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Evaluation Criterion: DCBC

Brain parcellation is important for: 
 - Understanding the brain in terms di�erent modules working together
 - De�ning regions-of-interest for subsequent analysis

Aims of the current project
1) Provide a rich task data set to identify functional boundaries 
2) Develop a new evaluation criterion to determine the quality of parcellations
3) Compare common brain parcellations for cortex 
4) Develop new parcellation based on task-based data
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Dataset: Multi-Domain Task Battery

- 47 unique task conditions 
- Acquired in the same run 
   with common baseline
- 24 Participants 
- 4 Sessions (6 hrs) of data 
   for each participant
- 2 Sessions for each task set 
- Whole brain coverage

Verb generation

Visual Search Di�

Rest

Mental Arithmetic

Motor Imagery

Theory of Mind

Example activity maps

- Anatomical parcellations no better than chance
- Resting-state parcellations outperform others
- Glasser (2016) performs worse than pure resting-state parcellations

1. Anatomical parcellations do not predict functional boundaries better than chance 

3. Combined parcellation (Glasser) inferior to pure resting-state parcellations

2. Resting-state parcellations perform rather well in predicting task-based functional boundaries

Yeo2011 7 Regions

Yeo2011 17 Regions

- The DCBC result shows individual parcellation outperforms group parcellation

Integrate individual  with group task-based data to obtain optimal parcellations (transfer learn-

Activity [au] relative to mean of all tasks

Next steps:
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No-Go
Go
Math
Digit Judgment
Unpleasant Scenes
Pleasant Scenes
Objects
Sad Faces
Happy Faces
Interval Timing
Motor Imagery
Stroop Incongruent
Stroop Congruent
Verbal 0-Back
Verbal 2-Back

Theory of Mind
Action Observation
Video Knots
Finger Simple
Finger Sequence
Object 0-Back
Object 2-Back
Visual Search – easy
Visual Search – med.
Visual Search – hard
Spatial Imagery
Verb Generation
Word Reading
Rest

Nature Movie
Landscape Movie
Animated Movie
Spatial Map – easy
Spatial Map – med.
Spatial Map – hard
Mental Rotation – easy
Mental Rotation – med.
Mental Rotation – hard
Response Alt.  – easy
Response Alt. – med.
Response Alt. – hard
Biological Motion
Scrambled Motion
Permuted Rules
True Prediction
Violated Prediction
Scrambled Prediction

Set A
29 Task Conditions

   Set B
32 Task Conditions

     Multi-Domain Task Battery (MDTB)

A good parcellation should result in
- High correlations between voxels within region 
- Low correlations between regions

Distance controlled boundary coe�cient (DCBC)
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Instruction

Task 1
Instruction Task 7

- Functional correlations fall o� systematically with spatial 
distance of voxels

- Without control, any contiguous parcellation will do ok  
- Distance controlled boundary coe�cient (DCBC) is the 

di�erence between correlations for matched spatial 
distances.

Comparing existing parcellations

Spectral Clustering with cosine similarity 
matrix outperforms:

References

Individual  vs  group average

Clustering Algorithm

Spectral Clustering - 17 Regions

Spectral Indv

Spectral Group

Spatial Distance (mm)

Parcellation derived from one task set
 - Group averaged data (55hrs)
 - Individual data (2.5hrs)

Evaluation is performed on the unique 
task of the other task set to avoid 
over-�tting

Activity pro�les of each voxel on 3 exemplary condi-
tions (of 47 conditions) reveals “star topology”

Anatomical Resting-state Multi-modal

- Semi-nonnegative matrix factorization
- Spectral Clustering with euclidean dis-

tance a�nity

D
CB

C

BrainsCAN
Transforming brain research.


