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ABSTRACT 
Amazon.com has introduced the Simple Storage Service (S3), a 
commodity-priced storage utility. S3 aims to provide storage as a 
low-cost, highly available service, with a simple ‘pay-as-you-go’ 
charging model. This article makes three contributions.  First, we 
evaluate S3's ability to provide storage support to large-scale 
science projects from a cost, availability, and performance 
perspective. Second, we identify a set of additional functionalities 
that storage services targeting data-intensive science applications 
should support.  Third, we propose unbundling the success 
metrics for storage utility performance as a solution, to reduce 
storage costs.  

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval]: Systems and 
Software – performance evaluation (efficiency and effectiveness).  

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
Utility computing, Performance evaluation, Amazon Simple 
Storage Service. 

1. INTRODUCTION 
Data Intensive scientific collaborations produce large amounts of 
data. Modern high-energy physics experiments, such as DZero 
[1], LHC [2], or SLAC [3], typically generate more than one 
TeraByte (TB) of data per day and may soon produce ten times as 
much [4]. Managing this amount of data requires significant 
human and material resources, resulting in corresponding high 
storage and management costs. 

Amazon Web Services, a wholly owned subsidiary of 
Amazon.com, now offers the Simple Storage Service (S3) [5], a 

novel storage utility with a simple ‘pay-as-you-go’ charging 
model. Amazon claims its service offers infinite storage capacity, 
infinite data durability, 99.99% availability, and good data access 
performance [5]. S3 uses open protocols and provides sample 
source code allowing developers to easily integrate it into their 
existing applications. 

This paper evaluates whether S3 is a feasible and cost effective 
alternative for offloading storage from in house maintained mass 
storage systems for today’s scientific collaborations like DZero, 
LHC, or SLAC. To this end, we characterize S3’s observed 
availability and data access performance using a collection of our 
own nodes and geographically-distributed PlanetLab nodes [6]. 
We use this characterization in conjunction with more than two 
years of real traces from a scientific community, the DZero 
Experiment, a high energy physics collaboration that spans 18 
countries and has more than 500 active users. We evaluate the 
feasibility, performance, and costs of a hypothetical S3—
supported DZero collaboration. 

The contributions of this paper are: 

• The first independent characterization of S3 in terms of data 
user-observed performance. 

• An evaluation of the costs of outsourcing the storage 
functions to S3 to support a data-intensive scientific 
application and an analysis of alternatives to reduce costs. 

• A discussion of S3 functionality and security features, and 
recommendations for improvement in the context of data-
intensive collaborative applications. 

The rest of this paper is organized as follows: Section 2 gives an 
overview of S3’s core concepts, architecture, and functionality. 
Section 3 presents data usage characteristics in science grids and 
looks at storage service requirements for such applications. 
Section 4 presents a measurement-based evaluation of S3 
performance. Section 5 estimates the S3 costs and discusses 
various models for using S3 to support DZero-like applications. 
Section 6 lists out future discussion topics and suggestions for 
improving S3. Section 7 summarizes our study and outlines future 
research directions. 

2. AMAZON S3 
S3 is supported by a large number of computer systems 
distributed across multiple data centers [7] in the United States 
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and Europe (S3-Europe) and is expected [5] to offer low data 
access latency, infinite data durability, and 99.99% availability 
(S3 pays users for average monthly uptime < 99.99%).  Since its 
launch, S3 has acquired a large user base ranging from home 
users and small businesses to large business enterprises [8]. 
Currently, S3 stores over 5 billion user objects and handles over 
900 million user requests a day [9]. 

In addition to S3, Amazon Web Services offers to sell virtual 
computer time at the cost of $0.10 per CPU hour on its Elastic 
Compute Cloud (EC2). The primary relevance of EC2 to this 
paper is that there are no bandwidth charges for data sent between 
EC2 and S3 (except between EC2 and S3-Europe, which is 
charged). As a result, scientific data stored on S3 can be cheaply 
processed using virtual EC2 hosts. 

2.1 Concepts and Architecture 
Data stored in S3 is organized over a two-level namespace. At the 
top level are buckets–similar to folders or containers–which have 
a unique global name and serve several purposes: they allow users 
to organize their data; they identify the user to be charged for 
storage and data transfers, and they serve as the unit of 
aggregation for audit reports. Each Amazon Web Services (AWS) 
account may have up to 100 S3 buckets. 

Each bucket can store an unlimited number of data objects. Each 
object has a name, an opaque blob of data (of up to 5GB), and 
metadata consisting of a small set of predefined entries and up to 
4KB of user-specified name/value pairs. 

Users can create, modify and read objects in buckets, subject to 
access control restrictions described in the next section. Renaming 
an object or moving it to a different bucket requires downloading 
the entire object under one name and writing it back to S3 with 
the new name. Search is limited to queries based on the object's 
name and to a single bucket. No metadata or content-based search 
capabilities are provided. 

Charging for the S3 service is based on storage volume (currently 
at a rate of $0.15/GB/month; $0.18/GB/moth if stored in Europe), 
data transfer activity (at $0.10/GB for uploads and between 
$0.13/GB and $0.18/GB for downloads), and a per-transaction 
charge ($0.01 per 1,000 PUT and LIST operations; $0.001 for 
each GET operation; DELETE is free). Regardless of the owner 
of an object or the identity of the user accessing the object, all 
charges are directed to the owner of the bucket that stores the 
object generating the charges. 

2.2 The Security Model 
When users register with Amazon’s Web Services, they are 
assigned an identity and a private key. Both keys are permanently 
stored at Amazon and can be downloaded from the Amazon’s 
Web Services website. Clients authenticate using a public/private 
key scheme and keyed-hash message authentication code (HMAC 
[10]). Because the private key is made by Amazon and 
downloaded from the website, the security provided by S3 is 
equivalent to security provided by a simple password; this 
password can be reset by anyone who can receive email at a 
registered email address. Each S3 account is linked to a credit 
card used for account billing. 

Access control is specified using access control lists (ACL) at the 
granularity of buckets or objects. Each ACL can specify the 

access attributes for up to 100 identities. A limited number of 
access control attributes are supported: read for buckets or 
objects, write for buckets only, and read and write ACL. Buckets 
can be configured to store access log records for audit purposes. 
These logs contain details such as the request type, the object 
accessed, and the time the request was processed. 

2.3 Data Access Protocols 
Currently, S3 supports three data access protocols: SOAP [11], 
REST [12] and BitTorrent [13]. Of these, BitTorrent deserves 
special attention. BitTorrent is a popular file-sharing protocol that 
enables efficient cooperative data distribution: data is initially 
distributed at one or more seed sites that are pointed to by a 
tracker. As clients begin to download a BitTorrent file, those 
clients register themselves with the tracker and make portions that 
they have downloaded available to other clients. S3 can provide 
both tracker and seed functionality, allowing for substantial 
bandwidth savings if multiple concurrent clients demand the same 
set of objects. 

3. CHARACTERISTICS OF SCIENCE 
GRIDS 
Data produced, stored and used in science grids have particular 
scale and usage characteristics. This section surveys the usage 
characteristics of data intensive scientific collaborations and their 
implied requirements on the storage infrastructure. To quantify 
this characterization we focus the discussion on DZero [1], a 
representative high-energy physics collaboration that processes 
data generated by the particle accelerator at Fermi National 
Accelerator Laboratory. 

3.1 Data Usage Characteristics 
Particular to scientific communities is the intense usage of data: 
jobs submitted by hundreds of users process massive collections 
(TeraBytes), organized in hundreds to thousands of GB-sized 
files. For example, the 113,062 jobs submitted by the 561 world-
wide located DZero scientists processed more than 5.2 PetaBytes 
of data between January 2003 and March 2005, a sustained access 
rate of over 78 MBps. The 5.2 PB of processed data occupies 375 
TB of storage organized in almost one million distinct files [14]. 
At the same time, access to data can be shared by tens or even 
hundreds of users: in DZero files are accessed by 45 different 
users. 

Another characteristic is co-usage: in science collaborations 
groups of files are often used together. Taking the high-energy 
physics project DZero as a case study again, each data analysis 
job accessed on average 102 files, with a maximum of more than 
20,000 files. The need for simultaneous access to multiple files 
stresses the problems brought up by the large file size, requesting 
transfers of data collections in the order of TeraBytes. For 
example, the largest 10 datasets in the DZero traces analyzed in 
[15] are between 11 and 62 TB. 

Finally, a significant part of the data, the so-called derived data, 
can be recomputed from raw data which is typically generated by 
scientific instrument (e.g., an astronomical observatory). This 
particularity allows for flexibility in data management solutions 
by trading data storage and transfer costs for computation costs: it 
sometimes may be more efficient to regenerate derived data than 
to store it or transfer it between remote locations. 
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3.2 Storage Service Requirements for Data 
Intensive Scientific Applications 
A storage infrastructure targeting data intensive scientific 
communities must provide: 

• Data durability: Depending on the specifics of each 
science project, losing experimental (raw) data may be costly 
(since repeating a physics experiment may require operating 
expensive instruments) or even unacceptable. This results in 
strong durability requirements for raw data. However, 
derived data can generally be reconstructed from raw data at 
the cost of additional computation. 

• Data availability: Data availability quantifies the 
successful access to previously stored data. Although most of 
the data is used for batch computations that do not require 
high availability by themselves, the fact that these operations 
often require co allocation of expensive resources (e.g., large 
compute resources, visualization equipment) increases the 
premium put on availability. Note that durability does not 
imply availability – data can be stored and eventually be 
accessible but not available at the time of the request. 
However, availability requires durability. Finally, service 
availability for uploads rather than retrieval is important 
since data can be temporarily stored at experimental facilities 
only for limited periods of time. 

• Access performance: While data archival is an important 
use case, we expect that the predominant use case in our 
context is live remote storage. Thus, fast data access is a key 
to support science applications. 

• Usability: Although ease of use can be quantified across 
multiple directions, the main characteristic of interest in the 
context of this paper is a set of protocols and APIs that allow 
composability with higher-level services for easy integration 
with science applications. 

• Support for security and privacy: Science applications are 
often collaborative with complex data sharing arrangements 
between multiple parties, users or institutions. The security 
infrastructure should enable defining and enforcing such 
sharing arrangements. 

• Low cost: Ultimately, cost is the main driver for adopting 
the storage utility paradigm. Utilities have the potential to 
benefit from economies of scale and we believe data storage 
is ripe for such development. However, lack of 
standardization and the particular requirements of data 
intensive science might delay or make inopportune the 
adoption of storage utilities. 

4. AMAZON S3 EVALUATION 
Our evaluation of S3 is driven by the requirements of data-
intensive scientific applications outlined in the previous section. 
This section describes our experimental setup and presents our 
quantitative evaluation of S3. 

4.1 Experiment Setup 
We conduct three different sets of experiments in order to 
evaluate the services provided by S3 using the Java, Python, and 

C++ implementations of the S3 REST API. Our choice for REST 
is motivated by its performance (REST is faster than SOAP 
because the data is sent raw without the need to encode using 
BASE64) and popularity (85% of current S3 usage is based on the 
REST protocol [16]). 

We used five nodes on the public Internet for our experiments: 
four PlanetLab nodes and one dedicated machine at the University 
of South Florida (USF) in Tampa, Florida. We chose the 
PlanetLab nodes at locations that geographically approximate 
DZero user location: hence, two nodes were located in Europe 
(one in Germany and one in France) and two were located in the 
US (in New York and California). 

We also conducted a series of measurements from several servers 
located inside Amazon's EC2 cloud. Because both S3 and EC2 are 
within Amazon's border routers, these experiments were able to 
measure the availability and performance of S3 free from the 
impact of Internet congestion and disruptions. 

4.2 Data Durability 
While characterizing S3 data durability is not the main goal of our 
study, we mention that, during the twelve-month time span of 
running S3 experiments, we have not observed even a single case 
of permanent data loss. An experimental study of different 
magnitude is required to characterize the data durability offered 
by the S3 service. Constrained by limited budget of 
experimenting with the service, we limited the size of the files 
used for our experiments to 1GB. We used more than 10,000 files 
for various experiments with file sizes ranging from one Byte to 
1GB. Due to the limited budget, we also had to watch the number 
of accesses to large file sizes. More than 137,000 requests to and 
from the S3 server were made during the period of study. 

4.3 Data Availability 
Between March 20th and May 1st 2007 we conducted a series of 
tests from Amazon's EC2 cluster to determine availability and 
bandwidth of the S3 offering. Before the start of the test we 
stocked an S3 bucket with a variety of test objects with sizes of 
1KByte, 1MByte, 16MBytes, and 100Mbytes (stored at S3 and 
not S3-Europe). The tests consisted of randomly writing objects 
of these sizes and reading the pre-stocked objects. The probes 
were separated in time by a random delay where the length of the 
delay followed a Poisson distribution, so that the statistical 
properties of the samples would have the same statistical 
properties of the system being measured (see [17] for a discussion 
of this technique). Our system retried each request a maximum of 
5 times, and then declared a failure. 

Observed availability from EC2 was quite high. In a total of 
107,556 tests (each consisting of a read and write) from EC2, we 
encountered 5 instances where a HTTP PUT request needed to be 
retried because S3 indicated that the PUT had failed (S3 returns 
the MD5 hash of objects that are successfully PUT; in these cases 
it did not return an MD5 hash), and 23 cases in which the HTTP 
PUT request timed out and no response code was returned. Reads 
were more reliable: there were only 4 cases in which an HTTP 
GET had to be retried once, and 1 case in which it had to be 
retried twice. 

Amazon recommends retrying failed access attempts with an 
exponential back-off. Of course, if the software never declares a 
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failure, then 100% availability will always be observed unless 
data is lost or the S3 service is discontinued. Restricting the 
analysis to the 19,630 operations of 1MByte or greater, we found 
zero probes where the throughput for write requests was less than 
10KB/s and just 6 (0.03%) where the throughput was less than 
100 KB/s. 

We also ran a series of S3 availability tests from a dedicated 
machine at USF. During this trial we repeatedly downloaded the 
same object every 15 minutes, for a period of 23 weeks and a total 
of 15,456 access requests. We observed an availability rate of 
95.89% after the original download attempt, 98.06% after the first 
retry, 99.01% after the second retry, 99.76% after the third retry, 
99.94% after the fourth retry and a full 100% availability after the 
fifth retry. Unlike our tests from EC2, these tests were influenced 
by both S3's internal systems and by Internet connectivity 
between Amazon and USF (Note, however, that for the numbers 
we report above we have eliminated all test cases where we have 
been able to detect a network fault by immediately after our 
unsuccessful attempt to access S3 data.) 

4.4 Data Access Performance 
Our objective in this section is to evaluate the access performance 
to S3-stored data from a client perspective. We compare the 
download time for objects sized 1B, 1KB, 1MB, 16MB and 
100MB, with a total of 13,178 downloads. 

4.4.1 Single-threaded performance 
Figure 1 presents the cumulative distribution of observed 
bandwidth for reads from EC2 to S3. Each trace corresponds to a 
different object size, with 1Byte objects on the left and 100MByte 
objects on the right. The time for downloading the 1 Byte object 
is dominated by the S3 transaction overhead; the plot indicates 
that S3 can sustain a maximum of 100 transactions per second, 
with an average of roughly 50 transactions per second. The other 
end of the scale indicates a maximum bandwidth of 
approximately 21 MB per second, with average peak bandwidth 
of approximately 17 MB/sec. 

 

 
Fig 1. Cumulative Fraction graphs showing time to access S3 

objects of 1B, 1KB, 1MB, 16MB and 100MB from EC2. 

 

Amazon states that S3 was designed to store large objects; our 
experience confirms this. The performance of reading even 1MB-
sized objects suffered due to transaction overhead. Only when we 
were reading objects of 16MB and larger did our tests enjoy 
consistently high performance. 

We repeated all experiments to estimate the time to upload data to 
S3. We find that the upload time is largely similar to the 
download time for each location, with the exception that 1MB-
sized objects are much faster to write than to read-back, probably 
a result of write-caching. 

4.4.2 Concurrent performance 
To simulate a number of experimenters attempting to access the 
same scientific data stored in S3, we performed a series of tests in 
which two virtual machines attempted to repeatedly access the 
same data stored in the same bucket. In our experiment one 
virtual machine ran on the EC2 cluster usma1 and the second 
running on cluster usma2, accessed the same bucket with repeated 
100MB GET and PUT operations. The virtual machines were 
coordinated, with each executing 1 thread for 10 minutes, then 2 
threads, then 3 threads, and so on up to 6 threads, at which point 
the experiment reset back to 1 thread. This experiment was 
repeated for 11 hours. 

 

 
Fig 2. Performance of 100MB GETs from S3 for one thread as 
the number of concurrent threads running on the same virtual 

machine instance increases. 

 
As shown in Figure 2 and 3, as the number of threads increased 
the per-thread bandwidth decreased but the aggregate bandwidth 
increased. With two machines running with six threads each, we 
enjoyed a bandwidth of roughly 30 megabytes per second, which 
is very close to the maximum bandwidth (250 Mbits/sec, or 31 
Mbytes/sec) that Amazon states is available to any single S3 
object or EC2 instance. 
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Fig 3. Performance of 100MB GETs from S3 for combined 

threads (down) as the number of concurrent threads running 
on the same virtual machine instance increases. 

 

4.4.3 Remote Access Performance 
We compare the download time from five access locations (one 
dedicated node located at USF and four other PlanetLab nodes). 
The data set includes 28 experiments (4 times a day over 7 days) 
to quantify variability due to competing Internet traffic. Our 
experiments confirm that the location of the client and the time of 
the day impact the observed access performance. Figure 4 
presents the average, minimum and maximum download 
bandwidth at each node as a function of the size of file 
downloaded.  Additional data is available in our technical report 
[18]. 

 

 
Fig 4. Average, minimum and maximum observed download 

bandwidth for different client locations and file sizes. 

4.5 Downloading Files via BitTorrent 
Typically, multiple replicas of the same data item are available 
simultaneously at various sites participating in a virtual 
organization. BitTorrent enables partial parallel downloads from 

each of these replicas thus allowing for faster downloads. For the 
science community, the availability of data access through 
BitTorrent protocols is relevant as it enables simple integration of 
cooperative caching mechanisms to improve access performance. 
Additionally, the cooperative cache created by BitTorrent is a 
direct solution to reduce S3's transfer charges while preserving the 
data durability and availability offered by S3. 

The main goal of our experiment is, first, to compare the 
BitTorrent enabled data access performance with that offered by 
regular S3 transfers  and, second, to understand the load balance 
between S3 and other data sources when multiple sources (‘seeds’ 
in BitTorrent parlance) are available. 

To quantify the effectiveness of using BitTorrent, we download 
data from a single location (Tampa, FL) while varying the number 
of seeds hosted on PlanetLab nodes and always maintaining a 
seed at S3. We measure the download time and the amount of 
data downloaded from S3. 

 

 
Fig 5. Time taken and percentage of data downloaded from S3 

as a function of the number of seeds present in the system. 

 

Figure 5 demonstrates that S3 contributes a large percentage of 
the data volume. To check for any unfair play by S3, experiments 
were repeated on dedicated machines at USF instead of 
PlanetLab. It appears that S3 is fair and its larger contribution in 
BitTorrent was due to unbalanced load and network conditions. 

To continue with our black-box exploration, we tried to use the 
S3-provided BitTorrent tracker without incurring the expense of 
using S3 as a BitTorrent seed, thus benefiting from the high 
availability of the Amazon provided tracking service at a very low 
cost. We discovered we could do this by revoking the read 
permits from the S3-stored object (i.e., mark it as private). This 
approach blocked nodes from downloading data from S3 and 
forced the client instead to use other seeds. Our experiments show 
(Figure 6) that S3 permits this use; we observed only small 
performance degradation due to a lower parallelism when 
downloading data from fewer sources [24]. 

To summarize, our S3 experimental results show good 
availability, variable download time depending on the node 
location and file size, and a fair use of the BitTorrent protocol. 
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Fig 6. Marking the S3 seed as private (and in effect freeriding 
the S3 tracker) leads to minimal change in the download time 

(8% increase) while the Amazon related costs are almost 
entirely eliminated. The figure presents the volume of data 
downloaded from S3 (left bar) and five other seeds (right 

bars) and the total client download time in two scenarios: with 
S3 data public and private. Right-hand axis not scaled to zero. 

 

5. AMAZON S3 FOR SCIENCE GRIDS 
This section addresses three issues related to the feasibility of 
using S3 to support data intensive scientific applications: it 
estimates the cost of using S3, it evaluates whether S3 
performance is adequate to support scientific collaborations, and 
it analyses S3 security functionality from the perspective of 
supporting the complex data-sharing required. While answering 
these questions in general is a generous subject, our approach is 
based on a case study: we use DZero-generated load and study 
different deployment scenarios that combine S3 and data caching. 

5.1 Costs 
While the cost of storage systems and their management has 
continued to decrease in recent years, it still represents a major 
expense, often the single most expensive item when running an IT 
infrastructure. In this section, we consider the purely hypothetical 
case of DZero’s using S3 for its data needs. Two types of costs 
are thus to be considered: data access costs and data storage costs. 
DZero storage characterization as reported from 27 months of 
traces is summarized in Table 1. 

 
Table 1. DZero trace characteristics 

Trace recording interval 01/2003 – 03/2005 

Number of jobs 113,062 

Hours of computation 973,892 

Total storage volume 375 TB 

Total data processed 5.2 PB 

Average data access rate 273 GB/hour 
 
Assuming all DZero data is stored by and accessed from S3, the 
annual costs are $691,200 per year for storage ($829,440 for S3-

Europe) and $335,012 per year for transfer (initial upload and 
download), a total of $1.02 million per year. Each of these costs 
can be reduced in various ways. In the rest of this section we first 
outline two approaches to reduce storage costs by exploiting 
access patterns and the fact that part of the data is derived, and 
then we outline approaches to reduce data transfer costs based on 
collaborative caching enabled using BitTorrent. 

Storage costs can be reduced by archiving “cold” data on low-cost 
storage and maintaining only the data most likely to be used on 
high-availability, low-latency storage. An analysis on the DZero 
traces shows that a significant part of data is used for only limited 
time periods. This data can be archived on slower durable storage 
without an impact on performance. If we consider the lifetime of 
a file as the interval between the first and the last access to it as 
recorded in the 27 months of DZero traces, then about 30% of the 
files do not live longer than 24 hours, 40% not more than one 
week, 50% have a lifetime shorter than one month, while about 
35% were still in use more than five months after the first 
recorded access. Consequently, out of the 4.54TB of data 
accessed each day, 30% will not be needed after 24 hours. S3 
provides a log facility that can be used to determine which objects 
are suitable for archiving. 

A second way to reduce storage costs is to only store raw data and 
derive the rest of the data from raw data. Our workloads do not 
contain sufficient information to allow us estimate the potential 
benefits of this approach. 

Transfer costs can be reduced by using local caches. Data in 
DZero is highly cacheable: experimental evaluations [14] with 
various cache replacement algorithms performed on the DZero 
traces show that TB-sized local caches may reduce data 
transferred from the permanent storage to under 2.5% of the cache 
size. For example, for a cache of 50TB, the amount of data that 
needs to be transferred on average per job is 0.013% of the cache 
size, or 6.6GB [14]. Given that over the 27 months, 113,062 jobs 
were submitted within the subset of traces, the cost of cache 
misses leading to accesses to S3 is $.87 per job or $98,748 for all 
the jobs in our traces. This leads to reducing data transfer costs to 
$43,888 per year, 20 times lower than in the original scenario 
without caching1. BitTorrent could be used to further reduce 
transfer costs by building a large collaborative cache across 
DZero sites. 

S3 data transfer costs can also be reduced by using computation 
close to where data is stored. Since data transfers between S3 (not 
S3-Europe) and Amazon’s Elastic Computing Service (EC2) are 
not charged, EC2 hosted computations can be used to replace the 
data transfer costs for derived data with the cost to recompute this 
data on EC2 ($0.1/hour of computation). Over the period of our 
workloads, this result in an average of $43,284 per year 
(relatively close to the access costs above). 

Our experience using EC2 was excellent. Although Amazon 
makes no guarantee regarding the durability or availability of any 
EC2 instance, we ran instances for a total of 6 CPU months and 
had only one case in which an instance was rebooted without our 

                                                                 
1 This discussion ignores the additional costs of purchasing and 

maintaining the caches which is low relative to the other costs 
presented here. 
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initiation. After reboot, the contents of our instances' hard drives 
were preserved, even though Amazon states that all information 
on an instance should be considered volatile and persistent data 
should be stored on S3. 

Although the ideas above are acknowledged methods in data-
intensive computing, they require support from the application 
side or from S3, as discussed further in Section 6. 

5.2 Performance 
A second question we are set to address is whether the potential 
savings obtained by outsourcing data storage come at the price of 
performance degradation. 

5.2.1 Impact of variability of data access 
performance 
We have noted that data access performance varies with the 
location of the downloading node. We suspect that S3 operates 
multiple datacenters (in both US and Europe locations) and makes 
data placement decisions depending on the location of the user 
creating the bucket that stores the data. This assumption, if true, 
explains the observed variability in download times that goes 
beyond the location of the downloading node and the time of day. 
It may also result in the need to change the data placement 
decisions to reduce the performance differential that different 
participants to scientific collaborations spread across the world 
might experience. 

5.2.2 Impact of access performance to individual 
data items 
First, we note that, for batch processing with little or no 
interactive user input, the relatively slow access S3 provides to 
individual data items does not have a significant impact on user 
observed performance as long as jobs are specified in advance and 
S3 is able to provide data at an overall rate faster than the rate at 
which it can be processed. To this end, an efficient system using 
S3-hosted data would only need limited local storage and a well-
designed job management system that makes use of batch job 
information to proactively retrieve S3-stored data while jobs are 
still in compute queues. Where pre-fetching is not an option (e.g., 
for interactive computations) the access performance to individual 
data items may prove to be the driving factor for observed 
performance. 

5.3 Subsequent Pages 
The assessment of the security functionality should start with an 
evaluation of the risks involved. S3 presents the traditional risks 
that outsourced data storage systems present:  permanent data 
loss, temporary data unavailability, loss of data confidentiality, 
and malicious data modifications are of concern. Some risks are 
mitigated by the security scheme S3 uses (e.g., transport privacy 
can be provided by using TLS) while others can be mitigated by 
user-level solutions, such as cryptographically signing data stored 
in S3. On the other hand, S3 provides no check-pointing or 
backup facility for recovering data that is accidentally erased or 
modified. 

S3 charging scheme introduces an additional risk: direct monetary 
loss. This risk is magnified by the fact that S3 does not provide a 
solution to limit the amount users stand to lose in case of an 

attack. For example, an attacker could repeatedly transfer data to 
or from an S3 bucket to cause direct monetary loss to the owner 
of that bucket. 

S3's security model has the important merit of being simple. 
Simplicity however, comes at the price of limited support for 
large, collaborative applications that aim to control access to data 
resources offered by multiple participants.  We summarize these 
limitations below: 

• Crude access control scheme: S3 access control solution 
based on access control lists does not scale well to large 
systems with thousands of users and million of entities. 
Additionally, S3 supports only a limited number of access 
rights (e.g., there is no write control at the individual object 
level but only at the bucket level) and the access control lists 
are limited in size (100 principals). 

• Lack of support for fine-grained delegation: Even 
moderately complex data-intensive scientific collaborations 
today make use of delegation for efficient data management 
and processing. For example, users delegate access to 
specific datasets to programs that operate on their behalf on 
remote computers. Higher risks involved by science data on 
S3 (as a result of direct monetary loss risks) make proper 
access control delegation models even more necessary. S3, 
however, lacks any support for delegation which is a major 
obstacle to adopt S3 for large-scale science collaborations. 

• Implicit trust; no support for non-reputability: The 
implicit assumption is that users trust S3 entirely, and thus 
S3 does not provide unforgeable ‘receipts’ for transactions 
(signed certificates) that a user can present to a third party to 
demonstrate that a specific data item had been stored. 
Additionally, the invocations recorded by S3 and presented 
in the audit trail are not digitally signed, either by the users 
or by Amazon.  This makes the audit trail repudiable. Worse, 
given that Amazon security solution has the essential 
properties of shared secret scheme, it is impossible to 
provide non reputability. 

• Unlimited risk: S3 does not offer any support for user-
specified usage limits, (e.g., quotas per bucket owner or per 
delegated principal). As a result, the potential damage that an 
attacker (or, worse, simply a buggy program) can produce is 
limited only by the ability of the attacker to access S3 data 
and by the limit on the user’s credit card. 

Some of these risks can be mitigated by using S3 as the backend 
of a storage system, and having users connect to a front-end 
running on Amazon's EC2 service. The front-end would be 
responsible for individual account management, fine-grained trust 
decisions, and billing. 

6. RECOMMENDATIONS FOR NEXT 
GENERATION STORAGE UTILITY 
SERVICES 
S3 has attracted a large user base due to its simple charging 
scheme, unlimited storage capacity, open protocols, and simple 
API for easy integration with applications. Yet, we believe that 
the current S3 design needs to be improved before it can provide 
durable storage. Nevertheless, it is important for the scientific 
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community to discuss the applicability of utility storage systems 
such as S3 for three reasons. 

First, storage utilities have proven popular for consumers and 
small businesses and continue to evolve rapidly. Reinvigorating 
the discussion on optimal storage utility design will affect the 
design of future storage utility services that target the needs of the 
science community. 

Second, computing centers have changed focus from supporting 
isolated projects to supporting entire user communities grouped 
around common scientific goals (e.g., TeraGrid [19]). Providing 
storage as a utility is more apt to support user collaboration and 
integration with applications and fits the mandate of existing 
computing centers and large scale cyber infrastructure 
deployments. 

Finally, data-intensive scientific applications continue to spur-in 
new production-mode collaborations. As such, economies of scale 
become a significant incentive for both storage consumers and 
providers to adopt the utility model. 

The rest of this section discusses possible architectural and 
functionality changes to improve the suitability of S3 to support 
science applications. 

6.1 Unbundling Performance Characteristics 
Utility services should aim to provide comparable performance 
with in-house services and exploit economies of scale to reduce 
costs. Yet, we estimate that, today, while S3 may offer similar 
performance to an in-house service, it does not offer a compelling 
cost advantage. 

We believe that the solution to reduce storage costs is to 
understand and respond to application requirements. More 
specifically, S3 bundles at a single price point three storage 
system characteristics: infinite data durability, high availability, 
and fast data access. Many applications, however, do not need all 
these three characteristics bundled together – thus ‘unbundling’ 
by  offering multiple classes of service targeted for specific 
application needs may lead to reduced costs and thus lower utility 
prices. The rest of this section presents additional arguments that 
unbundling can reduce costs for specific classes of applications 
and argues that it is technically feasible. 

Unbundling could reduce costs. As Table 2 shows, each of the 
three salient properties that characterize a storage system (data 
durability, availability, and access-performance) requires different 
resources and engineering techniques. For example, Amazon 
could offer a class of service that offers durability but data may be 
unavailable for up to 7 days every month; such a service might be 
cheaper for Amazon than its current offering. 

Unbundling can be exploited by applications. A significant set of 
services requires storage that offers high-performance only on one 
or two of the above performance directions (Table 3). For 
example, an archival storage service that puts a premium on 
durability can survive limited periods where data is not available. 
In DZero, the large share of data that is infrequently used could 
be well stored on tape to reduce costs. Similarly, distributed data 
caching demands fast access but not high durability. 

 

Table 2. The resources needed to provide high performance 
data access, high data availability and long data durability are 

different 

Characteristics Resources and techniques to provide 
them 

High-
performance 
data access 

Geographical data (or storage) replication 
to improve access locality, high-speed 

storage, fat networks 

Durability 
Data replication - possible at various 
levels: hardware (RAID), multiple 

locations, multiple media; erasure codes 

Availability 

Server/service replication, hot-swap 
technologies, multi hosting, techniques to 
increase  availability for auxiliary services 

(e.g., authentication, access control) 
 
Table 3. Application classes and their associated requirements 

Application 
class Durability Availability High access 

speed 
Cache No Depends Yes 

Long-term 
archival Yes No No 

Online 
production No Yes Yes 

Batch 
production No No Yes 

 
In scientific research the cost associated with losing data depends 
on whether the data is raw data or derived data obtained from raw 
data through processing. Derived data can always be reproduced 
as necessary based on archived raw data. Users could be allowed 
to choose the best cost tradeoff between storing derived data on 
highly durable storage and storing it on cheaper, less reliable 
storage that might result in data loss and the need to recomputed 
lost data as necessary. 

We note that a possible argument against multiple classes of 
service is that they may introduce nontrivial management costs at 
the utility service provider (in terms of resource management, 
billing clients, and educating application developers to harness 
them).  In fact, a similar argument has been made regarding the 
introduction of quality of service in the Internet [20] [21].  While 
we agree that these costs can be nontrivial, we believe that future 
research in this area can reduce these costs through automation 
and make differentiated storage services through unbundling and 
appealing alternative. 

6.2 Increasing Flexibility 
Our S3 experience allows us to recommend primitives that will 
extend the flexibility offered by novel storage infrastructures that 
cater to the demands of data-intensive science applications. These 
recommendations could also prove valuable to large Grid 
deployments like TeraGrid or WestGrid [22] which are moving 
towards offering infrastructure services for science, similar in 
goals to those offered by Amazon’s S3 and EC2 to commercial 
applications. 
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6.2.1 Enhanced security functionality to support 
complex collaborations 
Our analysis reveals that the simple security model offered by S3 
does not support complex collaborations and exposes users to 
major risk. We believe that two key components are required: the 
ability to limit potential damage in the case of an attack and the 
support for fine-grained delegation. 

6.2.2 Additional functionality for better usability 
A number of additional service functionalities would significantly 
simplify integration with applications. Three main such 
functionalities we recommend are (1) metadata based searches; 
(2) ability to rename objects; and (3) ability to mutate access 
control lists [23]. 

7. SUMMARY 
S3 was not designed for the science community. Indeed, the 
science community has specific requirements and extreme 
challenges regarding data usage. As such, this paper should be 
read not as a critique of S3, but as a set of recommendations to 
any storage provider that would like to serve this community. 

The contributions of this paper are in evaluating S3 as a black box 
and in formulating recommendations for integrating S3 with 
science applications and for designing future storage utilities 
targeting this class of applications. Costs can be reduced by 
exploiting data usage and application characteristics to improve 
performance, and, more importantly, by introducing user-
managed collaborative caching in the system. In effect, our 
recommendations are driven by S3 billing structure: we 
recommend using S3 for the costly tasks of providing high data 
availability and durability (where costs are driven up by 
specialized hardware and nontrivial engineering effort) and 
employ caching at the edges of the system to reduce the access 
volume when the usage patterns allow. These recommendations 
may not only reduce the S3 bill but will also significantly 
improve performance due to a cacheable workload specific to 
these collaborations. 

We identify application requirements that are not currently 
satisfied by S3. While S3 successfully supports relatively simple 
scenarios (e.g., personal data backup) and can be easily integrated 
in the storage tier of a multi-tiered Web application, its existing 
security functionality is strikingly inadequate to support complex, 
collaborative environments like the ones in today’s scientific 
collaborations.  More precisely, S3 lacks in terms of flexible 
access control and support for delegation and auditing, and it 
makes implicit trust assumptions.  This lack of functionality is 
troubling when direct financial loss is at stake. 

Finally, we observe that S3 bundles at a single pricing point three 
storage system performance characteristics: infinite data 
durability, high availability, and fast data access. We believe that 
unbundling these characteristic by offering multiple classes of 
service targeted for specific application needs will reduce the 
storage utility price. 
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