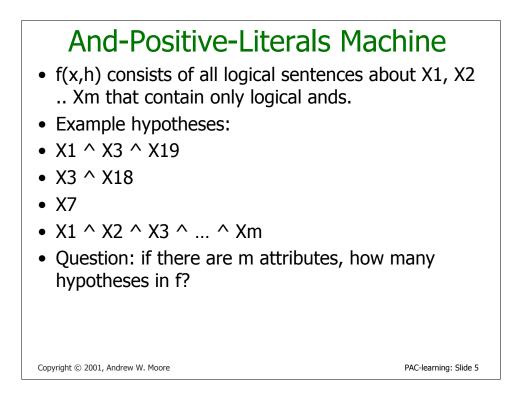
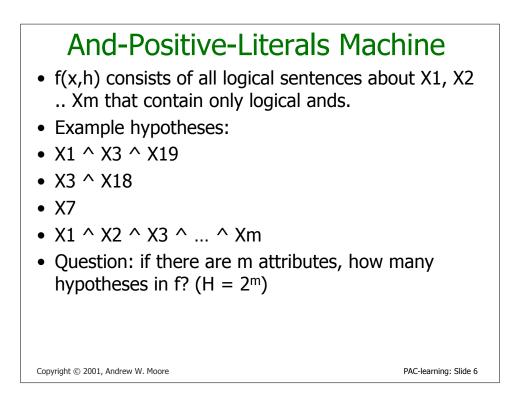
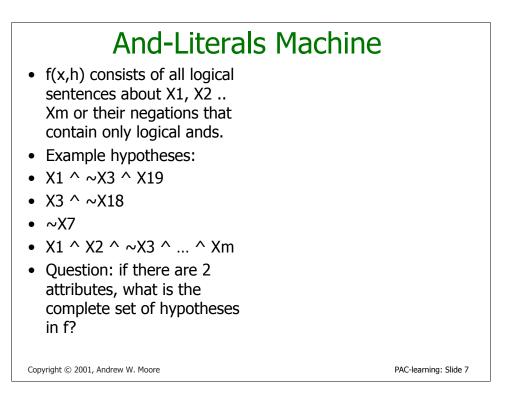


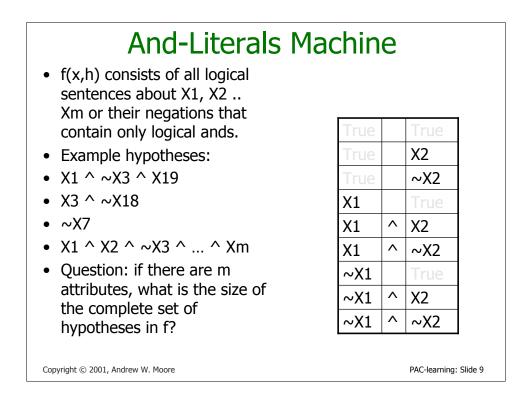

## Probably Approximately Correct (PAC) Learning


- Imagine we're doing classification with categorical inputs.
- All inputs and outputs are binary.
- Data is noiseless.
- There's a machine f(x,h) which has H possible settings (a.k.a. hypotheses), called h<sub>1</sub>, h<sub>2</sub>... h<sub>H</sub>.

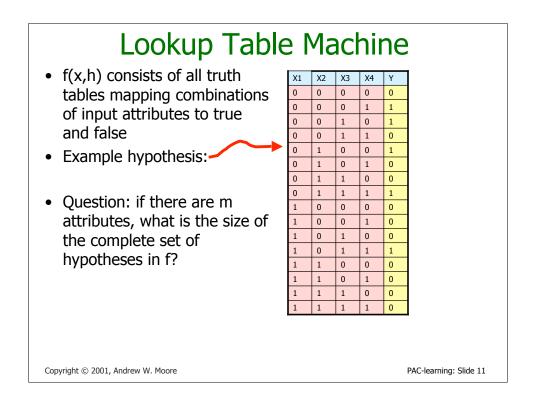

Copyright © 2001, Andrew W. Moore

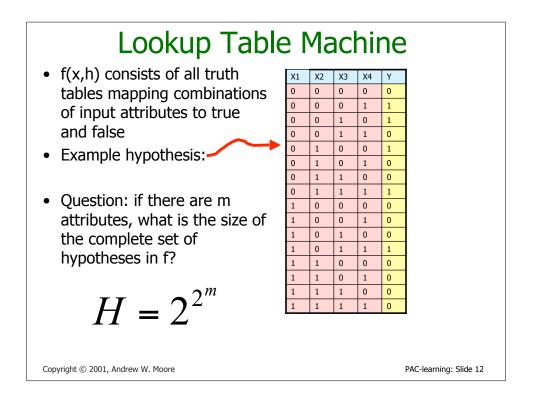

PAC-learning: Slide 2

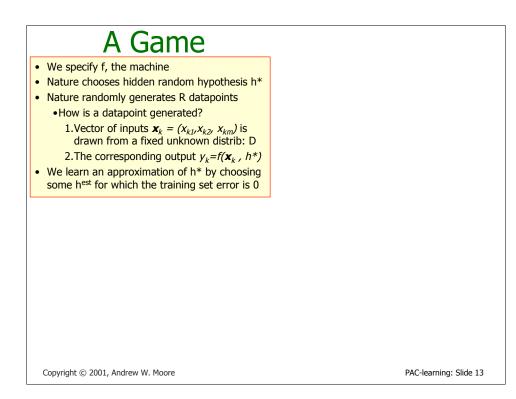


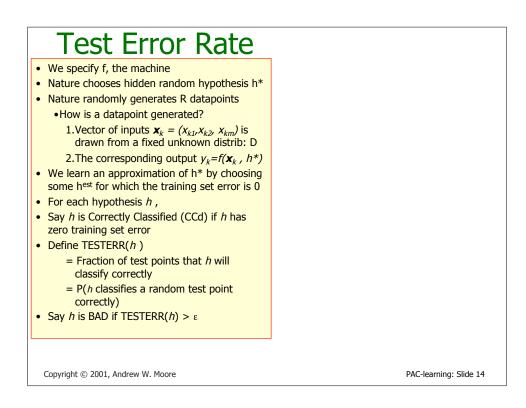

| <ul> <li>Example of a machine</li> <li>f(x,h) consists of all logical sentences about X1, X2<br/> Xm that contain only logical ands.</li> <li>Example hypotheses:</li> <li>X1 ^ X3 ^ X19</li> <li>X3 ^ X18</li> <li>X7</li> <li>X1 ^ X2 ^ X3 ^ ^ Xm</li> <li>Question: if there are 3 attributes, what is the</li> </ul> |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| <ul> <li>Question: if there are 3 attributes, what is the<br/>complete set of hypotheses in f? (H = 8)</li> </ul>                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| True         X2         X3         X2 ^ X3                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| X1         X1 ^ X2         X1 ^ X3         X1 ^ X2 ^ X3           Copyright © 2001, Andrew W. Moore         PAC-learning: Slide 4                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |

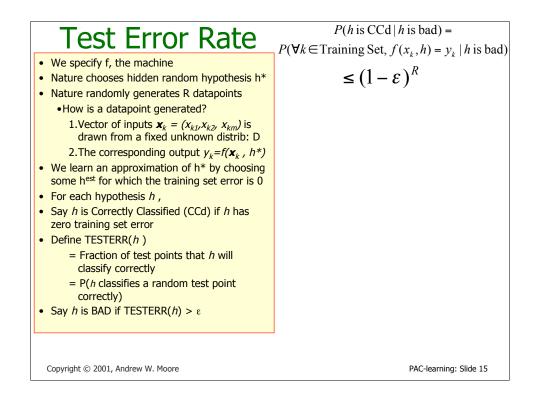


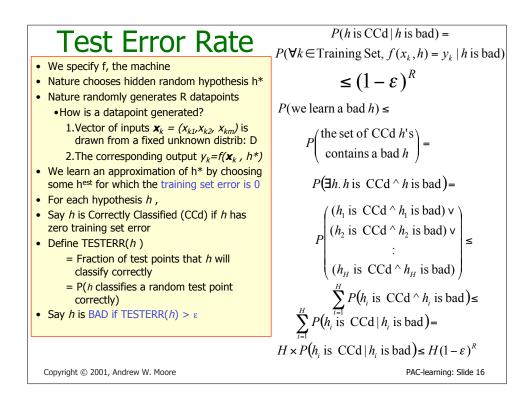


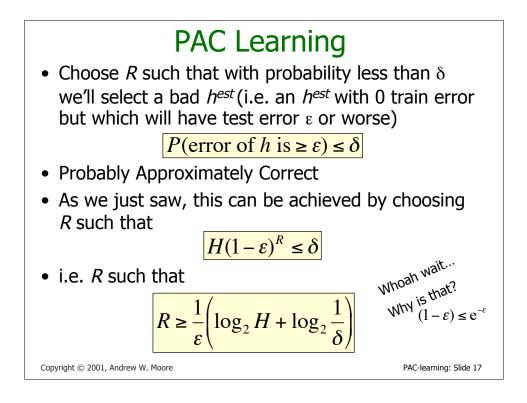





| <ul> <li>f(x,h) consists of all logical<br/>sentences about X1, X2<br/>Xm or their negations that</li> </ul>              | Machin | e |      |   |
|---------------------------------------------------------------------------------------------------------------------------|--------|---|------|---|
| contain only logical ands.                                                                                                | True   |   | True |   |
| Example hypotheses:                                                                                                       | True   |   | X2   |   |
| • X1 ^ ~X3 ^ X19                                                                                                          | True   |   | ~X2  | ] |
| • X3 ^ ~X18                                                                                                               | X1     |   | True | 1 |
| • ~X7                                                                                                                     | X1     | ^ | X2   | 1 |
| • X1 ^ X2 ^ ~X3 ^ ^ Xm                                                                                                    | X1     | ^ | ~X2  |   |
| <ul> <li>Question: if there are 2<br/>attributes, what is the<br/>complete set of hypotheses<br/>in f? (H = 9)</li> </ul> | ~X1    |   | True |   |
|                                                                                                                           | ~X1    | ^ | X2   | 1 |
|                                                                                                                           | ~X1    | ^ | ~X2  |   |

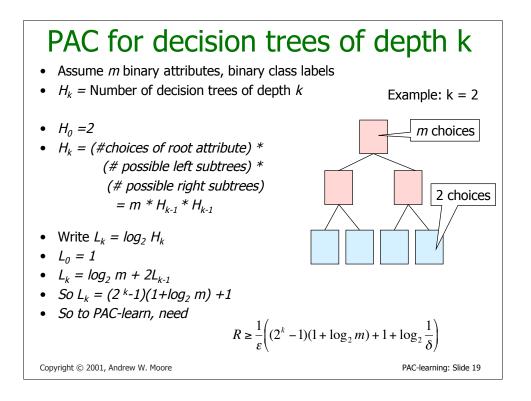




| True |                                                    | True                                                                                                                      |                                                                                                                                                                                                                                                                                   |
|------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| True |                                                    | X2                                                                                                                        |                                                                                                                                                                                                                                                                                   |
| True |                                                    | ~X2                                                                                                                       |                                                                                                                                                                                                                                                                                   |
| X1   |                                                    | True                                                                                                                      |                                                                                                                                                                                                                                                                                   |
| X1   | ^                                                  | X2                                                                                                                        |                                                                                                                                                                                                                                                                                   |
| X1   | ^                                                  | ~X2                                                                                                                       |                                                                                                                                                                                                                                                                                   |
| ~X1  |                                                    | True                                                                                                                      |                                                                                                                                                                                                                                                                                   |
| ~X1  | ^                                                  | X2                                                                                                                        |                                                                                                                                                                                                                                                                                   |
| ~X1  | ^                                                  | ~X2                                                                                                                       |                                                                                                                                                                                                                                                                                   |
|      | True<br>X1<br>X1<br>X1<br>~X1<br>~X1<br>~X1<br>~X1 | True         True         X1         X1         X1         X1         ~X1         ~X1         ~X1         ~X1         ~X1 | True       X2         True       ~X2         X1       True         X1       ^         ~X1       True         ~X1       X2 |












| PAC in action                                            |                                                       |                            |                                                                               |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| Machine                                                  | Example<br>Hypothesis                                 | Н                          | R required to PAC-<br>learn                                                   |  |  |  |  |
| And-positive-<br>literals                                | X3 ^ X7 ^ X8                                          | 2 <sup>m</sup>             | $\frac{1}{\varepsilon} \left( m + \log_2 \frac{1}{\delta} \right)$            |  |  |  |  |
| And-literals                                             | X3 ^ ~X7                                              | 3 <sup>m</sup>             | $\frac{1}{\varepsilon} \left( (\log_2 3)m + \log_2 \frac{1}{\delta} \right)$  |  |  |  |  |
| Lookup<br>Table                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2 <sup>2<sup>m</sup></sup> | $\frac{1}{\varepsilon} \left( 2^m + \log_2 \frac{1}{\delta} \right)$          |  |  |  |  |
| And-lits or<br>And-lits                                  | (X1 ^ X5) v<br>(X2 ^ ~X7 ^ X8)                        | $(3^m)^2 = 3^{2m}$         | $\frac{1}{\varepsilon} \left( (2\log_2 3)m + \log_2 \frac{1}{\delta} \right)$ |  |  |  |  |
| Copyright © 2001, Andrew W. Moore PAC-learning: Slide 18 |                                                       |                            |                                                                               |  |  |  |  |



## What you should know

• Be able to understand every step in the math that gets you to

 $P(\text{we learn a bad } h) \le H(1-\varepsilon)^R$ 

• Understand that you thus need this many records to PAC-learn a machine with H different hypotheses

$$R \ge \frac{1}{\varepsilon} \left( \log_2 H + \log_2 \frac{1}{\delta} \right)$$

• Understand examples of deducing H for various machines (i.e. counting hypotheses.)

Copyright © 2001, Andrew W. Moore

PAC-learning: Slide 20