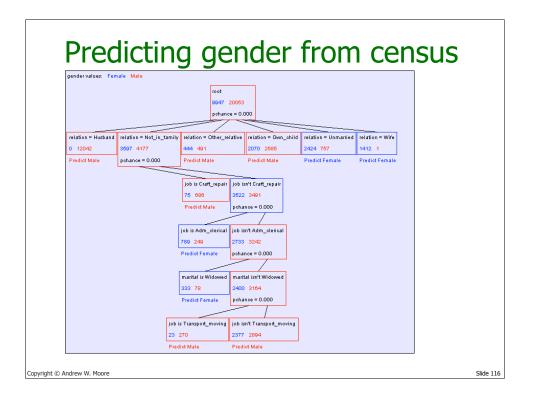


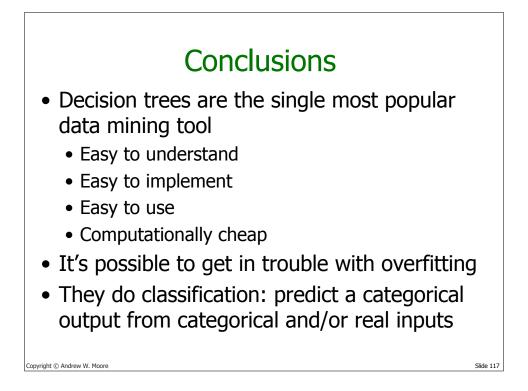


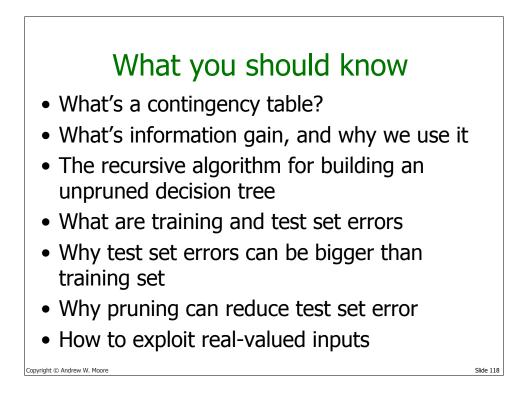


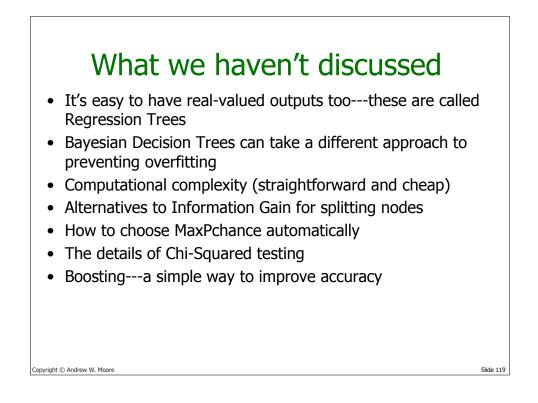


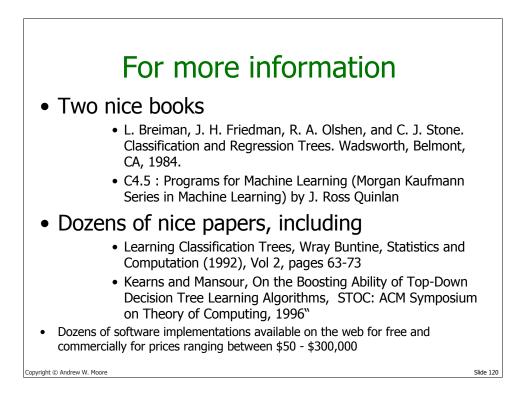












Discussion • Instead of using information gain, why not choose the splitting attribute to be the one with the highest prediction accuracy? • Instead of greedily, heuristically, building the tree, why not do a combinatorial search for the optimal tree? • If you build a decision tree to predict wealth, and marital status, age and gender are chosen as attributes near the top of the tree, is it reasonable to conclude that those three inputs are the major causes of wealth? ...would it be reasonable to assume that attributes not mentioned in the tree are not causes of wealth? ...would it be reasonable to assume that attributes not mentioned in the tree are not correlated with wealth? Copyright © Andrew W. Moore Slide 121