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Reinforcement Learning

Slides by Rich Sutton

Mods by Dan Lizotte

Refer to “Reinforcement Learning: An
Introduction” by Sutton and Barto

Alpaydin Chapter 16

Up until now we have been…

• Supervised Learning
 Classifying, mostly
 Also saw some regression
 Also doing some probabilistic analysis

• In comes data
 Then we think for a while

• Out come predictions

• Reinforcement learning is in some ways similar, in
some ways very different. (Like this font!)
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Complete Agent

• Temporally situated
• Continual learning and planning
• Objective is to affect the environment
• Environment is stochastic and uncertain

  

Environment

actionstate

reward
Agent

What is Reinforcement Learning?

• An approach to Artificial Intelligence
• Learning from interaction
• Goal-oriented learning
• Learning about, from, and while interacting with an

external environment
• Learning what to do—how to map situations to

actions—so as to maximize a numerical reward
signal
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Chapter 1: Introduction

Psychology

Artificial Intelligence

Control Theory and
Operations Research

Artificial Neural Networks

Reinforcement
Learning (RL)

Neuroscience

Key Features of RL

• Learner is not told which actions to take
• Trial-and-Error search
• Possibility of delayed reward

 Sacrifice short-term gains for greater long-
term gains

• The need to explore and exploit
• Considers the whole problem of a goal-directed

agent interacting with an uncertain environment
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Examples of Reinforcement Learning
• Robocup Soccer Teams  Stone & Veloso, Reidmiller et al.

 World’s best player of simulated soccer, 1999; Runner-up 2000

• Inventory Management  Van Roy, Bertsekas, Lee & Tsitsiklis
 10-15% improvement over industry standard methods

• Dynamic Channel Assignment  Singh & Bertsekas, Nie & Haykin
 World's best assigner of radio channels to mobile telephone calls

• Elevator Control  Crites & Barto
 (Probably) world's best down-peak elevator controller

• Many Robots
 navigation, bi-pedal walking, grasping, switching between skills...

• TD-Gammon and Jellyfish  Tesauro, Dahl
 World's best backgammon player

Supervised Learning

Supervised Learning 
SystemInputs Outputs

Training Info  =  desired (target) outputs

Error  =  (target output  –  actual output)
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Reinforcement Learning

RL
SystemInputs Outputs (“actions”)

Training Info  =  evaluations (“rewards” / “penalties”)

Objective:  get as much reward as possible

Today

• Give an overview of the whole RL problem…
 Before we break it up into parts to study

individually
• Introduce the cast of characters

 Experience (reward)
 Policies
 Value functions
 Models of the environment

• Tic-Tac-Toe example
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Elements of RL

• Policy: what to do
• Reward: what is good
• Value: what is good because it predicts reward
• Model: what follows what

Policy

Reward
Value

Model of
environment

A Somewhat Less Misleading View…

external sensations

memory

state

reward

actions

internal
 sensations

RL 
agent



7

An Extended Example: Tic-Tac-Toe
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Assume an imperfect opponent:
       —he/she sometimes makes mistakes

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per
state:

2. Now play lots of games.
To pick our moves,

            look ahead one step:

State         V(s) – estimated probability of winning
.5          ?
.5          ?. . .

. . .

. . .
. . .

1        win

0        loss

. . .
. . .

0       draw

x

xxx
o

o

o
o

o
x

x

oo

o o
x

x
x

x
o

current state

various possible
next states*

Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.
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RL Learning Rule for Tic-Tac-Toe

“Exploratory” move

s   –   the state before our greedy move

! s   –   the state after our greedy move

We increment each V(s)  toward V( ! s ) –  a backup :

V(s)"V (s) + # V( ! s ) $ V (s)[ ]

a small positive fraction,  e.g.,  ! = .1

the step - size parameter

•

Our Move {
Opponent's Move {

Our Move {

Starting Position

•

•

•

a

b

c

d

ee'

Opponent's Move {

•
f

•g

Opponent's Move {
Our Move {

•

c *

*

*g

How can we improve this T.T.T.
player?

• Take advantage of symmetries
 representation/generalization
 How might this backfire?

• Do we need “random” moves? Why?
 Do we need the full 10%?

• Can we learn from “random” moves?
• Can we learn offline?

 Pre-training from self play?
 Using learned models of opponent?

• . . .
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e.g. Generalization

Table                         Generalizing Function Approximator
State            VState            V

s
s
s
.
.
.

s

1

2

3

N

Train
here

e.g. Generalization

Table                         Generalizing Function Approximator
State            VState            V

s
s
s
.
.
.

s

1

2

3

N

Train
here
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How is Tic-Tac-Toe Too Easy?

• Finite, small number of states
• One-step look-ahead is always possible
• State completely observable
• . . .

Chapter 2: Evaluative Feedback

• Evaluating actions vs. instructing by giving correct actions
• Pure evaluative feedback depends totally on the action taken.

Pure instructive feedback depends not at all on the action taken.
• Supervised learning is instructive; optimization is evaluative
• Associative vs. Nonassociative:

 Associative: inputs mapped to outputs;
– learn the best output for each input

 Nonassociative: “learn” (find) one best output
– ignoring inputs

• A simpler example: n-armed bandit (at least how we treat it) is:
 Nonassociative
 Evaluative feedback
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= Pause for Stats =

• Suppose X is a real-valued random variable
• Expectation (“Mean”)

• Normal Distribution
 Mean μ
 Standard Deviation σ

 Almost all values will be
 -3σ < x < 3σ

! 

E{X} = lim
n"#

x1 + x2 + x3 + ...+ x
n

n

The n-Armed Bandit Problem

• Choose repeatedly from one of n actions; each
choice is called a play

• After each play      , you get a reward      , where

! 

a
t

! 

r
t

These are unknown action values
Distribution of      depends only on  r

t
a
t

• Objective is to maximize the reward in the long
term, e.g., over 1000 plays

To solve the n-armed bandit problem,
    you must explore a variety of actions
    and exploit the best of them
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The Exploration/Exploitation Dilemma

• Suppose you form estimates

• The greedy action at t  is at

• If you need to learn, you can’t exploit all the time;
if you need to do well, you can’t explore all the time

• You can never stop exploring; but you should always
reduce exploring.  Maybe.

Q
t
(a) !Q

*
(a) action value estimates

a
t

* = argmax
a
Q
t
(a)

a
t
= a

t

*
! exploitation

a
t
" a

t

* ! exploration

Action-Value Methods

• Methods that adapt action-value estimates and
nothing else, e.g.:  suppose by the t-th play, action
had been chosen      times, producing rewards
then

•

k
a   

r
1
, r
2
,K, r

ka
,

“sample average” 

lim
k a!"

Qt(a) =Q
*
(a)

a
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ε-Greedy Action Selection

• Greedy action selection:

• ε-Greedy:

a
t
= a

t

*
= argmax

a
Q
t
(a)

a
t

*  with probability 1 ! "

random action with probability "
{a

t
=

. . . the simplest way to balance exploration and exploitation

10-Armed Testbed

• n = 10 possible actions
• Each           is chosen randomly from a normal

distribution with mean 0 and variance 1
• each      is also normal, with mean Q*(at) and variance 1
• 1000 plays
• repeat the whole thing 2000 times and average the

results
• Use sample average to estimate Q

r
t

Q
*
(a)
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ε-Greedy Methods on the 10-Armed
Testbed

Softmax Action Selection

• Softmax action selection methods grade action
probs. by estimated values.

• The most common softmax uses a Gibbs, or
Boltzmann, distribution:

• Actions with greater value are more likely to be
selected

Choose action a on play t with probability

                    
e
Qt (a) !

eQt (b) !

b=1

n

"
,

where ! is the

“computational temperature”
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Softmax and ‘Temperature’
Choose action a on play t with probability

                    
e
Qt (a) !

eQt (b) !

b=1

n

"
,

where ! is the “computational temperature”

Q(a3) = -3.0Q(a2) = 2.0Q(a1) = 1.0Probability ➘

0.32340.34000.3366τ = 100.0
0.24150.39820.3603τ = 10.0
0.00490.72750.2676τ = 1.0
< 0.00010.88080.1192τ = 0.5
< 0.00010.98200.0180τ = 0.25

Small τ is like ‘max.’ Big τ is like ‘uniform.’

Incremental Implementation

  

Qk =
r
1
+ r

2
+Lrk

k

Recall the sample average estimation method:

Can we do this incrementally (without storing all the rewards)? 

We could keep a running sum and count, or, equivalently:

Qk+1 = Qk +
1

k +1
rk+1 !Qk[ ]

The average of the first k  rewards is
(dropping the dependence on     ):

 This is a common form for update rules:

NewEstimate = OldEstimate + StepSize[Target – OldEstimate]

a
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Tracking a Nonstationary Problem

Choosing       to be a sample average is appropriate in a
stationary problem, 
           i.e., when none of the            change over time,

But not in a nonstationary problem.

Qk

Q
*
(a)

Better in the nonstationary case is:

Qk+1 = Qk +! rk+1 "Qk[ ]
for constant  !,  0 < ! # 1

               = (1" !)
k
Q0 + ! (1 "!

i=1

k

$ )
k "i
ri

exponential, recency-weighted average

Optimistic Initial Values

• All methods so far depend on          , i.e., they are biased.
• Suppose instead we initialize the action values

optimistically,

Q
0
(a)

i.e., on the 10-armed testbed, use Q0 (a) = 5   for all a
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Conclusions

• These are all very simple methods
 but they are complicated enough—we will build on

them
 we should understand them completely

Conclusions

• These are all very simple methods
 but they are complicated enough—we will build on

them
 we should understand them completely

• Ideas for improvements:
 estimating uncertainties . . . interval estimation
 new “action elimination” methods (see ICML’03)
 approximating Bayes optimal solutions
 Gittens indices

• The full RL problem offers some ideas for solution .
. .
 see work of Duff, e.g., at ICML’03, or Tao Wang
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Chapter 3: The Reinforcement Learning
Problem

• describe the RL problem we will be studying for the
remainder of the course

• present idealized form of the RL problem for which we
have precise theoretical results;

• introduce key components of the mathematics: value
functions and Bellman equations;

• describe trade-offs between applicability and
mathematical tractability.

Objectives of this chapter: 

The Agent-Environment Interface

  

Agent and environment interact at discrete time steps :   t = 0, 1, 2, K

     Agent observes state at step t :     s
t
!S

     produces action at step t :   a
t
! A(s

t
)

     gets resulting reward :     r
t+1 !"

     and resulting next state :   s
t+1

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a
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Policy at step t , !
t

:

               a mapping from states to action probabilities

               !
t
(s, a) =  probability that a

t
= a when s

t
= s

The Agent Learns a Policy

• Reinforcement learning methods specify how the
agent changes its policy as a result of experience.

• Roughly, the agent’s goal is to get as much reward
as it can over the long run.

Getting the Degree of Abstraction
Right

• Time steps need not refer to fixed intervals of real time.
• Actions can be low level (e.g., voltages to motors), or high

level (e.g., accept a job offer), “mental” (e.g., shift in focus
of attention), etc.

• States can low-level “sensations”, or they can be abstract,
symbolic, based on memory, or subjective (e.g., the state of
being “surprised” or “lost”).

• An RL agent is not like a whole animal or robot.
• Reward computation is in the agent’s environment because

the agent cannot change it arbitrarily.
• The environment is not necessarily unknown to the agent,

only incompletely controllable.
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Goals and Rewards

• Is a scalar reward signal an adequate notion of a
goal?—maybe not, but it is surprisingly flexible.

• A goal should specify what we want to achieve, not
how we want to achieve it.

• A goal must be outside the agent’s direct
control—thus outside the agent.

• The agent must be able to measure success:
 explicitly;
 frequently during its lifespan.

The reward hypothesis

• That all of what we mean by goals and purposes
can be well thought of as the maximization of the
cumulative sum of a received scalar signal (reward)

• A sort of null hypothesis.
 Probably ultimately wrong, but so simple we

have to disprove it before considering anything
more complicated
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Returns

  

Suppose the sequence of rewards after step t is :

                         r
t+1, rt+ 2 , r

t+ 3, K

What do we want to maximize?

In general,  

we want to maximize the expected return,  E R
t{ },  for each step t.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

  
R
t
= r

t+1 + rt+2 +L + r
T
,

where T is a final time step at which a terminal state is reached,
ending an episode.

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.  

Discounted return:

  

            R
t
= r

t+1
+! r

t+ 2
+ ! 2

r
t+3
+L = ! k

r
t+ k+1

,
k =0

"

#

where ! , 0 $ ! $ 1, is the discount rate.

shortsighted  0 !" # 1  farsighted
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An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track.

reward  = +1 for each step before failure

!   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As  a continuing task with discounted return:
reward  = !1 upon failure;  0 otherwise

"   return =  !# k ,  for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.

Another Example

Get to the top of the hill
as quickly as possible. 

reward  = !1 for each step where not at top of hill

"   return =  ! number of steps before reaching top of hill

Return is maximized by minimizing 
number of steps to reach the top of the hill. 
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A Unified Notation

• In episodic tasks, we number the time steps of
each episode starting from zero.

• We usually do not have to distinguish between
episodes, so we write       instead of         for the
state at step t of episode j.

• Think of each episode as ending in an absorbing
state that always produces reward of zero:

• We can cover all cases by writing

s
t

st, j

! 

                                                                                R
t
= " kr

t+k+1,
k= 0

#

$

where " can be 1 only if a zero reward absorbing state is always reached.

The Markov Property

• By “the state” at step t, the book means whatever
information is available to the agent at step t about its
environment.

• The state can include immediate “sensations,” highly
processed sensations, and structures built up over time
from sequences of sensations.

• Ideally, a state should summarize past sensations so as
to retain all “essential” information, i.e., it should have
the Markov Property:

  

Pr s
t +1

= ! s , r
t +1

= r s
t
,a

t
,r

t
, s

t"1
,a

t"1
,K, r

1
,s

0
,a

0{ } =

                                                             Pr s
t +1

= ! s , r
t +1

= r s
t
,a

t{ }
for all ! s , r, and histories s

t
,a

t
,r

t
, s

t"1
,a

t"1
,K, r

1
, s

0
,a

0
. 
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Markov Decision Processes

• If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

• If state and action sets are finite, it is a finite MDP.
• To define a finite MDP, you need to give:

 state and action sets
 one-step “dynamics” defined by transition probabilities:

 reward probabilities:

! 

P
s " s 

a = Pr s
t +1 = " s s

t
= s,a

t
= a{ }   for all s, " s # S, a# A(s).

! 

R
s " s 

a = E r
t +1 s

t
= s,a

t
= a,s

t +1 = " s { }   for all s, " s # S, a# A(s).

Recycling Robot 

An Example Finite MDP

• At each step, robot has to decide whether it should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
go to home base and recharge.

• Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which is bad).

• Decisions made on basis of current energy level: high, low.
• Reward = number of cans collected
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Recycling Robot MDP

  

S = high ,low{ }

A(high) = search , wait{ }

A(low) = search ,wait, recharge{ }   

! 

R
search

=  expected no. of cans while searching

R
wait

=  expected no. of cans while waiting

                     Rsearch
>R

wait

Value Functions

State - value function for policy ! :

V
!
(s) = E! R

t
s
t

= s{ } = E! " k
r
t+k +1 s

t
= s

k =0

#

$
% 
& 
' 

( 
) 
* 

Action- value function for policy ! :

Q
!
(s, a) = E! Rt st = s, at = a{ } = E! " k

rt+ k+1 st = s,at = a
k= 0

#

$
% 
& 
' 

( 
) 
* 

• The value of a state is the expected return
starting from that state; depends on the agent’s
policy:

• The value of taking an action in a state under
policy π  is the expected return starting from
that state, taking that action, and thereafter
following π :
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Bellman Equation for a Policy π

  

R
t
= r

t+1 + ! rt+2 +!
2
r
t+ 3 +!

3
r
t+ 4L

= r
t+1 + ! r

t+2 + ! rt+3 + !
2

r
t+ 4L( )

= r
t+1 + ! Rt+1

The basic idea: 

So: V
!
(s) = E! R

t
s
t
= s{ }

= E! r
t+1 + "V s

t+1( ) st = s{ }

Or, without the expectation operator: 

! 

V
"
(s) = " (s,a) P

s # s 

a
R

s # s 

a + $V "
( # s )[ ]

# s 

%
a

%

More on the Bellman Equation

! 

V
"
(s) = " (s,a) P

s # s 

a
R

s # s 

a + $V "
( # s )[ ]

# s 

%
a

%

This is a set of equations (in fact, linear), one for each state.
The value function for π  is its unique solution.

Backup diagrams:

for V
!

for Q
!
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Gridworld

• Actions: north, south, east, west; deterministic.
• If would take agent off the grid: no move but reward = –1
• Other actions produce reward = 0, except actions that move

agent out of special states A and B as shown.

State-value function 
for equiprobable 
random policy;
γ = 0.9

Golf

• State is ball location
• Reward of –1 for each stroke

until the ball is in the hole
• Value of a state?
• Actions:

 putt (use putter)
 driver (use driver)

• putt succeeds anywhere on
the green
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! " # !     if and only if  V
!

(s) " V
# ! 
(s)  for all s $S

Optimal Value Functions
• For finite MDPs, policies can be partially ordered:

• There are always one or more policies that are better
than or equal to all the others. These are the optimal
policies. We denote them all π *.

• Optimal policies share the same optimal state-value
function:

• Optimal policies also share the same optimal action-
value function:

V
!
(s) = max

"
V
"

(s)    for all  s #S

Q
!
(s, a) = max

"
Q

"
(s, a)  for all  s #S and a #A(s)

This is the expected return for taking action a in state s
and thereafter following an optimal policy.

Optimal Value Function for Golf

• We can hit the ball farther with driver than with
putter, but with less accuracy

• Q*(s,driver) gives the value or using driver first,
then using whichever actions are best
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Bellman Optimality Equation for V*

! 

V
"
(s) = max

a#A (s)
Q

$ "

(s,a)

= max
a#A (s)

E r
t +1 + %V "

(s
t +1) s

t
= s,a

t
= a{ }

= max
a#A (s)

P
s & s 

a

& s 

' R
s & s 

a + %V "
( & s )[ ]

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram: 

     is the unique solution of this system of nonlinear equations.V
!

Bellman Optimality Equation for Q*

! 

Q
"
(s,a) = E r

t +1 + #max
$ a 

Q
"
(s

t +1, $ a ) s
t
= s,a

t
= a{ }

= P
s $ s 

a
R

s $ s 

a + #max
$ a 

Q
"
( $ s , $ a )[ ]

$ s 

%

The relevant backup diagram: 

     is the unique solution of this system of nonlinear equations.Q
*



30

Why Optimal State-Value Functions are
Useful

V
!

V
!

Any policy that is greedy with respect to       is an optimal policy.

Therefore, given     , one-step-ahead search produces the 
long-term optimal actions.

E.g., back to the gridworld:

π*

What About Optimal Action-Value
Functions?

Given      , the agent does not even
have to do a one-step-ahead search:  

Q
*

!
"
(s) = argmax

a#A (s)
Q

"
(s, a)
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Solving the Bellman Optimality
Equation

• Finding an optimal policy by solving the Bellman Optimality
Equation requires the following:
 accurate knowledge of environment dynamics;
 we have enough space and time to do the computation;
 the Markov Property.

• How much space and time do we need?
 polynomial in number of states (via dynamic programming

methods; Chapter 4),
 BUT, number of states is often huge (e.g., backgammon

has about 1020 states).
• We usually have to settle for approximations.
• Many RL methods can be understood as approximately

solving the Bellman Optimality Equation.

Summary

• Agent-environment interaction
 States
 Actions
 Rewards

• Policy: stochastic rule for
selecting actions

• Return: the function of future
rewards agent tries to
maximize

• Episodic and continuing tasks
• Markov Property
• Markov Decision Process

 Transition probabilities
 Expected rewards

• Value functions
 State-value function for a

policy
 Action-value function for a

policy
 Optimal state-value function
 Optimal action-value function

• Optimal value functions
• Optimal policies
• Bellman Equations
• The need for approximation


