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Density Estimation
• Our Joint Distribution learner is our first

example of something called Density
Estimation

• A Density Estimator learns a mapping from a
set of attributes to a Probability

• There are many different kinds of Estimators

Density
Estimator

ProbabilityInput
Attributes

Copyright © Andrew W. Moore Slide 56

Density Estimation
• Compare it against the two other major

kinds of models:

Regressor Prediction of
real-valued output

Input
Attributes

Density
Estimator

ProbabilityInput
Attributes

Classifier Prediction of
categorical output

Input
Attributes
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Why are we doing this again?
• Density Estimators can do many magical

things. They can answer:
• P(chips|beer)

• If you just want to know probabilities

• P(canadian|features), P(icelander|features)
• If you want to know which is more likely, so that you

can classify

• P(x1 <= life_span <= x2)
• Like regression, but better.

• I.e., they can do all three of our first
examples. This is pretty awesome.
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Evaluating Density Estimation

Regressor Prediction of
real-valued output

Input
Attributes

Density
Estimator

ProbabilityInput
Attributes

Classifier Prediction of
categorical output

Input
Attributes

Test set
Error Rate
(# errors)

???

Test set
Error Rate

(MSE)

Test-set criterion for estimating performance
on future data*
* See the Decision Tree or Cross Validation lecture for more detail
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• Given one record x, a density estimator M can
tell you how likely the record is:

• Given a dataset with R records, a density
estimator can tell you how likely the dataset is:
(Under the assumption that all records were independently

generated from the Density Estimator’s JD)

You can think of M as being similar to w from regression…

Evaluating a density estimator
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A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)

192
Training
Set
Records

mpg modelyear maker

good 75to78 asia

bad 70to74 america

bad 75to78 europe

bad 70to74 america

bad 70to74 america

bad 70to74 asia

bad 70to74 asia

bad 75to78 america

: : :

: : :

: : :

bad 70to74 america

good 79to83 america

bad 75to78 america

good 79to83 america

bad 75to78 america

good 79to83 america

good 79to83 america

bad 70to74 america

good 75to78 europe

bad 75to78 europe
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A small dataset: Miles Per Gallon
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A small dataset: Miles Per Gallon
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Log Probabilities

Since probabilities of datasets get so
small we usually use log probabilities
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A small dataset: Miles Per Gallon
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Summary: The Good News
• We have a way to learn a Density Estimator

from data.
• Density estimators can do many good

things…
• Can sort the records by probability, and thus

spot weird records (anomaly detection)
• Can do inference: P(E1|E2)

Automatic Doctor / Help Desk etc

• Ingredient for Bayes Classifiers (see later)
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Summary: The Bad News
• Density estimation by directly learning the

joint is trivial, mindless and dangerous
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Using a test set

An independent test set with 196 cars has a worse log likelihood

(actually it’s a billion quintillion quintillion quintillion quintillion
times less likely)

….Density estimators can overfit. And the full joint density
estimator is the overfittiest of them all!

Remember the lookup table classifier with       hypotheses?

! 

2
2
m
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Overfitting Density Estimators
If this ever happens during
training, it means there are
certain combinations that we
learn are impossible. The
probabilities will be set to 0.

0)(ˆ any for  if  
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Using a test set

The only reason that our test set didn’t score -infinity is that my
code is hard-wired to always predict a probability of at least one
in 1020

We need Density Estimators that are less prone
to overfitting
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Naïve Density Estimation

The problem with the Joint Estimator is that it just
mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed
independently of any of the other attributes.
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Independently Distributed Data
• Let x[i] denote the i’th field of record x.
• The independently distributed assumption

says that for any i,v, u1 u2… ui-1 ui+1… uM

  

! 

P(x[i] = v | x[1] = u1,x[2] = u2,K,x[i "1] = u
i"1,x[i +1] = u

i+1,K,x[M] = u
M
)

= P(x[i] = v)

• Or in other words, x[i] is independent of
• {x[1],x[2],..x[i-1], x[i+1],…x[M]}

• This is often written as

]}[],1[],1[],2[],1[{][ Mxixixxxix KK +!"

“Given everything except x[i]”
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A note about independence
• Assume A and B are Boolean Random

Variables. Then
“A and B are independent”

if and only if
P(A|B) = P(A)

• “A and B are independent” is often notated
as

BA !
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Independence Theorems
• Assume P(A|B) = P(A)
• Then P(A^B) =

= P(A) P(B)

• Assume P(A|B) = P(A)
• Then P(B|A) =

= P(B)
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Independence Theorems
• Assume P(A|B) = P(A)
• Then P(~A|B) =

= P(~A)

• Assume P(A|B) = P(A)
• Then P(A|~B) =

= P(A)
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Multivalued Independence

For multivalued Random Variables A and B,

BA !
if and only if

)()|(:, uAPvBuAPvu ====!
from which you can then prove things like…

)()()(:, vBPuAPvBuAPvu ====!="

! 

"u,v :P(B = u | A = v) = P(B = v)
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Back to Naïve Density Estimation
• Let x[i] denote the i’th field of record x:
• Naïve DE assumes x[i] is independent of {x[1],x[2],..x[i-1],

x[i+1],…x[M]}
• Example:

• Suppose that each record is generated by randomly shaking a
green dice and a red dice

• Dataset 1: A = red value, B = green value

• Dataset 2: A = red value, B = sum of values

• Dataset 3: A = sum of values, B = difference of values

• Which of these datasets violates the naïve assumption?
• Think: What do I know about A? What do I know about A if I know

B? That is: What is P(A)? What is P(A|B)? What about P(A|B=5)?
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Using the Naïve Distribution
• Once you have a Naïve Distribution you can easily

compute any row of the joint distribution.
• Suppose A, B, C and D are independently

distributed. What is P(A^~B^C^~D)?
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Using the Naïve Distribution
• Once you have a Naïve Distribution you can easily

compute any row of the joint distribution.
• Suppose A, B, C and D are independently

distributed. What is P(A^~B^C^~D)?
= P(A|~B^C^~D) P(~B^C^~D)
= P(A) P(~B^C^~D)
= P(A) P(~B|C^~D) P(C^~D)
= P(A) P(~B) P(C^~D)
= P(A) P(~B) P(C|~D) P(~D)
= P(A) P(~B) P(C) P(~D)
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Naïve Distribution General Case
• Suppose x[1], x[2], … x[M] are independently

distributed.

!
=

=====
M

k

kM
ukxPuMxuxuxP

1

21 )][()][,]2[,]1[( K

• So if we have a Naïve Distribution we can
construct any row of the implied Joint Distribution
on demand.

• So we can do any inference
• But how do we learn a Naïve Density Estimator?
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Learning a Naïve Density
Estimator

records ofnumber  total

 ][in which  records#
)][(ˆ uix
uixP

=
==

Another trivial learning algorithm!
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Contrast

Given 100 records and 10,000
multivalued attributes will be fine

Given 100 records and more than 6
Boolean attributes will screw up
badly

Outside Naïve’s scopeNo problem to model
“C is a noisy copy of A”

Can model only very
boring distributions

Can model anything

Naïve DEJoint DE
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Empirical Results: “Hopeless”
The “hopeless” dataset consists of 40,000 records and 21 Boolean
attributes called a,b,c, … u. Each attribute in each record is generated
50-50 randomly as 0 or 1.

Despite the vast amount of data, “Joint” overfits hopelessly and
does much worse

Average test set log
probability during
10 folds of k-fold
cross-validation
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Empirical Results: “Logical”
The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as
0 or 1. D = A^~C, except that in 10% of records it is flipped

The DE
learned by

“Joint”

The DE
learned by

“Naive”
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Empirical Results: “Logical”
The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as
0 or 1. D = A^~C, except that in 10% of records it is flipped

The DE
learned by

“Joint”

The DE
learned by

“Naive”



16

Copyright © Andrew W. Moore Slide 85

A tiny part of
the DE

learned by
“Joint”

Empirical Results: “MPG”
The “MPG” dataset consists of 392 records and 8 attributes

The DE
learned by

“Naive”
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A tiny part of
the DE

learned by
“Joint”

Empirical Results: “MPG”
The “MPG” dataset consists of 392 records and 8 attributes

The DE
learned by

“Naive”
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The DE
learned by

“Joint”

Empirical Results: “Weight vs. MPG”
Suppose we train only from the “Weight” and “MPG” attributes

The DE
learned by

“Naive”
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The DE
learned by

“Joint”

Empirical Results: “Weight vs. MPG”
Suppose we train only from the “Weight” and “MPG” attributes

The DE
learned by

“Naive”
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The DE
learned by

“Joint”

“Weight vs. MPG”: The best that Naïve can do

The DE
learned by

“Naive”
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Reminder: The Good News
• We have two ways to learn a Density

Estimator from data.
• *In other lectures we’ll see vastly more

impressive Density Estimators (Mixture Models,
Bayesian Networks, Density Trees, Kernel Densities and many more)

• Density estimators can do many good
things…
• Anomaly detection
• Can do inference: P(E1|E2) Automatic Doctor / Help Desk etc

• Ingredient for Bayes Classifiers
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Bayes Classifiers
• A formidable and sworn enemy of decision

trees

Classifier Prediction of
categorical output

Input
Attributes

DT BC
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input
distribution among the Y=vi records.
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )

• Idea: When a new set of input values (X1 = u1, X2 = u2, …. Xm
= um) come along to be evaluated predict the value of Y that
makes P(X1, X2, … Xm | Y=vi ) most likely

)|(argmax 11

predict
vYuXuXPY

mm

v

==== L

Is this a good idea?
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )

• Idea: When a new set of input values (X1 = u1, X2 = u2, …. Xm
= um) come along to be evaluated predict the value of Y that
makes P(X1, X2, … Xm | Y=vi ) most likely

)|(argmax 11

predict
vYuXuXPY

mm

v

==== L

Is this a good idea?

This is a Maximum Likelihood
classifier.

It can get silly if some Ys are
very unlikely
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )

• Idea: When a new set of input values (X1 = u1, X2 = u2, …. Xm
= um) come along to be evaluated predict the value of Y that
makes P(Y=vi | X1, X2, … Xm) most likely

)|(argmax 11

predict

mm

v

uXuXvYPY ==== L

Is this a good idea?

Much Better Idea
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Terminology
• MLE (Maximum Likelihood Estimator):

• MAP (Maximum A-Posteriori Estimator):
)|(argmax 11

predict

mm

v

uXuXvYPY ==== L

)|(argmax 11

predict
vYuXuXPY

mm

v

==== L
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Getting what we need
)|(argmax 11

predict

mm

v

uXuXvYPY ==== L
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Getting a posterior probability

!
=

====

====
=

==

====
=

===

Yn

j

jjmm

mm

mm

mm

mm

vYPvYuXuXP

vYPvYuXuXP

uXuXP

vYPvYuXuXP

uXuXvYP

1

11

11

11

11

11

)()|(

)()|(

)(

)()|(

)|(

L

L

L

L

L

Copyright © Andrew W. Moore Slide 100

Bayes Classifiers in a nutshell

)()|(argmax

)|(argmax

11

11

predict

vYPvYuXuXP

uXuXvYPY

mm

v

mm

v

=====

====

L

L

1. Learn the distribution over inputs for each value Y.

2. This gives P(X1, X2, … Xm | Y=vi ).

3. Estimate  P(Y=vi ). as fraction of records with Y=vi .

4. For a new prediction:
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Bayes Classifiers in a nutshell

)()|(argmax

)|(argmax

11

11

predict

vYPvYuXuXP

uXuXvYPY

mm

v

mm

v

=====

====

L

L

1. Learn the distribution over inputs for each value Y.

2. This gives P(X1, X2, … Xm | Y=vi ).

3. Estimate  P(Y=vi ). as fraction of records with Y=vi .

4. For a new prediction: We can use our favorite
Density Estimator here.

Right now we have two
options:

•Joint Density Estimator
•Naïve Density Estimator
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Joint Density Bayes Classifier
)()|(argmax 11

predict
vYPvYuXuXPY

mm

v

===== L

In the case of the joint Bayes Classifier this
degenerates to a very simple rule:

Ypredict = the most common value of Y among records
in which X1 = u1, X2 = u2, …. Xm = um.

Note that if no records have the exact set of inputs X1
= u1, X2 = u2, …. Xm = um, then P(X1, X2, … Xm | Y=vi )
= 0 for all values of Y.

In that case we just have to guess Y’s value
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Joint BC Results: “Logical”
The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as
0 or 1. D = A^~C, except that in 10% of records it is flipped

The Classifier
learned by
“Joint BC”
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Joint BC Results: “All Irrelevant”
The “all irrelevant” dataset consists of 40,000 records and 15 Boolean
attributes called a,b,c,d..o where a,b,c are generated 50-50 randomly
as 0 or 1. v (output) = 1 with probability 0.75, 0 with prob 0.25
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Naïve Bayes Classifier
)()|(argmax 11

predict
vYPvYuXuXPY

mm

v

===== L

In the case of the naive Bayes Classifier this can be
simplified:

!
=

====
Yn

j

jj
v

vYuXPvYPY
1

predict )|()(argmax
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Naïve Bayes Classifier
)()|(argmax 11

predict
vYPvYuXuXPY

mm

v

===== L

In the case of the naive Bayes Classifier this can be
simplified:

!
=

====
Yn

j

jj
v

vYuXPvYPY
1

predict )|()(argmax

Technical Hint:
If you have 10,000 input attributes that product will
underflow in floating point math. You should use logs:
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vYuXPvYPY
1

predict )|(log)(logargmax
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BC Results: “XOR”
The “XOR” dataset consists of 40,000 records and 2 Boolean inputs called a
and b, generated 50-50 randomly as 0 or 1. c (output) = a XOR b

The Classifier
learned by
“Naive BC”

The Classifier
learned by
“Joint BC”

Copyright © Andrew W. Moore Slide 108

Naive BC Results: “Logical”
The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as
0 or 1. D = A^~C, except that in 10% of records it is flipped

The Classifier
learned by
“Naive BC”
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Naive BC Results: “Logical”
The “logical” dataset consists of 40,000 records and 4 Boolean
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as
0 or 1. D = A^~C, except that in 10% of records it is flipped

The Classifier
learned by
“Joint BC”

This result surprised Andrew until he
had thought about it a little
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Naïve BC Results: “All Irrelevant”
The “all irrelevant” dataset consists
of 40,000 records and 15 Boolean
attributes called a,b,c,d..o where
a,b,c are generated 50-50 randomly
as 0 or 1. v (output) = 1 with
probability 0.75, 0 with prob 0.25

The Classifier
learned by
“Naive BC”
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BC Results:
“MPG”: 392

records

The Classifier
learned by
“Naive BC”
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BC Results:
“MPG”: 40

records
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More Facts About Bayes
Classifiers

• Many other density estimators can be slotted in*.
• Density estimation can be performed with real-valued

inputs*
• Bayes Classifiers can be built with real-valued inputs*
• Rather Technical Complaint: Bayes Classifiers don’t try to

be maximally discriminative---they merely try to honestly
model what’s going on*

• Zero probabilities are painful for Joint and Naïve. A hack
(justifiable with the magic words “Dirichlet Prior”) can
help*.

• Naïve Bayes is wonderfully cheap. And survives 10,000
attributes cheerfully!

*See future Andrew Lectures
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What you should know
• Probability

• Fundamentals of Probability and Bayes Rule
• What’s a Joint Distribution
• How to do inference (i.e. P(E1|E2)) once you

have a JD

• Density Estimation
• What is DE and what is it good for
• How to learn a Joint DE
• How to learn a naïve DE
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What you should know
• Bayes Classifiers

• How to build one
• How to predict with a BC
• Contrast between naïve and joint BCs


