Warning: up until Rong Zhang spotted my error in
n u Iva e nt Oct 2003, this equation had been wrong in earlier
versions of the notes. This version is correct.

Max(lxm|ze a, ——EEaka,le where Oy = ¥,y (X, " X;)
k=1

k klll

R
Subjecttothese (<o <C Vk o -0
constraints: k E Yk

Then define:

Then classify with:
W= Eakykxk
k=1 f(x,w,b) = sign(w - x + b)
b=y, (A—¢€)— X, W,

where K = argmax o,
k
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Warning: up until Rong Zhang spotted my error in
n u Iva e nt Oct 2003, this equation had been wrong in earlier
versions of the notes. This version is correct.

Max(lxm|ze a, ——EEaka,le where Oy = ¥,y (X, " X;)
k=1

k k 11=1
R
Subject to these —
) he O<a,<C Vk Eakyk—O
constraints:
Then define: Datapoints with o, > 0
will be the support
vectors
W= E U Y Xy ]
_ L. L) H L. + b
k=1 ..S0 this sum only needs X + D)
b=yK(1_gK)—XK- to be over the

support vectors.
where K = argmax o
k

(prolly << R)
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Warning: up until Rong Zhang spotted my error in

.
A n E u Iva | e nt P Oct 2003, this equation had been wrong in earlier
k versions of the notes. This version is correct.

N LV

Why did I tell you about this
equivalent QP?

e It's a formulation that QP
packages can optimize more
quickly

Maximize
oy

e Because of further jaw-
dropping developments you're
about to learn.

¥ N
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V
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Suppose we're in 1-dimension

What would
SVMs do with
this data?

x=0
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Suppose we're in 1-dimension

Not a big surprise

l L 0 0 [e}Ne) o
\ \
D (
Positive “plane”
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Negative “plane”

Harder 1-dimensional dataset

That's wiped the
smirk off SVM’s

face.

What can be
done about
this?

x=0

Doesn’t look like slack variables will save us this time...
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Harder 1-dimensional dataset

We're going to
make up a new
feature.

Sort of. We'll
. compute it from
the feature(s) we
0 have.

o ol o

2
X=0 z, =(x,,x;)

New features are sometimes called basis functions.
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Harder 1-dimensional dataset

We're going to
make up a new
feature.

Sort of. We'll
compute it from
the feature(s) we

g have.

. Separable! MAGIC!

o 0 2
x20 z, = (X, %)

Just put this “augmented” data into our linear SVM.
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Common SVM “extra features”

z, = ( polynomial terms of x, of degree 1 to q)

z, = ( radial basis functions of x; )

1 |Xk —CJ |
Zk[.]] = CDJ-(Xk) = KernelFn W

z, = ( sigmoid functions of x; )

This is sensible.
Is that the end of the story?
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No...there’s one more trick!
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O(x) =

’\/Exm—lxm

_}— Constant Term
~

>~ Linear Terms

7/
N
Pure

~Quadratic
Terms

A\

Quadratic
(,}oss—Terms
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Quadratic
Basis Functions

Number of terms (assuming m input
dimensions) = (m+2)-choose-2

= (m+2)(m+1)/2

= (as near as makes no difference) m?/2

You may be wondering what those
\/E’s are doing.

*You should be happy that they do no
harm

*You'll find out why they're there soon.
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45 1 1
O o \2a, \2b,
o \2a, \2b,
2 3 : :
© '8 \2a, \2b,
O o al2 b]2
© A 2 2
3 a, b;
o :
a’ b?

®(a)* d(b) = ﬁ;a

\/Eal% ﬁblb@

W/Ealam
ﬁa2a3

\/Ealam \/Eblbm

’\/Eam—l am ’\/Ebm—lbm
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Quadratic Dot
Products

d(a)* D(b) =

1+ 22 ab, + 2 alb’ + 2a,a,bb,
i= i= Z jE ! !

=i+l
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Just out of casual, innocent, interest,
let’s look at another function of a and
b:

(a-b+1)’

=(a-b)*+2a-b+1

2
=(2aib,.) +22aibi+l

= 2 Za,.b,.ajbj +2Y ab +1
== =

- 2 (ab)” + 22 E abab, + 22 ab, +1
= =1 =+ =
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Quadratic Dot
Products

d(a)* D(b) =

1+ 22 ab, + i a’b’ + i
= = = jE

m
2a,a;bb,
=i+]
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Just out of casual, innocent, interest,
let’s look at another function of a and
b:

(a-b+1)?

=(a-b)’+2a-b+

2

=(2aib,.) +2Y ab +1

= 2 2 abab, + 22 ab, +1
=1 j= i=

7

= 2 (ab)” + 22 Eaibiajbj +2
i= =1 j=i+l

w

m
i=

ab, +1

They're the samel!

And this is only O(m) to
compute!
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Higher Order Polynomials

Poly- o(x) Costto | Costif 100 | ¢ca)-¢p) | Costto | Cost if
nomial build Q,, |inputs build @,, | 100
matrix matrix | inputs
tradition sneakily
ally
Quadratic | All m?/2 m?R?/4 |2 500 R? (a-b+1) mR?/2 |50 R?
terms up to
degree 2
Cubic All n3/6 m?R?/12|83 000 R? (a*b+1p mR?/2 |50 R?
terms up to
degree 3
Quartic |All m*/24 | m*R? /48| 1 960 000R? (a*b+1)* mR?/2 |50 R?
terms up to
degree 4
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QP with Quintic basis functions

We must do R%/2 dot products to get this

matrix ready. — .

/ Oy = 1y, (O(x;) - D(x,)
In 100-d, each dot product now needs 103
operations instead of 75 million

But there are still worrying things lurking away. X
What are they? Vk E XYV, = 0O
’ COTIR_Uanmnies. =1

Then define:

W = E oy, P(X,) Then classify with:
kst a=0 f(x,w,b) = sign(w - §(x) + b)
b=y, (A—¢&g)— X, "W,

where K = argmax o,
k
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QP with Quintic basis functions

We must do R%/2 dot products to get this

matrix ready. — .

/ OQu =y y(P(x,) P(x))
In 100-d, each dot product now needs 103
operations instead of 75 million

What are they? Yk
’ COUTI_ U Aaimes.

But there are still worrying things lurking away. SR\ 0
Ax,y, =

| eThefear of overfitting with this enormous
number of terms

Then define: *The evaluation phase (doing a set of
predictions on a test set) will be very
expensive (why?)

ks.t. o, >0 f(x,w,b) = sign(w - (x) + b)
b=y (l—€)—X, "W,

where K = argmax o,
k
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QP with Quintic basis functions

We must do R%/2 dot products to get this

matrix ready. = v v (DX, D(x.)
In 100-d, each dot product now needs 103 The use of Maximum Margin
operations instead of 75 million magically makes this not a

But there are still worrying things lurking away. el

What are they? Yk //5‘ a,y, = Q)

] Lutistranits. | eThefear of over/f{ltting with this enormous

number of terms i

Then define: *The evaluation phase (doing a set of
predictions on a test set) will be very
expensive (why?)

W = Eakykq)(xk/

ks.t. o, >0 Because each w *¢(x) (see below)
needs 75 million operations. What
b=yK(1—8K)—XK'WK can be done?

Then classify with:

where K = argmax o,
k f(x,w,b) = sign(w - Q(x) + b)
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QP with Quintic basis functions

We must do R%/2 dot products to get this

matrix ready. = v v (DX, D(x.)

In 100-d, each dot product now needs 103 The use of Maximum Margin

operations instead of 75 million magically makes this not a B

But there are still worrying things lurking away. el

What are they? . Vk Z/S‘ a,y, = 0)
Lutistranits. 1 *The fear of overfitting with this enormous

number of terms i

Then define: *The evaluation phase (doing a set of
predictions on a test set) will be very
expensive (why?)

W = Eakykq)(xk/

kst o,>0

W D(X) = >y, P(x,) P(X)
- SHzakgckyk(xk-x+1)5

ks.t. ;>0

Only Sm operations (S=#support vectors) f(x,w,b) = sign(w - §(x) + b)
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Because each w *¢(x) (see below)
needs 75 million operations. What
n be done?

Then classify with:




SVM Kernel Functions
e K(a,b)=(a. b +1)is an example of an SVM
Kernel Function

e Beyond polynomials there are other very high
dimensional basis functions that can be made
practical by finding the right Kernel Function

¢ Radial-Basis-style Kernel Function:

(a-b)’ o, k¥ and & are magic
K(a,b) = exp(— 752 ) parameters that must
be chosen by a model
e Neural-net-style Kernel Function: | selection method
such as CV or
VCSRM*

*see last lecture

K(a,b) = tanh(kab-9)
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VC-dimension of an SVM

e Very very very loosely speaking there is some theory which
under some different assumptions puts an upper bound on
the VC dimension as

Diameter
Margin
e where

e Diameter is the diameter of the smallest sphere that can
enclose all the high-dimensional term-vectors derived
from the training set.

e Margin is the smallest margin we'll let the SVM use

e This can be used in SRM (Structural Risk Minimization) for
choosing the polynomial degree, RBF o, etc.

e But most people just use Cross-Validation
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SVM Performance

Anecdotally they work very very well indeed.

Example: They are currently the best-known
classifier on a well-studied hand-written-character
recognition benchmark

Another Example: Andrew knows several reliable
people doing practical real-world work who claim
that SVMs have saved them when their other
favorite classifiers did poorly.

There is a lot of excitement and religious fervor
about SVMs as of 2001.

Despite this, some practitioners (including your
lecturer) are a little skeptical.
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Doing multi-class classification

SVMs can only handle two-class outputs (i.e. a
categorical output variable with arity 2).

What can be done?

Answer: with output arity N, learn N SVM’s
e SVM 1 learns "Output==1" vs "Output != 1"

e SVM 2 learns “Output==2" vs "Output != 2"

e SVM N learns “"Output==N" vs “"Output != N”

Then to predict the output for a new input, just
predict with each SVM and find out which one puts
the prediction the furthest into the positive region.
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References

¢ An excellent tutorial on VC-dimension and Support
Vector Machines:

C.J.C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):955-974, 1998.
http://citeseer.nj.nec.com/burges98tutorial.html

e The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, Wiley-
Interscience; 1998.

BUT YOU SHOULD PROBABLY READ ALMOST
ANYTHING ELSE ABOUT SVMS FIRST.

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 62

What You Should Know

e Linear SVMs
¢ The definition of a maximum margin classifier

e What QP can do for you (but, for this class, you
don’t need to know how it does it)

e How Maximum Margin can be turned into a QP
problem

e How we deal with noisy (non-separable) data
e How we permit “non-linear boundaries”

e How SVM Kernel functions permit us to pretend
we're working with a zillion features
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What really happens

¢ Johnny Machine Learning gets a dataset

e Wants to try SVMs
e Linear: "Not bad, but I think it could be better.”
¢ Adjusts C to trade off margin vs. slack

e Still not satisfied: Tries kernels, typically polynomial.
Starts with quadratic, then goes up to about degree 5.

e Johnny goes to Machine Learning conference

e Johnny: “Wow, a quartic kernel with C=2.375 works
great!”

e Audience member: “Why did you pick those, Johnny?”
¢ Johnny: “Cross validation told me to!”
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