Density Estimation

- Our Joint Distribution learner is our first example of something called Density Estimation
- A Density Estimator learns a mapping from a set of attributes to a Probability

There are many different kinds of Estimators

Density Estimation

- Compare it against the two other major kinds of models:

 - Input Attributes → Density Estimator → Probability
 - Input Attributes → Classifier → Prediction of categorical output
 - Input Attributes → Regressor → Prediction of real-valued output
Why are we doing this again?

- Density Estimators can do many magical things. They can answer:
 - \(P(\text{chips}|\text{beer}) \)
 - If you just want to know probabilities
 - \(P(\text{canadian}|\text{features}), P(\text{icelander}|\text{features}) \)
 - If you want to know which is more likely, so that you can classify
 - \(P(x_1 \leq \text{life_span} \leq x_2) \)
 - Like regression, but better.

- I.e., they can do all three of our first examples. This is pretty awesome.

Evaluating Density Estimation

Test-set criterion for estimating performance on future data*

* See the Decision Tree or Cross Validation lecture for more detail

- **Classifier**
 - Prediction of categorical output
 - **Test set Error Rate** (# errors)

- **Regressor**
 - Prediction of real-valued output
 - **Test set Error Rate** (MSE)

- **Density Estimator**
 - Probability
 - ???
Evaluating a density estimator

• Given one record \(x \), a density estimator \(M \) can tell you how likely the record is:

\[
\hat{P}(x|M)
\]

• Given a dataset with \(R \) records, a density estimator can tell you how likely the dataset is:

(Under the assumption that all records were independently generated from the Density Estimator’s JD)

\[
\hat{P}(\text{dataset}|M) = \hat{P}(x_1 \land x_2 \land \ldots \land x_R|M) = \prod_{k=1}^{R} \hat{P}(x_k|M)
\]

You can think of \(M \) as being similar to \(w \) from regression...

A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)
A small dataset: Miles Per Gallon

192 Training Set Records

\[\hat{P}(\text{dataset}|M) = \hat{P}(x_1 \wedge x_2 \ldots \wedge x_R|M) = \prod_{k=1}^{R} \hat{P}(x_k|M) \]

= (in this case) \(3.4 \times 10^{-203}\)
Log Probabilities

Since probabilities of datasets get so small we usually use log probabilities

$$\log \hat{P}(\text{dataset}|M) = \log \prod_{k=1}^{R} \hat{P}(x_k|M) = \sum_{k=1}^{R} \log \hat{P}(x_k|M)$$

A small dataset: Miles Per Gallon

<table>
<thead>
<tr>
<th>mpg</th>
<th>modelyear</th>
<th>maker</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>79874</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>79874</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>79874</td>
<td>europe</td>
</tr>
<tr>
<td>bad</td>
<td>79874</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>79874</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>79874</td>
<td>america</td>
</tr>
<tr>
<td>good</td>
<td>79874</td>
<td>asia</td>
</tr>
<tr>
<td>good</td>
<td>79874</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>79874</td>
<td>europe</td>
</tr>
</tbody>
</table>

$$\log \hat{P}(\text{dataset}|M) = \log \prod_{k=1}^{R} \hat{P}(x_k|M) = \sum_{k=1}^{R} \log \hat{P}(x_k|M)$$

= (in this case) = -466.19
Summary: The Good News

- We have a way to learn a Density Estimator from data.
- Density estimators can do many good things...
 - Can sort the records by probability, and thus spot weird records (anomaly detection)
 - Can do inference: $P(E_1|E_2)$
 - Automatic Doctor / Help Desk etc
 - Ingredient for Bayes Classifiers (see later)

Summary: The Bad News

- Density estimation by directly learning the joint is trivial, mindless and dangerous
Using a test set

<table>
<thead>
<tr>
<th>Set Size</th>
<th>Log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Set</td>
<td>196</td>
</tr>
<tr>
<td>Test Set</td>
<td>196</td>
</tr>
</tbody>
</table>

An independent test set with 196 cars has a worse log likelihood (actually it’s a billion quintillion quintillion quintillion quintillion times less likely)

Density estimators can overfit. And the full joint density estimator is the overfittiest of them all!

Remember the lookup table classifier with 2^m hypotheses?

Overfitting Density Estimators

If this ever happens during training, it means there are certain combinations that we learn are impossible. The probabilities will be set to 0.

$$\log \hat{P}(\text{testset}|M) = \log \prod_{k=1}^{R} \hat{P}(x_k|M) = \sum_{k=1}^{R} \log \hat{P}(x_k|M)$$

= $-\infty$ if for any $k \hat{P}(x_k|M) = 0$
Using a test set

<table>
<thead>
<tr>
<th>Set</th>
<th>Size</th>
<th>Log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>196</td>
<td>-466.1905</td>
</tr>
<tr>
<td>Test</td>
<td>196</td>
<td>-614.6157</td>
</tr>
</tbody>
</table>

The only reason that our test set didn’t score -infinity is that my code is hard-wired to always predict a probability of at least one in 10^{20}

We need Density Estimators that are less prone to overfitting

Naïve Density Estimation

The problem with the Joint Estimator is that it just mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed independently of any of the other attributes.
Independently Distributed Data

- Let $x[i]$ denote the ith field of record x.
- The independently distributed assumption says that for any $i, v, u_1, u_2, ..., u_{i-1}, u_{i+1}, ..., u_M$

$$P(x[i] = v | x[1] = u_1, x[2] = u_2, ..., x[i-1] = u_{i-1}, x[i+1] = u_{i+1}, ..., x[M] = u_M) = P(x[i] = v)$$

"Given everything except $x[i]"$

- Or in other words, $x[i]$ is independent of
 - $\{x[1], x[2], ..., x[i-1], x[i+1], ..., x[M]\}$
 - This is often written as

$$x[i] \perp \{x[1], x[2], ..., x[i-1], x[i+1], ..., x[M]\}$$

A note about independence

- Assume A and B are Boolean Random Variables. Then
 "A and B are independent"

if and only if

$$P(A|B) = P(A)$$

- "A and B are independent" is often notated as

$$A \perp B$$
Independence Theorems

- Assume $P(A|B) = P(A)$
- Then $P(A \cap B) = P(A) P(B)$

- Assume $P(A|B) = P(A)$
- Then $P(B|A) = P(B)$

Independence Theorems

- Assume $P(A|B) = P(A)$
- Then $P(\neg A|B) = P(\neg A)$

- Assume $P(A|B) = P(A)$
- Then $P(A|\neg B) = P(A)$
Multivalued Independence

For multivalued Random Variables A and B,

\[A \perp B \]

if and only if

\[\forall u, v : P(A = u \mid B = v) = P(A = u) \]

from which you can then prove things like...

\[\forall u, v : P(A = u \land B = v) = P(A = u)P(B = v) \]

\[\forall u, v : P(B = u \mid A = v) = P(B = v) \]

Back to Naïve Density Estimation

- Let x[i] denote the i'th field of record x:
- Naïve DE assumes x[i] is independent of \{x[1], x[2], ... x[i-1], x[i+1], ... x[M]\}
- Example:
 - Suppose that each record is generated by randomly shaking a green dice and a red dice
 - Dataset 1: A = red value, B = green value
 - Dataset 2: A = red value, B = sum of values
 - Dataset 3: A = sum of values, B = difference of values
- Which of these datasets violates the naïve assumption?
- Think: What do I know about A? What do I know about A if I know B? That is: What is \(P(A) \)? What is \(P(A|B) \)? What about \(P(A|B=5) \)?
Using the Naïve Distribution

- Once you have a Naïve Distribution you can easily compute any row of the joint distribution.
- Suppose A, B, C and D are independently distributed. What is $P(A^\sim B^\sim C^\sim D)$?

\[
P(A^\sim B^\sim C^\sim D) = P(A) P(\sim B) P(C) P(\sim D)
\]
Naïve Distribution General Case

- Suppose $x[1], x[2], ... x[M]$ are independently distributed.

$$P(x[1] = u_1, x[2] = u_2, ... x[M] = u_M) = \prod_{k=1}^{M} P(x[k] = u_k)$$

- So if we have a Naïve Distribution we can construct any row of the implied Joint Distribution on demand.

- So we can do any inference

- But how do we learn a Naïve Density Estimator?

Learning a Naïve Density Estimator

$$\hat{P}(x[i] = u) = \frac{\# \text{records in which } x[i] = u}{\text{total number of records}}$$

Another trivial learning algorithm!
Contrast

<table>
<thead>
<tr>
<th>Joint DE</th>
<th>Naïve DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can model anything</td>
<td>Can model only very boring distributions</td>
</tr>
<tr>
<td>No problem to model</td>
<td>Outside Naïve’s scope</td>
</tr>
<tr>
<td>“C is a noisy copy of A”</td>
<td></td>
</tr>
<tr>
<td>Given 100 records and more than 6 Boolean</td>
<td>Given 100 records and 10,000 multivalued</td>
</tr>
<tr>
<td>attributes will screw up badly</td>
<td>attributes will be fine</td>
</tr>
</tbody>
</table>

Empirical Results: “Hopeless”

The "hopeless" dataset consists of 40,000 records and 21 Boolean attributes called a, b, c, ... u. Each attribute in each record is generated 50-50 randomly as 0 or 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Parameters</th>
<th>LogLik</th>
<th>+/- StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model1</td>
<td>joint</td>
<td>submodel=gauss</td>
<td>-272625</td>
<td>301.109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>guasstype=general</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model2</td>
<td>naive</td>
<td>submodel=gauss</td>
<td>-58225.6</td>
<td>0.554747</td>
</tr>
<tr>
<td></td>
<td></td>
<td>guasstype=general</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Despite the vast amount of data, "Joint" overfits hopelessly and does much worse
Empirical Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean attributes called a, b, c, d where a, b, c are generated 50-50 randomly as 0 or 1. D = A^~C, except that in 10% of records it is flipped.

The DE learned by “Joint”

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.11335</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.01202</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.11152</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.01295</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.01222</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.01233</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.11358</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.01232</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.01323</td>
</tr>
</tbody>
</table>

The DE learned by “Naive”

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.500325</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.499675</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.50046</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.49995</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.50165</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.49935</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.69945</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.30055</td>
</tr>
</tbody>
</table>
Empirical Results: “MPG”

The “MPG” dataset consists of 392 records and 8 attributes

A tiny part of the DE learned by “Joint”

The DE learned by “Naive”

Empirical Results: “MPG”

The “MPG” dataset consists of 392 records and 8 attributes

A tiny part of the DE

The DE learned by “Naive”
Empirical Results: “Weight vs. MPG”
Suppose we train only from the "Weight" and "MPG" attributes

The DE learned by "Joint"

The DE learned by "Naive"

Empirical Results: “Weight vs. MPG”
Suppose we train only from the "Weight" and "MPG" attributes

<table>
<thead>
<tr>
<th>mpg</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bad</td>
<td>low 0.193878</td>
</tr>
<tr>
<td>good</td>
<td>low 0.380102</td>
</tr>
</tbody>
</table>

| mpg | bad 0.602041 | good 0.397959 |
|-----|--------------|
| weight | low 0.57398 | high 0.42602 |

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Parameters</th>
<th>LogLike</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model1</td>
<td>joint</td>
<td>submodel=gauss, gausstype=general</td>
<td>-44.3562 ± 2.27647</td>
</tr>
<tr>
<td>Model2</td>
<td>naive</td>
<td>submodel=gauss, gausstype=general</td>
<td>-53.2231 ± 0.610411</td>
</tr>
</tbody>
</table>
"Weight vs. MPG": The best that Naïve can do

The light color shades denote predicted densities. The dark shades are real data.

Reminder: The Good News

- We have two ways to learn a Density Estimator from data.
- * In other lectures we’ll see vastly more impressive Density Estimators (Mixture Models, Bayesian Networks, Density Trees, Kernel Densities and many more)
- Density estimators can do many good things...
 - Anomaly detection
 - Can do inference: P(E1|E2) Automatic Doctor / Help Desk etc
 - Ingredient for Bayes Classifiers
Bayes Classifiers

- A formidable and sworn enemy of decision trees

How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_Y and values $v_{y_1}, v_{y_2}, \ldots, v_{y_{n_Y}}$
- Assume there are m input attributes called X_1, X_2, \ldots, X_m
- Break dataset into n_Y smaller datasets called $DS_{y_1}, DS_{y_2}, \ldots, DS_{y_{n_Y}}$
- Define $DS_i = \text{Records in which } Y = v_i$
- For each DS_i, learn Density Estimator M_i to model the input distribution among the $Y=v_i$ records.
How to build a Bayes Classifier

• Assume you want to predict output Y which has arity \(n_Y \) and values \(v_1, v_2, \ldots, v_{n_Y} \).
• Assume there are \(m \) input attributes called \(X_1, X_2, \ldots, X_m \).
• Break dataset into \(n_Y \) smaller datasets called \(DS_1, DS_2, \ldots, DS_{n_Y} \).
• Define \(DS_i \) = Records in which \(Y = v_i \).
• For each \(DS_i \), learn Density Estimator \(M_i \) to model the input distribution among the \(Y = v_i \) records.
• \(M_i \) estimates \(P(X_1, X_2, \ldots, X_m \mid Y = v_i) \).

Idea: When a new set of input values \((X_1 = u_1, X_2 = u_2, \ldots, X_m = u_m)\) come along to be evaluated predict the value of \(Y \) that makes \(P(X_1, X_2, \ldots, X_m \mid Y = v_i) \) most likely

\[
Y_{\text{predict}} = \arg\max_v P(X_1 = u_1 \cdot X_m = u_m \mid Y = v)
\]

Is this a good idea?
How to build a Bayes Classifier

- Assume you want to predict output Y which has arity n_Y and values $v_{Y1}, v_{Y2}, \ldots, v_{Yn_Y}$.
- Assume there are m input attributes called X_1, X_2, \ldots, X_m.
- Break dataset into n_Y smaller datasets called $DS_1, DS_2, \ldots, DS_{n_Y}$.
- Define DS_i = Records in which $Y = v_i$.
- For each DS_i, learn Density Estimator M_i to model the input distribution among the $Y = v_i$ records.
- M_i estimates $P(X_1, X_2, \ldots, X_m | Y = v_i)$.

Idea: When a new set of input values $(X_1 = u_1, X_2 = u_2, \ldots, X_m = u_m)$ come along to be evaluated, predict the value of Y that makes $P(Y = v_i | X_1, X_2, \ldots, X_m)$ most likely.

$$Y_{predict} = \arg\max_v P(X_1 = u_1 \cdot \cdot \cdot X_m = u_m | Y = v_i)$$

Is this a good idea?

This is a Maximum Likelihood classifier.

It can get silly if some Ys are very unlikely.

Much Better Idea
Terminology

• MLE (Maximum Likelihood Estimator):
 \[Y^{\text{predict}} = \arg\max_v P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) \]

• MAP (Maximum A-Posteriori Estimator):
 \[Y^{\text{predict}} = \arg\max_v P(Y = v \mid X_1 = u_1 \cdots X_m = u_m) \]

Getting what we need

\[Y^{\text{predict}} = \arg\max_v P(Y = v \mid X_1 = u_1 \cdots X_m = u_m) \]
Getting a posterior probability

\[
P(Y = v \mid X_1 = u_1 \cdots X_m = u_m) = \frac{P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)P(Y = v)}{P(X_1 = u_1 \cdots X_m = u_m)} = \frac{P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)P(Y = v)}{\sum_{j=1}^{n_Y} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v_j)P(Y = v_j)}
\]

Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives P(X_1, X_2, \ldots, X_m / Y = v_i).
3. Estimate \(P(Y = v_i) \) as fraction of records with \(Y = v_i \).
4. For a new prediction:

\[
Y_{predict} = \arg\max_{v} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m) = \arg\max_{v} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)P(Y = v)
\]
Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives $P(X_1, X_2, \ldots, X_m \mid Y=v_i)$.
3. Estimate $P(Y=v_i)$ as fraction of records $Y=v_i$.
4. For a new prediction:
 $$Y^{\text{predict}} = \arg\max_v P(Y=v \mid X_1, X_2, \ldots, X_m = u_1, \ldots, u_m)$$

 We can use our favorite Density Estimator here.

 Right now we have two options:
 - Joint Density Estimator
 - Naïve Density Estimator

Joint Density Bayes Classifier

$$Y^{\text{predict}} = \arg\max_v P(X_1 = u_1, \ldots, X_m = u_m \mid Y=v)P(Y=v)$$

In the case of the joint Bayes Classifier this degenerates to a very simple rule:

$$Y^{\text{predict}} = \text{the most common value of } Y \text{ among records in which } X_1 = u_1, X_2 = u_2, \ldots, X_m = u_m.$$

Note that if no records have the exact set of inputs $X_1 = u_1, X_2 = u_2, \ldots, X_m = u_m$ then $P(X_1, X_2, \ldots, X_m \mid Y=v_i) = 0$ for all values of Y.

In that case we just have to guess Y's value.
Joint BC Results: "Logical"

The "logical" dataset consists of 40,000 records and 4 Boolean attributes called a, b, c, d where a, b, c are generated 50-50 randomly as 0 or 1. $D = A \land \neg C$, except that in 10% of records it is flipped.

Joint BC Results: "All Irrelevant"

The "all irrelevant" dataset consists of 40,000 records and 15 Boolean attributes called a, b, c, ..., o where a, b, c are generated 50-50 randomly as 0 or 1. v (output) = 1 with probability 0.75, 0 with prob 0.25.
Naïve Bayes Classifier

\[Y^{\text{predict}} = \arg\max_{v} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v) \]

In the case of the naive Bayes Classifier this can be simplified:

\[Y^{\text{predict}} = \arg\max_{v} P(Y = v) \prod_{j=1}^{n_Y} P(X_j = u_j \mid Y = v) \]

Technical Hint:
If you have 10,000 input attributes that product will underflow in floating point math. You should use logs:

\[Y^{\text{predict}} = \arg\max_{v} \left(\log P(Y = v) + \sum_{j=1}^{n_Y} \log P(X_j = u_j \mid Y = v) \right) \]
BC Results: “XOR”

The “XOR” dataset consists of 40,000 records and 2 Boolean inputs called a and b, generated 50-50 randomly as 0 or 1. c (output) = a XOR b

Naive BC Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0 or 1. D = A^~C, except that in 10% of records it is flipped.
Naive BC Results: “Logical”

The “logical” dataset consists of 40,000 records and 4 Boolean attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0 or 1. D = A^~C, except that in 10% of records it is flipped.

This result surprised Andrew until he had thought about it a little.

The data shown in the figure is merely a subsample of the full dataset. The light color shades denote predicted classes. The dark shades are real data.

Model Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Parameters</th>
<th>FracRight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model1</td>
<td>bayesclass</td>
<td>density=joint, submodel=gauss</td>
<td>0.00905 +/- 0.005315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gaussity=general</td>
<td></td>
</tr>
<tr>
<td>Model2</td>
<td>bayesclass</td>
<td>density=naive, submodel=gauss</td>
<td>0.00905 +/- 0.005315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gaussity=general</td>
<td></td>
</tr>
</tbody>
</table>

Naive BC Results: “All Irrelevant”

The “all irrelevant” dataset consists of 40,000 records and 15 Boolean attributes called a,b,c,d..o where a,b,c are generated 50-50 randomly as 0 or 1. v (output) = 1 with probability 0.75, 0 with prob 0.25.

The Classifier learned by “Naive BC”

Model Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Parameters</th>
<th>FracRight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model1</td>
<td>bayesclass</td>
<td>density=joint, submodel=gauss</td>
<td>0.70455 +/- 0.0053537</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gaussity=general</td>
<td></td>
</tr>
<tr>
<td>Model2</td>
<td>bayesclass</td>
<td>density=naive, submodel=gauss</td>
<td>0.75055 +/- 0.00281976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gaussity=general</td>
<td></td>
</tr>
</tbody>
</table>
BC Results: “MPG”: 392 records

The Classifier learned by “Naive BC”

BC Results: “MPG”: 40 records
More Facts About Bayes Classifiers

• Many other density estimators can be slotted in*.
• Density estimation can be performed with real-valued inputs*.
• Bayes Classifiers can be built with real-valued inputs*.
• Rather Technical Complaint: Bayes Classifiers don’t try to be maximally discriminative---they merely try to honestly model what’s going on*.
• Zero probabilities are painful for Joint and Naïve. A hack (justifiable with the magic words “Dirichlet Prior”) can help*.
• Naïve Bayes is wonderfully cheap. And survives 10,000 attributes cheerfully!

What you should know

• Probability
 • Fundamentals of Probability and Bayes Rule
 • What’s a Joint Distribution
 • How to do inference (i.e. P(E1|E2)) once you have a JD

• Density Estimation
 • What is DE and what is it good for
 • How to learn a Joint DE
 • How to learn a naïve DE

*See future Andrew Lectures
What you should know

- Bayes Classifiers
 - How to build one
 - How to predict with a BC
 - Contrast between naïve and joint BCs