

Higher Order Polynomials						
Poly- nomial	φ(x)	Cost to build Q_{kl} matrix tradition ally	Cost if 100 inputs	ф(а) <i>•</i> ф(b)	Cost to build Q _{kl} matrix sneakily	Cost if 100 inputs
Quadratic	All <i>m²/2</i> terms up to degree 2	m ² R ² /4	2 500 <i>R</i> ²	(a·b +1) ²	m R² / 2	50 <i>R</i> ²
Cubic	All <i>m³/6</i> terms up to degree 3	m ³ R ² /12	83 000 <i>R</i> ²	(a·b +1) ³	m R ² / 2	50 <i>R</i> ²
Quartic	All <i>m⁴/24</i> terms up to degree 4	m ⁴ R ² /48	1 960 000 <i>R</i> ²	(a∙b +1)⁴	m R ² / 2	50 <i>R</i> ²
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 53						

Copyright \circledast 2001, 2003, Andrew W. Moore

Support Vector Machines: Slide 61

What You Should Know

- Linear SVMs
- The definition of a maximum margin classifier
- What QP can do for you (but, for this class, you don't need to know how it does it)
- How Maximum Margin can be turned into a QP problem
- How we deal with noisy (non-separable) data
- How we permit "non-linear boundaries"
- How SVM Kernel functions permit us to pretend we're working with a zillion features

What really happens

- Johnny Machine Learning gets a dataset
- Wants to try SVMs
 - Linear: "Not bad, but I think it could be better."
 - Adjusts C to trade off margin vs. slack
 - Still not satisfied: Tries kernels, typically polynomial. Starts with quadratic, then goes up to about degree 5.
- Johnny goes to Machine Learning conference
 - Johnny: "Wow, a quartic kernel with C=2.375 works great!"
 - Audience member: "Why did you pick those, Johnny?"
 - Johnny: "Cross validation told me to!"

Copyright \circledast 2001, 2003, Andrew W. Moore

Support Vector Machines: Slide 64