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 A learning machine
• A learning machine f  takes an input x and

transforms it, somehow using weights α, into a
predicted output yest = +/- 1

fx

α

yest

α is some vector of
adjustable parameters
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 Examples
fx

α

yest

f(x,b) = sign(x·x – b)
denotes +1

denotes -1

sign(z) = -1 if z < 0

0 if z == 0

1 if z > 0
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 Examples
fx

α

yest

denotes +1

denotes -1

f(x,w) = sign(x·w)

sign(z) = -1 if z < 0

0 if z == 0

1 if z > 0



3

Copyright © 2001, Andrew W. Moore VC-dimension: Slide 5

 Examples
fx

α

yest

f(x,w,b) = sign(x·w+b)
denotes +1

denotes -1

sign(z) = -1 if z < 0

0 if z == 0

1 if z > 0
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How do we characterize “power”?
• Different machines have different amounts of

“power”.
• Tradeoff between:

• More power: Can model more complex
classifiers but might overfit.

• Less power: Not going to overfit, but restricted in
what it can model.

• How do we characterize the amount of power?

• You: “Uh… Dan… We just did that. Number of
hypotheses, remember?”

• Me: “Yes, but… Continuous parameters are weird.
How many line-classifiers are there? ∞.”
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Some definitions
• Given some machine f
• And under the assumption that all training points (xk,yk) were drawn i.i.d

from some distribution.
• And under the assumption that future test points will be drawn from the

same distribution
• Define

icationMisclassif

ofy Probabilit
),(

2

1
)(TESTERR)( =!"

#
$%

&
'== ((( xfyER

Official terminology Terminology we’ll use Note y,f ∈ {+1,-1}
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Some definitions
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Vapnik-Chervonenkis dimension

• Given some machine f, let h be its VC dimension.
• h is a measure of f’s power (h does not depend on the choice of training set)

• Vapnik showed that with probability 1-η
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This gives us a way to estimate the error on
future data based only on the training error
and the VC-dimension of f
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What VC-dimension is used for

• Given some machine f, let h be its VC dimension.
• h is a measure of f’s power.
• Vapnik showed that with probability 1-η
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This gives us a way to estimate the error on
future data based only on the training error
and the VC-dimension of f

But given machine f,

how do we define

and compute h?
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Shattering
• Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible labeling of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
      …there exists some value of α that gets zero training error.

There are 2r such labelings to
consider, each with a different
combination of +1’s and –1’s

for the y’s
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Shattering
• Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
…there exists some value of α that gets zero training error.

• Question: Can the following f shatter the following points?

f(x,w) = sign(x·w)

sign(z) = -1 if z < 0

0 if z == 0

1 if z > 0
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Shattering
• Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
…there exists some value of α that gets zero training error.

• Question: Can the following f shatter the following points?

f(x,w) = sign(x·w)

• Answer: No problem. There are four training sets to consider

w=(0,1) w=(0,-1)w=(2,-3)w=(-2,3)
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Shattering
• Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
…there exists some value of α that gets zero training error.

• Question: Can the following f shatter the following points?

f(x,b) = sign(x·x-b)
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Shattering
• Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
…there exists some value of α that gets zero training error.

• Question: Can the following f shatter the following points?

f(x,b) = sign(x·x-b)

• Answer: No way my friend.
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Definition of VC dimension
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: What’s VC dimension of f(x,b) = sign(x·x-b)
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VC dim of trivial circle
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: What’s VC dimension of f(x,b) = sign(x·x-b)
Answer = 1: we can’t even shatter two points! (but it’s
clear we can shatter 1)
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Reformulated circle
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: For 2-d inputs, what’s VC dimension of
f(x,q,b) = sign(qx·x-b)
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Reformulated circle
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: What’s VC dimension of f(x,q,b) = sign(qx·x-b)

• Answer = 2

q,b are < 0
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Reformulated circle
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: What’s VC dimension of f(x,q,b) = sign(qx·x-b)

• Answer = 2 (clearly can’t do 3)

q,b are -ve
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VC dim of separating line
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sign(w·x+b)?
Well, can f shatter these three points?
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VC dim of line machine
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sign(w·x+b)?
Well, can f shatter these three points?

Yes, of course.

All - or all + is trivial

One + can be picked off by a line

One - can be picked off too.
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VC dim of line machine
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sign(w·x+b)?
Well, can we find four points that f can shatter?
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VC dim of line machine
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sign(w·x+b)?
Well, can we find four points that f can shatter?

Can always draw six lines between pairs of four
points.
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VC dim of line machine
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sign(w·x+b)?
Well, can we find four points that f can shatter?

Can always draw six lines between pairs of four
points.

Two of those lines will cross.
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VC dim of line machine
Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f  shatters them.

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sign(w·x+b)?
Well, can we find four points that f can shatter?

Can always draw six lines between pairs of four
points.

Two of those lines will cross.

If we put points linked by the crossing lines in the
same class they can’t be linearly separated

So a line can shatter 3 points but not 4

So VC-dim of Line Machine is 3
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VC dim of linear classifiers in m-dimensions
If input space is m-dimensional and if f is sign(w·x+b), what is

the VC-dimension?
Proof that h >= m: Show that m points can be shattered
Can you guess how?
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VC dim of linear classifiers in m-dimensions
If input space is m-dimensional and if f is sign(w·x+b), what is

the VC-dimension?
Proof that h >= m: Show that m points can be shattered
Define m input points thus:

x1 = (1,0,0,…,0)
x2 = (0,1,0,…,0)
:
xm = (0,0,0,…,1)       So xk[j] = 1 if k=j  and 0 otherwise

Let y1, y2,… ym , be any one of the 2m combinations of class
labels.

Guess how we can define w1, w2,… wm  and b to ensure
sign(w·xk + b) = yk for all k ? Note:

! 

sign(w " x k + b) = sign b + w j. xk[ j]
j=1

m

#
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% 
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VC dim of linear classifiers in m-dimensions
If input space is m-dimensional and if f is sign(w·x+b), what is

the VC-dimension?
Proof that h >= m: Show that m points can be shattered
Define m input points thus:

x1 = (1,0,0,…,0)
x2 = (0,1,0,…,0)
:
xm = (0,0,0,…,1)       So xk[j] = 1 if k=j  and 0 otherwise

Let y1, y2,… ym , be any one of the 2m combinations of class
labels.

Guess how we can define w1, w2,… wm  and b to ensure
sign(w·xk + b) = yk for all k ? Note:

Answer: b=0 and wk = yk for all k.

! 

sign(w " x k + b) = sign b + w j " xk[ j]
j=1

m
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VC dim of linear classifiers in m-dimensions
If input space is m-dimensional and if f is sign(w·x+b), what is

the VC-dimension?
• Now we know that h >= m
• In fact, h=m+1
• Proof that h >= m+1 is easy
• Proof that h < m+2 is moderate
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What does VC-dim measure?
• The power of a machine learning algorithm
• If VC dimension is high

• We can learn very complex functions
• …but we will overfit if we don’t have enough

data.
• If VC dimension is low

• We can only learn simple functions
• …but the danger of overfitting is minimal.

• If we know how much data we have, how
“powerful” should our algorithm be?
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Structural Risk Minimization
• Let φ(f) = the set of functions representable by f.
• Suppose
• Then                                                  (Hey, can you formally prove this?)
• We’re trying to decide which machine to use.
• We train each machine and make a table…
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Using VC-dimensionality
That’s what VC-dimensionality is about
People have worked hard to find VC-dimension for..

• Decision Trees
• Perceptrons
• Neural Nets
• Decision Lists
• Support Vector Machines
• And many many more

All with the goals of
1. Understanding which learning machines are more or

less powerful under which circumstances
2. Using Structural Risk Minimization for to choose the

best learning machine
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Alternatives to VC-dim-based model selection
• What could we do instead of the scheme below?

f44
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f66

√f33
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Alternatives to VC-dim-based model selection
• What could we do instead of the scheme below?

1. Cross-validation

f44
f55
f66

√f33
f22
f11

Choice10-FOLD-CV-ERRTRAINERRfii
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Alternatives to VC-dim-based model selection

√f44
f55
f66

f33
f22
f11

ChoiceAIC#parametersLOGLIKE(TRAINERR)fii

)parameters #()params MLE|(AICSCORE != DataLL

• What could we do instead of the scheme below?
1. Cross-validation
2. AIC (Akaike Information Criterion)

As the amount of data
goes to infinity, AIC
promises* to select the
model that’ll have the
best likelihood for future
data
*Subject to about a million
caveats
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Alternatives to VC-dim-based model selection

f44
f55
f66

√f33
f22
f11

ChoiceBIC#parametersLOGLIKE(TRAINERR)fii

• What could we do instead of the scheme below?
1. Cross-validation
2. AIC (Akaike Information Criterion)
3. BIC (Bayesian Information Criterion)

As the amount of data
goes to infinity, BIC
promises* to select the
model that the data was
generated from. More
conservative than AIC.
           *Another million caveats
RDataLL log

2

params #
)params MLE|(BICSCORE !=
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Which model selection method is best?
1. (CV) Cross-validation
2. AIC (Akaike Information Criterion)
3. BIC (Bayesian Information Criterion)
4. (SRMVC) Structural Risk Minimize with VC-

dimension
• AIC, BIC and SRMVC have the advantage that you only need the

training error.
• CV error might have more variance
• SRMVC is wildly conservative
• Asymptotically AIC and Leave-one-out CV should be the same
• Asymptotically BIC and a carefully chosen k-fold should be the same
• BIC is what you want if you want the best structure instead of the best

predictor (e.g. for clustering or Bayes Net structure finding)
• Many alternatives to the above including proper Bayesian approaches.
• It’s an emotional issue.
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Extra Comments
• Beware: that second “VC-confidence” term is

usually very very conservative (at least hundreds
of times larger than the empirical overfitting effect).

• An excellent tutorial on VC-dimension and Support
Vector Machines (which we’ll be studying soon):

C.J.C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):955-974, 1998.
http://citeseer.nj.nec.com/burges98tutorial.html
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What you should know
• The definition of a learning machine: f(x,α)
• The definition of Shattering
• Be able to work through simple examples of

shattering
• The definition of VC-dimension
• Be able to work through simple examples of VC-

dimension
• Structural Risk Minimization for model selection
• Awareness of other model selection methods


