The Casefor Cyber Foraging

Rajesh Balan'* Jason Flinn¥, M. Satyanarayanan'*, Shafeeq Sinnamohideen'™ and and Hen-1 Yang'
TCarnegie Mellon University and *Intel Research Pittsburgh
rajesh@cs.cmu.edu

Abstract

In this paper, we propose cyber foraging: a mechanism
to augment the computational and storage capabilities of
mobile devices. Cyber foraging uses opportunistically dis-
covered servers in the environment to improve the perfor-
mance of interactive applications and distributed file sys-
tems on mobile clients. We show how the performance of
distributed file systems can be improved by staging data at
these servers even though the servers are not trusted. We
also show how the performance of interactive applications
can be improved via remote execution. Finally, we present
VERSUDS: a virtual interface to heteregeneous service dis-
covery protocols that can be used to discover these servers.

1. Introduction

The designers of mobile computing devices face a never-
ending dilemma. On the one hand, size and weight are dom-
inant factors. The need to make mobile devices smaller,
lighter and long-running compromises their computing ca-
pabilities. On the other hand, user appetites are whetted by
their desktop experiences. Meeting their ever-growing ex-
pectations requires computing and data storage ability be-
yond that of a tiny mobile computer with a small battery.
How do we reconcile these contradictory demands?

We conjecture that cyber foraging, construed as “liv-
ing off the land”, may be an effective way to solve this
dilemma [8]. The idea is to dynamically augment the com-
puting resources of a wireless mobile computer by exploit-
ing nearby compute and data staging servers. Such in-
frastructure may be discovered and used opportunistically
at different locations in the course of a user’s movements.
When no such infrastructure is available, the mobile com-
puter offers a degraded but acceptable user experience. Us-
ing higher-level knowledge, it may also identify nearby lo-
cations that might offer a better user experience.

*School of Computer Science, Carnegie Mellon University, 5000
Forbes Avenue, Pittsburgh, PA 15213, USA

Who will provide the infrastructure for cyber foraging?
Desktop computers at discount stores already sell for a few
hundred dollars, with prices continuing to drop. In the
foreseeable future, we envision public spaces such as air-
port lounges and coffee shops being equipped with compute
and data staging servers for the benefit of customers, much
as comfortable chairs and table lamps are provided today.
These will be connected to the wired Internet through high-
bandwidth networks.

When hardware in the wired infrastructure plays this
role, we call it a surrogate of the mobile computer it is tem-
porarily assisting. Two important attributes of surrogates
are that they are untrusted and unmanaged. These are key
assumptions because they reduce the total cost of ownership
of surrogates and hence encourage their widespread deploy-
ment. It is the responsibility of mobile clients to establish
adequate trust in the surrogates they choose to use.

In this paper we explore the concept of cyber foraging
and discuss the research challenges posed. We also describe
the status of our research in this area. Specifically, we illus-
trate how the use of surrogates can help in two distinct sit-
uations. First, we show how data staging can reduce cache
miss service times in mobile file access. Second, we show
how remote execution enables compute-intensive applica-
tions like language translation and augmented reality to run
on mobile hardware.

2. Usage Scenario and Research Challenges

We envision a typical scenario as follows. When a mo-
bile computer enters a neighborhood, it first detects the
presence of potential surrogates and negotiates their use.
Communication with a surrogate is via short-range wire-
less technology. When an intensive computation accessing
a large volume of data has to be performed, the mobile com-
puter ships the computation to the surrogate; the latter may
cache data from the Internet on its local disk in perform-
ing the computation. Alternatively, the surrogate may have
staged data ahead of time in anticipation of the user’s ar-
rival in the neighborhood. In that case, the surrogate may
perform computations on behalf of the mobile computer or

merely service its cache misses with low latency by avoid-
ing Internet delays. When the mabile computer leaves the
neighborhood, its surrogate bindings are broken, and any
data staged on its behalf are discarded.

This usage scenario exposes many important research
questions. Here are some examples:

e What is the system support needed to make surrogate
use seamless and minimally intrusive for a user? What
parts of this support are best provided by the mobile
client, and what by the infrastructure?

e How much advance notice does a surrogate typically
need to act as an effective staging server? Is this on the
order of seconds, minutes or tens of minutes? What
implications does this requirement have for the other
components of a pervasive computing system?

e How does one establish an appropriate level of trust in
asurrogate? What are useful levels of trust in practice?
How applicable and useful is the concept of caching
trust [7]? Can one amortize the cost of establishing
trust across many surrogates in a neighborhood?

e How is load balancing on surrogates done? Is surro-
gate allocation to be done based on an admission con-
trol or best-effort approach? How relevant is previ-
ous work on load balancing on networks of worksta-
tions [2]?

e What are the implications for scalability? How dense
does the fixed infrastructure have to be to avoid over-
loads during periods of peak demand?

e How does one discover the presence of surrogates? Of
the many proposed service discovery mechanisms such
as JINI [10], UPnP [6], and BlueTooth proximity de-
tection [1], which is best suited for this purpose? Can
one build a discovery mechanism that subsumes all of
them for greatest flexibility?

e How do we deal with unmanaged surrogates? If they
are used for remote execution, how can a mobile client
ensure that the remote executing environment is cor-
rectly configured? What role, if any, can virtual ma-
chines such as VMware [4] play in establishing suit-
able execution environments? Can virtual machines
also help with establishing trust?

This is obviously a very broad and ambitious research
agenda, and our current work only addresses a subset of
these questions. We summarize the status of our research in
the rest of the paper. Section 3 describes how we are using
data staging on surrogates to reduce the latency of servic-
ing cache misses. Section 4 discusses our use of surrogates
for remote execution. Note that trust is an issue that we

Server k "~ Wimpy Client
High Latency
8 -
Modifications & a F.Ile
Unstaged reads S Client
O
8 (%))
o8
' Surrogate
Encrypted files Staging
Server

Figure 1. Data Staging Architecture

have addressed in the context of data staging, but not yet
in the context of remote execution. Section 5 describes our
platform-independent approach to surrogate discovery.

3. Using Surrogates for Data Staging
3.1. Background

Can an untrusted computer facilitate secure mobile data
access? Surprisingly, the answer is “yes.” Data stag-
ing enables untrusted, unmanaged computers to be used
to improve the performance of cache miss handling in an
Internet-wide distributed file system. The untrusted com-
puter, called a surrogate, plays the role of a second-level
file cache for a mobile client. By proactively staging data
on the surrogate, cache misses from a nearby mobile client
can be serviced at low latency (typically one wireless hop)
instead of full Internet latency.

A coast-to-coast pi ng in the United States typically
takes about 60 ms., well above the speed-of-light bound
of about 32 ms. The growing use of firewalls adds per-
packet processing, and hence delay, to each packet. The
impact of latency on distributed file systems is easily seen
in interactive file-intensive applications such as mail read-
ers, directory browsers, and digital photo albums. In such
applications, a flurry of serial cache misses on relatively
small files can result in annoying delays and sluggish behav-
ior. Merely improving bandwidth does not help such inter-
active applications because they are latency-limited rather
than bandwidth-limited.

Although systems such as Coda [9] have shown that
hoarding can reduce cache misses and hence mask network

latency, there are limits to its effectiveness. First, size and
weight restrictions may result in the flash memory or disk
on a mobile computer being too small to hoard all relevant
data. Second, some files that were not hoarded may unex-
pectedly become relevant to the user. Third, some files may
be updated by other users and thus result in cache misses
when accessed after a period of disconnection. These cir-
cumstances all lead to unavoidable cache misses and hence
poor interactive performance.

Data staging helps solve this problem by speculatively
prefetching distant data to nearby surrogates. In effect,
clients borrow the storage capacity of surrogates and use
it as a secondary file system cache. Cache misses from the
mobile client are serviced by a staging server running on
the nearby surrogate rather than by the distant file server.

3.2. Current Status

We have built an initial implementation of data staging
for Coda. Figure 1 shows how our architecture is split
across four computers: the file server (unmodified Coda
server), the surrogate, a home desktop machine, and the
mobile client. The client and surrogate are located close
together and are typically connected by a low-latency wire-
less connection such as 802.11, Bluetooth, or infrared. The
file server is distant, so network communication to and from
the file server incurs high latency. A proxy located on the
client intercepts and redirects file system traffic. If a request
is for data contained on a nearby staging server, the proxy
directs the request to the surrogate. Otherwise, it forwards
the request to the distant file server.

Surrogates are untrusted—we therefore use end-to-end
encryption to ensure privacy and secure hashes to guard
against malicious modification of file data. The client proxy
initiates the staging of data by contacting a data pump run-
ning on the end user’s desktop machine. The client proxy
specifies a list of files to stage—the data pump reads these
files from the distributed file system, encrypts them with
per-file keys, generates a secure hash of the data, and sends
the encrypted files to the staging server. The data pump
also sends the keys and hashes for the staged files to the
client proxy using a secure channel. When an application
reads data that is staged on the surrogate, the client proxy
reads the file from the surrogate, decrypts it, verifies that
it has not been modified using the secure hash, and returns
the data to the application. Since storage requirements are
small (at most 72 bytes per file), it is feasible to hoard keys
and checksums even when the data itself is much too large
to hoard.

Another important focus of our work is making surro-
gates as easy to manage as possible. We envision surrogates
that are as simple as table lamps; they should require no sys-
tem administrator or complex maintenance procedures.

We have identified two design principles that improve
ease of management. The first principle is to build as much
as possible upon widespread commodity software, so as to
leverage the improved reliability that comes through the ex-
tensive testing provided by a large user community. To this
end, we use the Apache Web server as the base system for
our surrogates. We have identified the minimum set of ad-
ditional functionality that must be located on the surrogate,
and provide this functionality with CGI scripts. All other
functionality is pushed to the client proxy and data pump
in order to keep the custom code base on the surrogate as
simple and reliable as possible.

The second design principle is to maintain no long-term
state on the surrogate. For example, we do not buffer client
modifications to file data on surrogates. Since all state is
soft, no critical information is lost if the surrogate is dis-
rupted by power failure or a system crash. The only conse-
quence of surrogate failure is that clients receive the same
sub-par performance for file accesses that they would have
received if the surrogate had not been present in the first
place.

3.3. Work in Progress

We have built a prototype of the data staging architecture
that uses Coda as the base distributed file system. We are
currently developing clients for both x86 (laptop) platforms,
as well as StongArm (handheld) platforms. We have vali-
dated the prototype by replaying recorded traces of file sys-
tem accesses—our results show that data staging can reduce
the cumulative delay due to distributed file system accesses
by up to 64%.

Our future work will explore the following questions:

e What is the best prediction algorithm for deciding
which data to stage on a surrogate?

e What is the right cache management scheme?

e How will data staging benefit other distributed file sys-
tems such as NFS?

4. Using Surrogates for Remote Execution
4.1. Background

Remote execution for pervasive computing must recon-
cile multiple, possibly contradictory, goals. For example,
executing a code component on a remote server might re-
duce client energy usage at the cost of increasing execution
time. Also, due to the dynamic nature of the environment,
it is not feasible to use static policies to determine how and
where to remotely execute applications as the current re-
source situation may obsolete any statically chosen policy.

Service| |Service
A B

Appl App2

RPC |71 Spectra\Client /
Spectra Odyssey Viceroy
Server
Coda
System calls \ /Spectra/Odyssey calls
Linux Spectra/
Kernel Odyssey
LKM

Figure 2. Spectra Architecture

Hence, the decision of how and where to remotely execute
a code component must be determined dynamically based
on the current resource availability in the environment.

Our work addresses the following aspects of remote ex-
ecution:

e Monitoring resource availability

e Making dynamic remote execution decisions based on
resource availability

e Simplifying the task of modifying applications to use
remote execution

e Automatically using extra available resources in an
over-provisioned environment to improve application
performance

We currently trust surrogates used for remote execution.
Developing the mechanisms for establishing this trust re-
mains future work.

4.2. Current Status

We have implemented a system called Spectra [3] that
monitors the current resource availability and dynamically
determines the best remote execution plan for a given ap-
plication. To make this decision, Spectra measures the sup-
ply and demand for many different resources such as band-
width, file cache state, CPU, and battery life. Figure 2 illus-
trates Spectra’s architecture.

Spectra targets applications that perform relatively
coarse-grained operations of a second or more in dura-
tion. These applications include speech recognition, aug-
mented reality, and language translation. Spectra tries to

meet the application goals in the light of available resources.
However, application goals can frequently be contradictory.
For example, an application might require a high network
throughput (which requires excessive use of a power hun-
gry wireless network card) while also requiring low battery
usage. Thus, Spectra has to reconcile these contradictory
goals when making a remote execution decision.

To make good decisions, Spectra must predict the re-
source usage of alternative execution plans for an applica-
tion. It does this through an approach called self-tuning,
where it records the history of resource usage by an applica-
tion and uses machine learning techniques to predict future
usage.

4.2.1. Chroma

The major drawback of Spectra is that application de-
velopers must explicitly modify their applications to use
Spectra. This hurts software maintenance and portability.
We are currently building a new remote execution system,
called Chroma, that subsumes the functionality of Spectra.
Chroma addresses the shortcomings of Spectra by separat-
ing the adaptive policies of an application from the actual
decision making and enforcing of the policy at runtime.

Chroma is based on three observations derived from ex-
perience with Spectra:

e Most applications for mobile devices can be created
by modifying existing applications rather than writing
new applications from scratch.

e The modifications for adaptation typically affect only
a small fraction of total application code size. Much of
the complexity of implementing adaptation lies in un-
derstanding the base code well enough to be confident
of the changes to make.

e The changes for adaptation can be factored out cleanly
and expressed in a platform-neutral manner.

Based on these observations, Chroma focuses on reduc-
ing the effort required to make applications use remote exe-
cution. It consists of three parts:

e A lightweight semi-automatic process for customizing
the adaptation API used by the application. Such cus-
tomization is targeted to the specific adaptation needs
of each application.

e A tool for automatic generation of code stubs that map
the customized API to the specific adaptation features
of the underlying mobile computing platform.

e Run-time support for monitoring resource levels and
triggering adaptation is factored out of applications
into a set of operating system extensions for mobility.

(Provided by application)

Tactics Hint
description | | module

Application-specific

knowledge
Tactics selection Selected tactic Operation
engine executor
Resource Predicted
availability resource usage
Resource monitor Resource predictor)
Log file
|

(tactic, resource consumption)

Figure 3. Chroma Run-time Components

4.2.2. Over-Provisioned Environments

Most remote execution systems are designed to operate
in environments where resources are either scarce or just ad-
equate. However, with the emergence of smart rooms and
the dramatic decrease in the price of computing, environ-
ments where resources are over-provisioned are becoming
a reality. These extra resources can be used to counter the
variability inherent in mobile environments. When using
just one remote server to perform an operation, any tran-
sient load spikes or network glitches affecting that server
can have a dramatic effect on application performance. By
using more than one server to perform the same operation,
the effect of these load spikes and network glitches is min-
imized as the fastest result is returned to the application.
Thus even if one server is experiencing transient load, other
servers may be unloaded and will return a result faster than
the loaded server (assuming all the servers are the same).
One of the design goals of Chroma is to automatically use
these extra resources to improve the performance of appli-
cations.

Chroma uses the notion of tactics to achieve this goal.
Tactics are a concise declarative description of an appli-
cations remote execution capabilities and express the use-
ful remote partitions of an application. Using this infor-
mation, Chroma can automatically execute different parts
of the application opportunistically on extra resources to
achieve better application performance.

Figure 3 shows the run-time components used to handle
tactics. Chroma determines the predicted resource usage of
the tactics of the application by querying the resource pre-
diction module. At the same time, Chroma determines the
available resources via the resource measurement module.

Client Application

i v

Client Application API
VERSUDS

Service Selection

Underlying Discovery
Mechanism Invocation

mey

aoussald —p

uoleuLIoj|

4——Invocation

SWwISIUBYOS\
SET)
Minbg

UMO}|00D)
Lo INIP

Figure 4. VERSUDS Architecture

Chroma then decides how to remotely execute this applica-
tion by finding the best match between available resources
and the predicted resource usage of each tactic for an oper-
ation. Chroma also determines if extra resources are avail-
able in the environment. If they are, Chroma will oppor-
tunistically use these resources to remotely execute the ap-
plication. We have shown that using tactics to opportunis-
tically use extra resources in the environment can result in
tremendous improvement in application response time.

4.3. Work in Progress

We are currently working on mechanisms to make
Chroma even easier to use for application developers. Our
use of a customized API coupled with automatic code gen-
eration is a major step in that direction. However, more
work needs to be done in this area.

We also continuing our research in the use of tactics as
a method of exploiting over-provisioned environments. We
are investigating resource allocation polices that will ensure
a fair use of these extra resources among multiple clients.

Finally, we are looking at existing work on security and
integrity of remote servers. We hope to be able to use some
of this work in our system.

5. Discovering Surrogates

The previous two sections have detailed our work in us-
ing surrogates for staging data and for remote execution.
However, before either of these two operations can be per-
formed, it is necessary to first discover the presence of sur-
rogates in the current environment.

We have implemented a versatile surrogate discovery
service (VERSUDS) that uses existing heterogeneous ser-
vice discovery mechanisms to detect the presence of neigh-
bour surrogates. VERSUDS provides a virtual layer that
sits on top of these existing service discovery mechanisms.
It provides a standardized API to applications and thus iso-
lates applications from having to deal with different service
discovery mechanisms as the environment changes. VER-
SUDS automatically translates application requests to the
format of the underlying service discovery mechanism and
vice versa. The VERSUDS architecture is shown in Fig-
ure 4.

VERSUDS currently provides support for JINI and
Cooltown [5]. It also supports application-provided filters
that specify which resources the application is interested
in discovering. These filters can be used to specify dy-
namic system resource attributes such as CPU utilization
and available memory as well as specific static attributes
such as administrative domain and service price. We are
currently extending its capability to support more complex
application-specific filters and to support other service dis-
covery mechanisms.

6. Conclusion

We have described our initial research in the area of cy-
ber foraging. We have shown that data staging is able to
provide improved latency for file access without requiring
the staging servers to be trusted. We have described our
remote execution system, Chroma, and highlighted the key
aspects that make Chroma easy to use for application devel-
opers. We have also described how Chroma is able to use
extra resources in the environment to improvement appli-
cation performance. Finally, we have described our initial
work in developing an environment independent surrogate
discovery service.

7. Acknowledgments

This research was supported by the National Science Founda-
tion (NSF) under contracts CCR-9901696 and ANI-0081396, the
Defense Advanced Projects Research Agency (DARPA) and the
U.S. Navy (USN) under contract N660019928918. Rajesh Balan
was additionally supported by a USENIX student research grant.
We would also like to thank Hewlett-Packard for donating note-
books to be used as servers and Compaq for donating handhelds
to be used as clients. Finally, we would like to thank Dushyanth
Narayanan, SoYoung Park, Tadashi Okoshi, Bradley Schmerl and
Joao Sousa for their many insightful comments and suggestions
related to this work. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
NSF, DARPA, USN, HP, USENIX, Compag, nor the U.S. govern-
ment.

References

[1] 3COM, Agere, Ericsson, IBM, Intel, Microsoft, Motorola,
Nokia and Toshiba. Bluetooth Wireless Information Ste,

1999. http://www.bluetooth.com.
[2] A.C.Dusseau, R. H. Arpaci, and D. E. Culler. Effective Dis-

tributed Scheduling of Parallel Workloads. In Proceedings
of 1996 ACM Sgmetrics International Conference on Mea-
surement and Modeling of Computer Systems, Philadelphia,

Pennsylvania, USA, May 1996.
[3] J. Flinn, S. Park, and M. Satyanarayanan. Balancing Per-

formance, Energy, and Quality in Pervasive Computing. In
Proceedings of the 22nd International Conference on. Dis-

tributed Computing Systems, Vienna, Austria, July 2002.
[4] L. Grinzo. Getting Virtual with VMware 2.0. Linux Maga-

zine, June 2000.
[5] T. Kindberg, J. Barton, J. Morgan, G. Becker, |. Bedner,

D. Caswell, P. Debaty, G. Gopal, M. Frid, V. Krishnan,
H. Morris, C. Pering, J. Schettino, B. Serra, and M. Spasoje-
vic. People, places, things: Web presence for the real world.
In Proceedings of the 3rd IEEE Workshop on Mobile Com-
puting Systems and Applications (WMSCA 2000), Monterey,
California, USA, Dec. 2000.

[6] Microsoft Corporation. Universal Plug and Play Forum,
June 1999. http://www.upnp.org.

[7] M. Satyanarayanan. Caching Trust Rather Than Content.
Operating System Review, 34(4), October 2000.

[8] Satyanarayanan, M. Pervasive computing: Vision and chal-
lenges. |EEE Personal Communications, 8(4), August 2001.

[9] Satyanarayanan, M. The Evolution of Coda. ACM Transac-
tions on Computer Systems, 20(2), May 2002.

[10] J. Waldo. The Jini architecture for network-centric comput-

ing. Communications of the ACM, 42(7):76-82, 1999.

