
1

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 40

An Equivalent QP

Maximize

!

"k

k=1

R

$
1

2
"k" lQkl

l=1

R

#
k=1

R

where

!

Qkl = ykyl (x k " x l)

Subject to these
constraints:

!

0 "#
k
" C $k

Then define:

!

w = "k ykx k
k=1

R

#

!

b = yK (1"#K) " xK $wK

where K = argmax
k

%k

Then classify with:

f(x,w,b) = sign(w · x + b)
!

"k yk
k=1

R

= 0

Warning: up until Rong Zhang spotted my error in
Oct 2003, this equation had been wrong in earlier
versions of the notes. This version is correct.

!

"
k

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 41

An Equivalent QP

Maximize

!

"k

k=1

R

$
1

2
"k" lQkl

l=1

R

#
k=1

R

where

!

Qkl = ykyl (x k " x l)

Subject to these
constraints:

!

0 "#
k
" C $k

Then define:

!

w = "k ykx k
k=1

R

#

!

b = yK (1"#K) " xK $wK

where K = argmax
k

%k

Then classify with:

f(x,w,b) = sign(w · x + b)
!

"k yk
k=1

R

= 0

Warning: up until Rong Zhang spotted my error in
Oct 2003, this equation had been wrong in earlier
versions of the notes. This version is correct.

!

"
k

Datapoints with αk > 0
will be the support
vectors

..so this sum only needs
to be over the
support vectors.

(prolly << R)

2

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 42

An Equivalent QP

Maximize

!

"k

k=1

R

$
1

2
"k" lQkl

l=1

R

#
k=1

R

where

!

Qkl = ykyl (x k " x l)

Subject to these
constraints:

!

0 "#
k
" C $k

Then define:

!

w = "k ykx k
k=1

R

#

!

b = yK (1"#K) " xK $wK

where K = argmax
k

%k

Then classify with:

f(x,w,b) = sign(w · x + b)
!

"k yk
k=1

R

= 0

Warning: up until Rong Zhang spotted my error in
Oct 2003, this equation had been wrong in earlier
versions of the notes. This version is correct.

!

"
k

Datapoints with αk > 0
will be the support
vectors

..so this sum only needs
to be over the
support vectors.

(prolly << R)

Why did I tell you about this
equivalent QP?

• It’s a formulation that QP
packages can optimize more
quickly

• Because of further jaw-
dropping developments you’re
about to learn.

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 43

Suppose we’re in 1-dimension

What would
SVMs do with
this data?

x=0

3

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 44

Suppose we’re in 1-dimension

Not a big surprise

Positive “plane” Negative “plane”

x=0

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 45

Harder 1-dimensional dataset

That’s wiped the
smirk off SVM’s
face.

What can be
done about
this?

x=0

Doesn’t look like slack variables will save us this time…

4

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 46

Harder 1-dimensional dataset
We’re going to

make up a new
feature.

Sort of. We’ll
compute it from
the feature(s) we
have.

x=0),(2

kkk
xx=z

New features are sometimes called basis functions.

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 47

Harder 1-dimensional dataset

x=0),(2

kkk
xx=z

We’re going to
make up a new
feature.

Sort of. We’ll
compute it from
the feature(s) we
have.

Separable! MAGIC!

Just put this “augmented” data into our linear SVM.

5

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 48

Common SVM “extra features”

zk = (polynomial terms of xk of degree 1 to q)

zk = (radial basis functions of xk)

zk = (sigmoid functions of xk)

This is sensible.

Is that the end of the story?

No…there’s one more trick!

!

zk[j] =" j (x k) =KernelFn
| x k # c j |

KW

$

%
&

'

(
)

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 49

Quadratic
Basis Functions

!

"(x) =

1

2x
1

2x
2

:

2x
m

x
1

2

x
2

2

:

x
m

2

2x
1
x
2

2x
1
x
3

:

2x
1
x
m

2x
2
x
3

:

2x
1
x
m

:

2x
m#1xm

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

Constant Term

Linear Terms

Pure
Quadratic

Terms

Quadratic
Cross-Terms

Number of terms (assuming m input
dimensions) = (m+2)-choose-2

= (m+2)(m+1)/2

= (as near as makes no difference) m2/2

You may be wondering what those

 ’s are doing.

•You should be happy that they do no
harm

•You’ll find out why they’re there soon.

2

6

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 50

Q
ua

dr
at

ic
 D

ot
Pr

od
uc

ts

!

"(a)•"(b) =

1

2a
1

2a
2

:

2a
m

a
1

2

a
2

2

:

a
m

2

2a
1
a
2

2a
1
a
3

:

2a
1
a
m

2a
2
a
3

:

2a
1
a
m

:

2a
m#1am

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

•

1

2b
1

2b
2

:

2b
m

b
1

2

b
2

2

:

b
m

2

2b
1
b
2

2b
1
b
3

:

2b
1
b
m

2b
2
b
3

:

2b
1
b
m

:

2b
m#1bm

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

1

!
=

m

i

ii
ba

1

2

!
=

m

i

ii
ba

1

22

!!
= +=

m

i

m

ij

jiji bbaa
1 1

2

+

+

+

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 51

Q
ua

dr
at

ic
 D

ot
Pr

od
uc

ts

!

"(a)•"(b) =

!!!!
= +===

+++
m

i

m

ij

jiji

m

i

ii

m

i

ii bbaababa
1 11

22

1

221

Just out of casual, innocent, interest,
let’s look at another function of a and
b:

!

(a "b+1)
2

!

= (a "b)
2

+ 2a "b+1

12

1

2

1

++!
"

#
$
%

&
= ''

==

m

i

ii

m

i

ii
baba

12

11 1

++= !!!
== =

m

i

ii

m

i

m

j

jjii bababa

122)(
11 11

2
+++= !!!!

== +==

m

i

ii

m

i

m

ij

jjii

m

i

ii babababa

7

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 52

Q
ua

dr
at

ic
 D

ot
Pr

od
uc

ts

!

"(a)•"(b) =

!!!!
= +===

+++
m

i

m

ij

jiji

m

i

ii

m

i

ii bbaababa
1 11

22

1

221

Just out of casual, innocent, interest,
let’s look at another function of a and
b:

!

(a "b+1)
2

!

= (a "b)
2

+ 2a "b+1

12

1

2

1

++!
"

#
$
%

&
= ''

==

m

i

ii

m

i

ii
baba

12

11 1

++= !!!
== =

m

i

ii

m

i

m

j

jjii bababa

122)(
11 11

2
+++= !!!!

== +==

m

i

ii

m

i

m

ij

jjii

m

i

ii babababa

They’re the same!

And this is only O(m) to
compute!

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 53

Higher Order Polynomials

50 R2m R2 / 2(a·b+1)41 960 000R2m4 R2 /48All m4/24
terms up to
degree 4

Quartic

50 R2m R2 / 2(a·b+1)383 000 R2m3 R2 /12All m3/6
terms up to
degree 3

Cubic

50 R2m R2 / 2(a·b+1)22 500 R2m2 R2 /4All m2/2
terms up to
degree 2

Quadratic

Cost if
100
inputs

Cost to
build Qkl
matrix
sneakily

φ(a)·φ(b)Cost if 100
inputs

Cost to
build Qkl
matrix
tradition
ally

φ(x)Poly-
nomial

8

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 54

QP with Quintic basis functions
where

!

Qkl = ykyl ("(x k) # "(x l))

Subject to these
constraints:

!

0 "#
k
" C $k

Then define:

!

b = yK (1"#K) " xK $wK

where K = argmax
k

%k

Then classify with:

f(x,w,b) = sign(w · φ(x) + b)
!

"k yk
k=1

R

= 0

!

w = "k yk#(x k)
k s.t. "k >0

$

Maximize

!

"k

k=1

R

$
1

2
"k" lQkl

l=1

R

#
k=1

R

#
We must do R2/2 dot products to get this
matrix ready.

In 100-d, each dot product now needs 103
operations instead of 75 million

But there are still worrying things lurking away.
What are they?

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 55

QP with Quintic basis functions
where

!

Qkl = ykyl ("(x k) # "(x l))

Subject to these
constraints:

!

0 "#
k
" C $k

Then define:

!

b = yK (1"#K) " xK $wK

where K = argmax
k

%k

Then classify with:

f(x,w,b) = sign(w · φ(x) + b)
!

"k yk
k=1

R

= 0

!

w = "k yk#(x k)
k s.t. "k >0

$

Maximize

!

"k

k=1

R

$
1

2
"k" lQkl

l=1

R

#
k=1

R

#
We must do R2/2 dot products to get this
matrix ready.

In 100-d, each dot product now needs 103
operations instead of 75 million

But there are still worrying things lurking away.
What are they?

•The fear of overfitting with this enormous
number of terms

•The evaluation phase (doing a set of
predictions on a test set) will be very
expensive (why?)

9

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 56

QP with Quintic basis functions
where

!

Qkl = ykyl ("(x k) # "(x l))

Subject to these
constraints:

!

0 "#
k
" C $k

Then define:

!

b = yK (1"#K) " xK $wK

where K = argmax
k

%k

Then classify with:

f(x,w,b) = sign(w · φ(x) + b)

!

"k yk
k=1

R

= 0

!

w = "k yk#(x k)
k s.t. "k >0

$

Maximize

!

"k

k=1

R

$
1

2
"k" lQkl

l=1

R

#
k=1

R

#
We must do R2/2 dot products to get this
matrix ready.

In 100-d, each dot product now needs 103
operations instead of 75 million

But there are still worrying things lurking away.
What are they?

•The fear of overfitting with this enormous
number of terms

•The evaluation phase (doing a set of
predictions on a test set) will be very
expensive (why?)

Because each w·φ(x) (see below)
needs 75 million operations. What
can be done?

The use of Maximum Margin
magically makes this not a
problem

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 57

QP with Quintic basis functions
where

!

Qkl = ykyl ("(x k) # "(x l))

Subject to these
constraints:

!

0 "#
k
" C $k

Then define:

!

b = yK (1"#K) " xK .wK

where K = argmax
k

$k

Then classify with:

f(x,w,b) = sign(w · φ(x) + b)

!

"k yk
k=1

R

= 0

!

w = "k yk#(x k)
k s.t. "k >0

$

Maximize

!

"k

k=1

R

$
1

2
"k" lQkl

l=1

R

#
k=1

R

#
We must do R2/2 dot products to get this
matrix ready.

In 100-d, each dot product now needs 103
operations instead of 75 million

But there are still worrying things lurking away.
What are they?

•The fear of overfitting with this enormous
number of terms

•The evaluation phase (doing a set of
predictions on a test set) will be very
expensive (why?)

Because each w·φ(x) (see below)
needs 75 million operations. What
can be done?

The use of Maximum Margin
magically makes this not a
problem

Only Sm operations (S=#support vectors)
!

w " #(x) = $k yk#(x k) " #(x)
k s.t. $k >0

%

!

= "k yk (x k # x +1)
5

k s.t. "k >0

$

10

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 58

SVM Kernel Functions
• K(a,b)=(a . b +1)d is an example of an SVM

Kernel Function
• Beyond polynomials there are other very high

dimensional basis functions that can be made
practical by finding the right Kernel Function
• Radial-Basis-style Kernel Function:

• Neural-net-style Kernel Function:

!!
"

#
$$
%

& '
'=

2

2

2

)(
exp),(

(

ba
baK

).tanh(),(!" #= babaK

σ, κ and δ are magic
parameters that must
be chosen by a model
selection method
such as CV or
VCSRM*

*see last lecture

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 59

VC-dimension of an SVM
• Very very very loosely speaking there is some theory which

under some different assumptions puts an upper bound on
the VC dimension as

• where
• Diameter is the diameter of the smallest sphere that can

enclose all the high-dimensional term-vectors derived
from the training set.

• Margin is the smallest margin we’ll let the SVM use
• This can be used in SRM (Structural Risk Minimization) for

choosing the polynomial degree, RBF σ, etc.

• But most people just use Cross-Validation

!
!

"
#
#

$

Margin

Diameter

11

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 60

SVM Performance
• Anecdotally they work very very well indeed.
• Example: They are currently the best-known

classifier on a well-studied hand-written-character
recognition benchmark

• Another Example: Andrew knows several reliable
people doing practical real-world work who claim
that SVMs have saved them when their other
favorite classifiers did poorly.

• There is a lot of excitement and religious fervor
about SVMs as of 2001.

• Despite this, some practitioners (including your
lecturer) are a little skeptical.

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 61

Doing multi-class classification
• SVMs can only handle two-class outputs (i.e. a

categorical output variable with arity 2).
• What can be done?
• Answer: with output arity N, learn N SVM’s

• SVM 1 learns “Output==1” vs “Output != 1”
• SVM 2 learns “Output==2” vs “Output != 2”
• :
• SVM N learns “Output==N” vs “Output != N”

• Then to predict the output for a new input, just
predict with each SVM and find out which one puts
the prediction the furthest into the positive region.

12

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 62

References
• An excellent tutorial on VC-dimension and Support

Vector Machines:
C.J.C. Burges. A tutorial on support vector machines

for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):955-974, 1998.
http://citeseer.nj.nec.com/burges98tutorial.html

• The VC/SRM/SVM Bible:
Statistical Learning Theory by Vladimir Vapnik, Wiley-

Interscience; 1998.
BUT YOU SHOULD PROBABLY READ ALMOST

ANYTHING ELSE ABOUT SVMS FIRST.

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 63

What You Should Know
• Linear SVMs
• The definition of a maximum margin classifier
• What QP can do for you (but, for this class, you

don’t need to know how it does it)
• How Maximum Margin can be turned into a QP

problem
• How we deal with noisy (non-separable) data
• How we permit “non-linear boundaries”
• How SVM Kernel functions permit us to pretend

we’re working with a zillion features

13

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 64

What really happens
• Johnny Machine Learning gets a dataset

• Wants to try SVMs
• Linear: “Not bad, but I think it could be better.”
• Adjusts C to trade off margin vs. slack
• Still not satisfied: Tries kernels, typically polynomial.

Starts with quadratic, then goes up to about degree 5.

• Johnny goes to Machine Learning conference
• Johnny: “Wow, a quartic kernel with C=2.375 works

great!”
• Audience member: “Why did you pick those, Johnny?”
• Johnny: “Cross validation told me to!”

