VC-dimension for characterizing classifiers

Andrew W. Moore
Associate Professor
School of Computer Science
Carnegie Mellon University
www.cs.cmu.edu/~awm
awm@cs.cmu.edu
412-268-7599

Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials. Comments and corrections gratefully received.

A learning machine

- A learning machine f takes an input x and transforms it, somehow using weights α, into a predicted output $y^{\text{est}} = +/- 1$

α is some vector of adjustable parameters

Copyright © 2001, Andrew W. Moore

Copyright © 2001, Andrew W. Moore
Examples

\[f(x, b) = \text{sign}(x \cdot x - b) \]

- denotes +1
- denotes -1

\[\text{sign}(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{if } z == 0 \\ -1 & \text{if } z < 0 \end{cases} \]

Examples

\[f(x, w) = \text{sign}(x \cdot w) \]

- denotes +1
- denotes -1

\[\text{sign}(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{if } z == 0 \\ -1 & \text{if } z < 0 \end{cases} \]
Examples

\[f(x, w, b) = \text{sign}(x \cdot w + b) \]

- \(\alpha \) denotes +1
- \(\alpha \) denotes -1

\[\text{sign}(z) = \begin{cases}
1 & \text{if } z > 0 \\
0 & \text{if } z \geq 0 \\
-1 & \text{if } z < 0
\end{cases} \]

How do we characterize “power”?

- Different machines have different amounts of “power”.
- Tradeoff between:
 - More power: Can model more complex classifiers but might overfit.
 - Less power: Not going to overfit, but restricted in what it can model.
- How do we characterize the amount of power?

- You: “Uh… Dan… We just did that. Number of hypotheses, remember?”
- Me: “Yes, but… Continuous parameters are weird. How many line-classifiers are there? \(\infty \).”
Some definitions

- Given some machine f
- And under the assumption that all training points (x_k, y_k) were drawn i.i.d from some distribution.
- And under the assumption that future test points will be drawn from the same distribution.
- Define

$$R(\alpha) = \text{TESTERR}(\alpha) = E\left[\frac{1}{2}|y - f(x, \alpha)|\right]$$

Probability of Misclassification

Note $y, f \in \{+1, -1\}$

$$R^{\text{emp}}(\alpha) = \text{TRAINERR}(\alpha) = \frac{1}{R} \sum_{k=1}^{R} \frac{1}{2} |y_k - f(x_k, \alpha)|$$

Fraction Training Set misclassified

$R = \#\text{training set data points}$
Vapnik-Chervonenkis dimension

\[
\text{TESTERR}(\alpha) = E\left[\frac{1}{2}|y - f(x, \alpha)|\right] \quad \text{TRAINERR}(\alpha) = \frac{1}{R} \sum_{k=1}^{R} \frac{1}{2}|y_k - f(x_k, \alpha)|
\]

- Given some machine \(f \), let \(h \) be its VC dimension.
- \(h \) is a measure of \(f \)'s power (\(h \) does not depend on the choice of training set)
- Vapnik showed that with probability 1-\(\eta \)

\[
\text{TESTERR}(\alpha) \leq \text{TRAINERR}(\alpha) + \sqrt{\frac{h(\log(2R/h) + 1) - \log(\eta/4)}{R}}
\]

This gives us a way to estimate the error on future data based only on the training error and the VC-dimension of \(f \).

What VC-dimension is used for

\[
\text{TESTERR}(\alpha) = E\left[\frac{1}{2}|y - f(x, \alpha)|\right] \quad \text{TRAINERR}(\alpha) = \frac{1}{R} \sum_{k=1}^{R} \frac{1}{2}|y_k - f(x_k, \alpha)|
\]

- Given some machine \(f \), let \(h \) be its VC dimension.
- \(h \) is a measure of \(f \)'s power
- Vapnik showed that with probability 1-\(\eta \)

\[
\text{TESTERR}(\alpha) \leq \text{TRAINERR}(\alpha) + \sqrt{\frac{h(\log(2R/h) + 1) - \log(\eta/4)}{R}}
\]

But given machine \(f \), how do we define and compute \(h \)?

This gives us a way to estimate the error on future data based only on the training error and the VC-dimension of \(f \).
Shattering

- Machine f can *shatter* a set of points x_1, x_2, \ldots, x_r if and only if...
 - For every possible labeling of the form $(x_1, y_1), (x_2, y_2), \ldots, (x_r, y_r)$
 - ...there exists some value of α that gets zero training error.

There are 2^r such labelings to consider, each with a different combination of +1’s and -1’s for the y’s.

Shattering

- Machine f can *shatter* a set of points x_1, x_2, \ldots, x_r if and only if...
 - For every possible training set of the form $(x_1, y_1), (x_2, y_2), \ldots, (x_r, y_r)$
 - ...there exists some value of α that gets zero training error.
- Question: Can the following f shatter the following points?

\[
f(x, w) = \text{sign}(x \cdot w)
\]

\[
\text{sign}(z) =
\begin{align*}
-1 & \text{ if } z < 0 \\
0 & \text{ if } z == 0 \\
1 & \text{ if } z > 0
\end{align*}
\]
Shattering

• Machine \(f \) can \textit{shatter} a set of points \(x_1, x_2, \ldots, x_r \) if and only if...

 For every possible training set of the form \((x_1, y_1), (x_2, y_2), \ldots, (x_r, y_r) \) ...there exists some value of \(\alpha \) that gets zero training error.

• Question: Can the following \(f \) shatter the following points?

\[
f(x, w) = \text{sign}(x \cdot w)
\]

• Answer: No problem. There are four training sets to consider

\[
\begin{align*}
&f(x_1, w) = \text{sign}(x_1 \cdot w) & w = (0, 1) \\
&f(x_2, w) = \text{sign}(x_2 \cdot w) & w = (-2, 3) \\
&f(x_3, w) = \text{sign}(x_3 \cdot w) & w = (2, -3) \\
&f(x_4, w) = \text{sign}(x_4 \cdot w) & w = (0, -1)
\end{align*}
\]
Shattering

• Machine f can shatter a set of points $x_1, x_2 .. x_r$ if and only if...
 For every possible training set of the form $(x_1,y_1), (x_2,y_2), ... (x_r,y_r)$
 ...there exists some value of α that gets zero training error.

• Question: Can the following f shatter the following points?

 \[f(x, b) = \text{sign}(x \cdot x - b) \]

 \[f(x, b) = \text{sign}(x \cdot x - b) \]

 • Answer: No way my friend.

Definition of VC dimension

Given machine f, the VC-dimension h is

The maximum number of points that can be arranged so that f shatters them.

Example: What’s VC dimension of $f(x, b) = \text{sign}(x \cdot x - b)$
VC dim of trivial circle

Given machine f, the VC-dimension h is

The maximum number of points that can be arranged so that f shatters them.

Example: What’s VC dimension of $f(x, b) = \text{sign}(x \cdot x - b)$

Answer = 1: we can’t even shatter two points! (but it’s clear we can shatter 1)

Reformulated circle

Given machine f, the VC-dimension h is

The maximum number of points that can be arranged so that f shatters them.

Example: For 2-d inputs, what’s VC dimension of $f(x, q, b) = \text{sign}(q \cdot x - b)$
Reformulated circle

Given machine f, the VC-dimension h is

The maximum number of points that can be arranged so that f shatters them.

Example: What's VC dimension of $f(x,q,b) = \text{sign}(qx \cdot x - b)$

- Answer = 2

q,b are < 0

Reformulated circle

Given machine f, the VC-dimension h is

The maximum number of points that can be arranged so that f shatters them.

Example: What's VC dimension of $f(x,q,b) = \text{sign}(qx \cdot x - b)$

- Answer = 2 (clearly can't do 3)
VC dim of separating line

Given machine f, the VC-dimension h is

The maximum number of points that can be arranged so that f shatters them.

Example: For 2-d inputs, what’s VC-dim of $f(x,w,b) = \text{sign}(w \cdot x + b)$?

Well, can f shatter these three points?

VC dim of line machine

Given machine f, the VC-dimension h is

The maximum number of points that can be arranged so that f shatters them.

Example: For 2-d inputs, what’s VC-dim of $f(x,w,b) = \text{sign}(w \cdot x + b)$?

Well, can f shatter these three points?

Yes, of course.

- All - or all + is trivial
- One + can be picked off by a line
- One - can be picked off too.
VC dim of line machine

Given machine f, the VC-dimension h is

The maximum number of points that can be arranged so that f shatters them.

Example: For 2-d inputs, what’s VC-dim of $f(x;w,b) = \text{sign}(w \cdot x + b)$?
Well, can we find four points that f can shatter?

Can always draw six lines between pairs of four points.
VC dim of line machine

Given machine f, the VC-dimension h is

The maximum number of points that can be arranged so that f shatters them.

Example: For 2-d inputs, what’s VC-dim of $f(x, w, b) = \text{sign}(w \cdot x + b)$?

Well, can we find four points that f can shatter?

Can always draw six lines between pairs of four points.
Two of those lines will cross.

If we put points linked by the crossing lines in the same class they can’t be linearly separated
So a line can shatter 3 points but not 4
So VC-dim of Line Machine is 3
VC dim of linear classifiers in m-dimensions
If input space is m-dimensional and if \(f = \text{sign}(w \cdot x + b) \), what is the VC-dimension?

Proof that \(h \geq m \): Show that \(m \) points can be shattered

Can you guess how?

Define \(m \) input points thus:

\[
\begin{align*}
x_1 &= (1,0,0,\ldots,0) \\
x_2 &= (0,1,0,\ldots,0) \\
&\vdots \\
x_m &= (0,0,\ldots,1)
\end{align*}
\]

So \(x_k[j] = 1 \) if \(k = j \) and 0 otherwise

Let \(y_1, y_2, \ldots, y_m \), be any one of the \(2^m \) combinations of class labels.

Guess how we can define \(w_1, w_2, \ldots, w_m \) and \(b \) to ensure

\[
\text{sign}(w \cdot x_k + b) = y_k \text{ for all } k.
\]

Note:

\[
\text{sign}(w \cdot x_k + b) = \text{sign}(b + \sum_{j=1}^{k} w_j \cdot x_k[j])
\]
VC dim of linear classifiers in m-dimensions
If input space is m-dimensional and if \(f \) is \(\text{sign}(w \cdot x + b) \), what is the VC-dimension?
Proof that \(h \geq m \): Show that \(m \) points can be shattered
Define \(m \) input points thus:

\[
x_1 = (1,0,0,\ldots,0) \\
x_2 = (0,1,0,\ldots,0) \\
\vdots \\
x_m = (0,0,\ldots,1)
\]
So \(x_{m}[j] = 1 \) if \(k=j \) and 0 otherwise

Let \(y_1, y_2, \ldots, y_m \), be any one of the \(2^m \) combinations of class labels.
Guess how we can define \(w_1, w_2, \ldots, w_m \) and \(b \) to ensure
\[
\text{sign}(w \cdot x_k + b) = y_k \text{ for all } k
\]
Note:
Answer: \(b=0 \) and \(w_k = y_k \) for all \(k \).

VC dim of linear classifiers in m-dimensions
If input space is m-dimensional and if \(f \) is \(\text{sign}(w \cdot x + b) \), what is the VC-dimension?
• Now we know that \(h \geq m \)
• In fact, \(h=m+1 \)
• Proof that \(h \geq m+1 \) is easy
• Proof that \(h < m+2 \) is moderate
What does VC-dim measure?

- The power of a machine learning algorithm
- If VC dimension is high
 - We can learn very complex functions
 - …but we will overfit if we don’t have enough data.
- If VC dimension is low
 - We can only learn simple functions
 - …but the danger of overfitting is minimal.

- If we know how much data we have, how “powerful” should our algorithm be?

Structural Risk Minimization

- Let \(\phi(f) \) = the set of functions representable by \(f \).
- Suppose \(\phi(f_1) \subseteq \phi(f_2) \subseteq \cdots \subseteq \phi(f_n) \)
- Then \(h(f_1) \leq h(f_2) \leq \cdots h(f_n) \) *(Hey, can you formally prove this?)*
- We’re trying to decide which machine to use.
- We train each machine and make a table…

\[
\text{TESTERR}(\alpha) \leq \text{TRAINERR}(\alpha) + \sqrt{\frac{h(\log(2R/h) + 1) - \log(\eta/4)}{R}}
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(f_i)</th>
<th>TRAINER R</th>
<th>Probable upper bound on TESTERR</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(f_1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(f_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(f_3)</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>(f_4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(f_5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(f_6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using VC-dimensionality

That's what VC-dimensionality is about
People have worked hard to find VC-dimension for..

- Decision Trees
- Perceptrons
- Neural Nets
- Decision Lists
- Support Vector Machines
- And many many more

All with the goals of

1. Understanding which learning machines are more or less powerful under which circumstances
2. Using Structural Risk Minimization for to choose the best learning machine

Alternatives to VC-dim-based model selection

- What could we do instead of the scheme below?

\[
\text{TESTERR}(\alpha) \leq \text{TRAINERR}(\alpha) + \frac{h(\log(2R/h) + 1) - \log(h/4)}{R}
\]
Alternatives to VC-dim-based model selection

• What could we do instead of the scheme below?
 1. Cross-validation

<table>
<thead>
<tr>
<th>i</th>
<th>f_i</th>
<th>TRAINERR</th>
<th>10-FOLD-CV-ERR</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>f_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>f_3</td>
<td></td>
<td></td>
<td>\checkmark</td>
</tr>
<tr>
<td>4</td>
<td>f_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>f_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>f_6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alternatives to VC-dim-based model selection

• What could we do instead of the scheme below?
 1. Cross-validation
 2. AIC (Akaike Information Criterion)

AICSCORE = $LL(Data \mid MLE \text{ params}) - (\# \text{ parameters})$

As the amount of data goes to infinity, AIC promises* to select the model that'll have the best likelihood for future data

*Subject to about a million caveats
Alternatives to VC-dim-based model selection

- What could we do instead of the scheme below?
 1. Cross-validation
 2. AIC (Akaike Information Criterion)
 3. BIC (Bayesian Information Criterion)

\[
\text{BICSCORE} = \log L(Data | MLE \text{ params}) - \frac{\# \text{ params}}{2} \log n
\]

<table>
<thead>
<tr>
<th>(j)</th>
<th>(f_j)</th>
<th>\text{LOGLIKE(TRAINERR)}</th>
<th>#parameters</th>
<th>BIC</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(f_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(f_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(f_3)</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>(f_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(f_5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(f_6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As the amount of data goes to infinity, BIC promises* to select the model that the data was generated from. More conservative than AIC.

*Another million caveats

Which model selection method is best?

1. (CV) Cross-validation
2. AIC (Akaike Information Criterion)
3. BIC (Bayesian Information Criterion)
4. (SRMVC) Structural Risk Minimize with VC-dimension

- AIC, BIC and SRMVC have the advantage that you only need the training error.
- CV error might have more variance
- SRMVC is wildly conservative
- Asymptotically AIC and Leave-one-out CV should be the same
- Asymptotically BIC and a carefully chosen k-fold should be the same
- BIC is what you want if you want the best structure instead of the best predictor (e.g. for clustering or Bayes Net structure finding)
- Many alternatives to the above including proper Bayesian approaches.
- It’s an emotional issue.
Extra Comments

• Beware: that second “VC-confidence” term is usually very very conservative (at least hundreds of times larger than the empirical overfitting effect).

• An excellent tutorial on VC-dimension and Support Vector Machines (which we’ll be studying soon):

 http://citeseer.nj.nec.com/burges98tutorial.html

What you should know

• The definition of a learning machine: \(f(x, \alpha) \)
• The definition of Shattering
• Be able to work through simple examples of shattering
• The definition of VC-dimension
• Be able to work through simple examples of VC-dimension
• Structural Risk Minimization for model selection
• Awareness of other model selection methods