
he widespread deployment of
sensors, actuators, and mobile devices is transforming the physi-
cal world into a computing platform. We will soon find comput-
ing power, memory, and communication capabilities on
temperature sensors and motion detectors, on door locks, light
bulbs, and alarms, on every cellular phone, in every vehicle, and
soon in every person’s wallet or on their key ring. Emerging
networking techniques ensure that devices are interconnected
and accessible from local- or wide-area networks [1].

Using this new computing platform, users interact with
portions of the physical world. In a large class of applications,
users monitor phenomena in a given environment. Examples
of monitoring applications include gathering information in a
disaster area, supervising items in a factory warehouse, or
controlling vehicle traffic in a large city [2, 3].

Let us take the concrete example of an existing flood
detection system. For about twenty years now, the ALERT
system has been deployed in several US states
(http://www.alertsystems.org). A typical ALERT installation
consists of several types of sensors in the field: rainfall sen-
sors, water level sensors, weather sensors, etc. A predefined
set of data is regularly extracted from each sensor, transferred
to a central site and stored in a database system. Users query
the database system through a graphical user interface. Here
are some example queries that users can express: “For each
rainfall sensor, display the average level of rainfall for 1999,”
Display the current level of rainfall for all sensors in Tomp-
kins County, or “Every hour, display the location of the sen-
sors where the level of rainfall is greater than 250 mm.”

Query Processing over Device Networks
The example of the flood detection system emphasizes that
monitoring is best described in a declarative manner: users
submit queries concerning a device network regardless of its
physical structure or its organization. In monitoring applica-
tions, users typically ask three kinds of queries:
• Historical queries: These are typically aggregate queries

over historical data obtained from the device network, e.g.,
“For each rainfall sensor, display the average level of rain-
fall for 1999.”

• Snapshot queries: These queries concern the device net-
work at a given point in time, e.g., “Retrieve the current
rainfall level for all sensors in Tompkins County.”

• Long-running queries: These queries concern the device
network over a time interval, e.g., “For the next five hours,
retrieve every 30 seconds the rainfall level for all sensors in
Tompkins County.”
The existing ALERT system implements a warehousing

approach, where data are extracted from the devices in a pre-
defined way and stored in a centralized database system that
is responsible for query processing. This warehousing
approach is well suited for aggregate queries asked over his-
torical data; however, it has two major limitations:
• The warehousing approach dissociates access to devices

from the query workload. For instance, in an emergency sit-
uation, a fire department might require that specific data
be accessed in a group of sites in order to decide on actions
to take: “Every minute, display the rainfall level obtained
from all sensors in Tompkins County.” This long-running
query cannot be answered in a traditional system if data is
extracted from the sensors too infrequently. One solution
would be to continuously extract all data from each device
and transfer them to the database server. This solution is
not feasible in practice because it might not be possible to
extract all data from a sensor (e.g., a camera takes mea-
surements in only one direction and it is not possible to
measure data in all directions simultaneously) or because it
is too expensive to transmit a continuous flow of raw data
through the device network.

• The warehousing approach uses valuable resources to
transfer large amounts of raw data from devices to the
database server. Excessive resources are consumed at each
device and on the network when transmitting large volumes
of data. First, it is in general not necessary to extract data
from the whole device network to answer a given query. In
our example, the group of sensors sending data back to the
database server should be reduced to sensors located in
Tompkins County. Second, modern devices include process-
ing capabilities that could be used to process data locally
and thus reduce data transfer and energy consumption.
Our alternative to a warehousing approach is a distributed

approach where the query workload determines the data that
are extracted from remote sites, and where possibly portions

IEEE Personal Communications • October 200010 1070-9916/00/$10.00 © 2000 IEEE

T

Querying the Physical World
Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri,

Cornell University

Abstract
In the next decade, millions of sensors and small-scale mobile devices will integrate processors, memory, and communication capabilities.

Networks of devices will be widely deployed for monitoring applications. In these new applications, users need to query very large collections of
devices in an ad hoc manner. Most existing systems rely on a centralized system for collecting device data. These systems lack flexibility because

data is extracted in a predefined way. Also, they do not scale to a large number of devices because large volumes of raw data are transferred.
In our new concept of a device database system, distributed query execution techniques are applied to leverage the computing capabilities of

devices, and to reduce communication. In this article, we define an abstraction that allows us to represent a device network as a database
and we describe how distributed query processing techniques are applied in this new context.

Praveen Seshradi is currently on leave at Microsoft.

IEEE Personal Communications • October 2000 11

of queries are executed on devices. This approach allows the
database system to control the resources that are used; it is
primarily targeted at snapshot and long-running queries. In
addition, aggregate queries over historical data could be eval-
uated against materialized data stored on some devices
instead of a centralized server. We call a database system that
enables distributed query processing over a device network a
device database system . We study such systems in the
COUGAR Device Database Project at Cornell University.

The DataSpace project at Rutgers (http://www.cs.rutgers.
edu/dataman/) recognized the advantages of the distributed
approach over the warehousing approach for querying device
networks [4]. In a DataSpace, devices encapsulating data can
be queried, monitored, and controlled. Network primitives are
developed to guarantee that only relevant devices are contact-
ed when a query is evaluated.

Device Database Systems
In this article, we explain our new concept of a device
database system, an area that we consider a very fruitful direc-
tion for new research. We will describe database abstractions
for representing devices and we illustrate how queries are for-
mulated in SQL with minimal additions to the language.
Later, we use an example to show how distributed query pro-
cessing techniques are applied in the new context of a device
database system. We use an analytical model to illustrate the
benefits of our approach.

We would like to point out that the methods described in
this article represent the first generation of our system [5]. The
core components of the first-generation COUGAR system are
implemented and fully functional. We demonstrated the system
at the Intel Computing Continuum Conference [6]. Note that
in this article we do not address several of the specific research
challenges that lie ahead, such as new query processing strate-
gies to leverage computing capabilities on the devices, query
processing strategies that adapt to changing conditions in the
network, decentralized meta-data management, and administra-
tion. We overview these issues as we conclude.

Device Database Systems
We call a physical object with computing and communication
capabilities a device. Some devices embed computing and com-
munication capabilities (e.g., WINS sensor nodes [7], Smart
Dust Motes [8], cell phones, or Smartcards) while others are
composed of a physical object connected to an external comput-
er (e.g., a door actuator connected to a desktop computer).
Devices are interconnected and accessible from a local- or wide-
area network. Some devices are stationary, others are mobile;
some devices are always connected to the network, others inter-
mittently. In this article we concentrate on stationary devices.

Database Abstractions for Representing Devices
In the warehousing approach, discussed earlier, devices are
not part of the database system; they are accessed using a pre-
defined extraction procedure that populates relations in the
centralized database system. Our goal in a device database
system is to access devices directly when processing queries.
We thus need to represent devices in the database system.

Let us first refine our definition of devices. We consider
that each device is a mini-server that supports a set of func-
tions and can process portions of the queries directly at the

device.1 A function either (a) acquires, stores and processes
data or (b) triggers an action in the physical world. Both
kinds of functions return results (at least a status report or
an error message). We distinguish between synchronous and
asynchronous functions. Synchronous functions return results
immediately, on-demand; they are used to monitor continu-
ous phenomena, e.g., a function that returns the rainfall
level. Asynchronous functions return results after an arbi-
trary period of time; they are used to monitor threshold
events, e.g., a function that detects an abnormal rainfall
level. Functions provided by an intermittently connected
device can only return results when the device is connected;
they are asynchronous functions. Stationary devices, e.g.,
rainfall sensors, may support both synchronous and asyn-
chronous functions.

We need to represent the set of functions provided by
devices at the database level. We distinguish two levels of rep-
resentation:
• User representation — how are devices modeled in the

database schema?
• Internal representation — how are devices represented

internally?

User Representation — Today’s object-relational and object-
oriented databases support Abstract Data Type (ADT)
objects that are single-attribute values encapsulating a collec-
tion of related data [9]. Note that there are natural parallels
between devices and ADTs. Both ADTs and devices provide
controlled access to encapsulated data through a well defined
interface. We build upon this observation by modeling each
type of device in the network as an ADT. The public interface
of the ADT corresponds to the specific functions supported
by the device. An actual ADT object in the database corre-
sponds to a physical device in the real world.

Let us model the database schema corresponding to the
flood detection example earlier. We consider a simplified
schema that consists of the following relation:

RFSensors(Sensor, X, Y)

A record in the RFSensors relation has three attributes.
The first attribute, called Sensor, is an ADT that represents
the physical rainfall sensors. The actual sensor data is located
on the rainfall sensor; the ADT Sensor provides functions for
accessing the data. For example, Sensor.getRainfallLevel()
returns the current level of rainfall measured in mm. The
other two attributes denote the location of the sensor accord-
ing to some coordinate system.

Internal Representation — Before discussing the internal
representation of ADT functions, let us recall some back-
ground knowledge about query processing and the internals of
a database system. Query processing classically proceeds as
follows. The database system accepts a query, produces a
query execution plan, executes this plan against the database,
and produces the answer. The execution plan is the internal
blueprint for evaluating a query. It combines algebraic opera-
tors (e.g., selection, projection, and join operators in the rela-
tional algebra), which serve as the basic building blocks for
manipulating data (i.e., relations that are sets of records).

In object-relational database systems, ADT functions are
either represented as expressions [9] or as joins involving vir-
tual relations [10].2 When an expression containing an ADT
function is evaluated, a (local) function is called to obtain its

1 Embedding a database server on a device is realistic. All major database
vendors propose database servers for palm-sized PCs, which represent the
processing capabilities that we can expect from all devices in a near future.

2 Table functions defined in IBM DB2 associate a user-defined function
with a virtual relation.

IEEE Personal Communications • October 200012

return value. It is assumed that this return value is readily
available on-demand. This assumption does not hold in a
device database system for two reasons. First, functions corre-
sponding to device ADT functions may incur high latency due
to their distant location from the database server. Second,
some device functions are asynchronous and thus a call to
such a function may incur an arbitrary delay.

A virtual relation is a tabular representation of a function.
A record in a virtual relation (called a virtual record) contains
the input arguments and the output argument of the function
with which it is associated.3 Such relations are called virtual
because they are not actually defined in the database schema,
as opposed to base relations. In COUGAR, we use virtual
relations for the internal representation of device functions.

If a device function M takes m arguments, then the schema
of its associated virtual relation Attrs(VR) has m+3 attributes,
where the first attribute corresponds to the unique identifier of
a device (i.e., the identifier of an actual device ADT object),
attributes 2 to m+1 correspond to the input arguments of M,
attribute m+2 corresponds to the output value of M, and
attribute m+3 is a time stamp corresponding to the point in
time at which the output value is obtained.4 We assume global
time. Each time stamp thus determines a position in an ordered
domain shared across all devices. As a consequence, each virtu-
al relation could be considered as a sequence [11].

In our example, the database schema consists of one base
relation (RFSensors) and of a virtual relation VRFSensorsGe-
tRainfallLevel for the function getRainfallLevel(). Since this
function takes no input arguments, the virtual relation has
three attributes: Sensor, Level, and TimeStamp, i.e., the identi-
fier of the Sensor device, the Level of rainfall measured, and
the associated TimeStamp.

Note that a virtual relation has specific properties:
• A virtual relation is append-only; new records are inserted

in a virtual relation when the associated device function
returns a result. Records in a virtual relation are never
updated or deleted.

• A virtual relation is naturally partitioned across all devices
represented by the same device ADT. Each device function
contributes to a portion of the virtual relation to which it is
associated.
The latter observation has an interesting consequence: a

collection of devices is internally represented as a distributed
database. Virtual relations are partitioned across a set of
devices. Base relations are either stored on a central database
server or partitioned across devices.5

The Cougar System consists of a front-end server connected
to a set of devices. The front-end includes a full-fledged
database server. Devices include a lightweight query execution
engine that is responsible for accessing virtual relations and for
processing query fragments that involve these virtual relations.

Queries over a Device Database
Recall that we consider historical queries, snapshot queries,
and long-running queries over a device network. Historical

and snapshot queries are naturally formulated as declarative
queries in SQL. Long-running queries are also formulated in
SQL with little modifications to the language. We add clauses
for specifying the duration of a long-running query; the choice
of syntax is arbitrary.

Because of space limitation, we do not describe the com-
plete query semantics here; the interested reader is referred to
Bonnet et al. [12] for details. Note that long-running queries
involving time windows (in particular aggregates over time win-
dows) are best expressed using temporal extensions to the rela-
tional model [13, 14] or using a sequence model [11].

We now provide an example of a long-running query based
on the flood detection application presented earlier.

Query Q: “Retrieve every 30 seconds the rainfall level if it is
greater than 50 mm.”

SELECT R.Sensor.getRainfallLevel()
FROM RFSensors R
WHERE R.Sensor.getRainfallLevel() > 50
AND $every(30);

The function $every(30) specifies that a new record is
inserted every 30 seconds into the append-only virtual relation
corresponding to the function RFSensor.getRainfallLevel().
This record is propagated within the query execution plan
chosen for the long-running query, and possibly a new answer
is generated. Note that a long-running query is not evaluated
by repeatedly executing the declarative query over the new
records inserted in the virtual relations. (This would be a form
of polling and it would introduce an arbitrary delay into the
processing of device data.)

Query Processing in a
Device Database System

In this section, we concentrate on a simple example to give an
overview of query processing and to show the benefits of the
distributed query processing approach versus a warehousing
approach. Because of space limitation, we do not cover here
all the issues related to query processing in a device database
system. We first define new performance metrics and then
discuss our example.

Performance Metrics
When processing a query, a database system first constructs an
execution plan. The query optimizer is responsible for generat-
ing the execution plan that minimizes a given cost function.

The traditional performance metrics in a database system
are throughput and response time. Throughput is the average
number of queries processed per unit of time; it depends on
the total work performed in the system to evaluate a query.
Response time is the time needed by the system to produce
all answer records to a query.

For long-running queries in a device database system, the
traditional performance metric of query response time
becomes obsolete: the query will always run for a given time
interval, with varying resource usage.

We define two new metrics that correspond to the perfor-
mance goals of a device database system:
• Resource usage: The total amount of energy consumed by

the devices when executing a query. Resource usage is
expressed in Joules.

• Reaction time: The interval between the time a function,
called on a device, returns a value, and the time the corre-
sponding answer is produced on the front-end. Reaction
time is expressed in seconds.
The problem now is twofold:

• To define cost models for resource usage and reaction time.

3 We assume without loss of generality that a device function has exactly
one return value; an extension to the general case is straightforward.

4 Note that for mobile devices, we might integrate the location of the device
as an additional attribute in the virtual relation.

5 It is particularly interesting to partition a base relation that references a
device ADT in a system where devices frequently join or leave the network;
partitioning the base relation thus avoids maintaining centralized informa-
tion concerning the devices currently in the system.

IEEE Personal Communications • October 2000 13

• To obtain and maintain correct settings for the system
parameters from the cost model, i.e., settings that actually
reflect the status of a given device database system over time.

Example
Our goal in this section is not to cover all issues related to
query processing in a device database system, but rather to
illustrate how existing distributed database techniques can be
applied in this new context [15, 16]. We discuss the character-
istics of device database systems with respect to existing dis-
tributed database systems and use an analytical model to
illustrate the benefits of our approach.

Query Q1: “Retrieve every 30 seconds the rainfall level if it is
greater than 50 mm.”

SELECT VR.value
FROM VRFSensorsGetRainfallLevel VR, RFSensors R
WHERE VR.Sensor = R.Sensor AND VR.value > 50

AND $every(30);
We use as our example the query Q1, which is the result of

rewriting query Q using the virtual relation VRFSensorsGe-
tRainfallLevel. This query could be used to monitor the evolu-
tion of rainfall in flooded areas. We consider a system with
200 devices; the cardinality of relation R is therefore 200
records. Query Q1 is run as a long-running query with a dura-
tion of four hours. The rainfall level is measured every 30 sec-
onds; as a result, up to 480 virtual records are inserted into
each partition of the virtual relation.

Distributed Query Execution Plans — SQL queries usually
have a large space of possible execution plans. These are
obtained by considering various shapes for the tree of relational
operators, by permuting the position of relational operators in
this tree, by choosing various implementations for a relational
operator (in particular, each database system implements a set
of join methods, e.g., nested loop, sort-merge, hash-join, semi-
join), and by permuting the relative position of sub-trees [17]. In
a distributed context, the execution plan reflects the distributed
nature of the database: it is composed of query fragments, i.e.,
sub-trees of relational operators, assigned to execution sites.

Three more dimensions are thus added to the space
of possible execution plans: What are the candidate
execution sites? How are query fragments associat-
ed to execution sites? What is the strategy for trans-
ferring data from one site to another?

Figure 1 presents four execution plans for Q1;
each plan is a tree of relational operators that
manipulate base and virtual relations. Plan T rep-
resents the execution plan that would be generat-
ed for Query Q1 in a traditional system such as
ALERT. Data extracted from the devices are
materialized in the relation VR that is located on
the front-end (represented as a darker shaded
rectangle). The execution plan is a simple tree
composed of one join operator between relation R
and relation VR (using joining condition R.Sensor
= VR.Sensor AND VR.value > 50). This join is
executed on the front end.

The other execution plans illustrate the use of
distributed database techniques in a device
database system. Plan A is also a simple tree
where R is joined on the front end with relation
VR partitioned across a set of devices (represent-
ed as lighter shaded rectangles). This execution
plan is evaluated as follows. The front end asks
each device to measure rainfall level and to trans-
fer the resulting virtual records back to the front
end. (Virtual records are produced once on each

site for a snapshot query, and repetitively for a long-running
query). Each virtual record arriving on the front end is then
joined with relation R.

Intuitively, this execution plan is not optimal: all devices
with rainfall sensors transmit data to the front end while the
query only concerns the sensors that measure a rainfall level
greater than 50. An alternative execution plan pushes the join
to the devices, thus trading increased processing on devices
for reduced network traffic. Instead of pushing the join
between R and VR to each device, Plan B defines a semi-join
between relation R and the partitions of the virtual relation
VR located on the devices [16]. The semi-join projects out the
joining attribute from relation R (here the device id Sensor)
and sends the resulting relation to all devices; a semi-join
avoids transferring the complete relation R to all devices. On
the devices, whenever the rainfall level is measured, a virtual
record is generated and it is joined with the portion of rela-
tion R sent by the front end (using joining condition R.Sensor
= VR.Sensor and VR.value > 50). If the joining condition is
verified, then the virtual record is sent back to the front end,
where it is joined with complete records from relation R (not
only the joining attribute). Only the sensors whose rainfall
level is greater than 50 send data back to the front end.

A third execution plan only pushes the selection (VR.value
> 50) onto the devices; only records that verify this condition
are sent back to the front end, where they are joined with
relation R. Plan C represents this execution plan. Compared
to Plan B, there is no subset of relation R transmitted to the
devices. We compare the resource usage of these three execu-
tion plans in the next section.

Analytical Model — We use a simple analytical model to
compare the costs of the three execution plans identified in
the previous section. We assume a multi-cluster, single-hop
WINS network [7]. There are 20 clusters each containing 10
devices. We consider the total energy consumed per sensor
node as the linear combination of CPU costs, the cost of a
memory access, the cost of sending a message, and the cost of
sending N bytes on the network:

� Figure 1. Execution plans for Query Q1.

VR
VR

σ
|

VR

σ
|

VR

VR
VR

Traditional: Plan T Plan A

Plan CPlan B

σ
|

VR

R

VR

VR

Materialized VR R

R

R

IEEE Personal Communications • October 200014

Cost in Joules = Wcpu * CPU +
Wram * RAM

+ Wsend * NbMsgs
+ Wbdw * SizeMsgs

The weight factors are used to trans-
fer all components of the cost into
Joules. Table 1 lists the weight factors
we used for our experiments. The fac-
tors were obtained by W. Kaiser and G.
Pottie, through measurements in a
WINS network composed of sensor nodes from Sensoria
Corp. [7]. The energy needed by the processor to operate
dominates the energy needed by the RAM, so we set Wram =
0. The cost per record of a join or a selection is NbInstPer-
Comp instructions. We do not model the cost of invoking the
device function. The cost per message is due to synchroniza-
tion between the sending and receiving nodes. We consider
that nodes are 30 meters from each other. In this case the cost
of sending 1000 bytes is 0.23J. (Note that the capacity of a
battery on a WINS sensor node is 3.5E4 Joules.) We further
assume that the size of each virtual record is 50 bytes.

We study resource usage on sensor nodes directly involved
in the query (i.e., the nodes on which a partition of the virtual
relation is located); we do not consider resource usage on the
nodes that are traversed for communication purposes. Each
sensor node satisfies the condition in query Q1 (Vr.value >
50) with a certain probability. We trace the resource usage in
the two extreme cases, i.e., for sensor nodes that are always
located outside a flood area and whose rainfall level is thus
never greater than 50, and for sensor nodes that are always
located inside a flood area.

Figure 2 traces the resource usage expressed in Joules as a
function of time (given that the rainfall level is measured
every 30 seconds) for nodes always located outside a flood
area. With Plan A, data is sent back to the front end whenev-
er it is generated. With Plan B and, respectively, Plan C, a
join and, respectively, a selection, are pushed to the device.
As a result, the condition on the rainfall level is checked on
the devices and none of the devices located outside a flood
area sends data back to the front end. Plan B pays the initial
cost of transferring a fragment of relation R to the devices.
This initial cost is amortized (compared to Plan A) during the
lifespan of a long-running query.

Figure 3 traces the resource usage
expressed in Joules as a function of
time (given that the rainfall level is
measured every 30 seconds) for nodes
always located inside a flood area. With
all plans, data is always sent back to the
front end. The initial cost of Plan B is
here never amortized. Plan C and Plan
A have almost similar curves; this illus-
trates that the cost of performing a

selection is low compared to the cost of sending data.
In this example, pushing a selection as in Plan C is the opti-

mal choice. This is intuitive since the query filters out uninter-
esting events generated on the devices. Pushing the selection
allows the device database system to trade efficiently increased
processing on the devices for reduced communication.

Conclusions
In the near future, devices with processing and communica-
tion capabilities will be deployed in the physical world, pro-
viding a powerful computing platform. The first generation
of the Cornell Cougar systems demonstrates that the appli-
cation of database technology to this new computing plat-
form shows much promise for providing flexible and scalable
access to large collections of devices. Our work has intro-
duced a set of research problems, and we now provide a
brief overview of some of the questions that our ongoing
research is addressing:

Meta-data management: Current distributed database opti-
mizers assume global knowledge, i.e., the optimizer has access
to exact meta-information about the complete system. In a
device database system, we cannot assume that a single site
maintains global knowledge about the system because of the
large scale and dynamic nature of a device network, and
because it would incur a significant administration overhead.
How can we maintain meta-data in a decentralized way and
how can we utilize this information to devise good query plans?

Query processing: Query processing should take advantage
of the computing capabilities at the devices in order to mini-
mize the total amount of resources consumed in the device net-
work while minimizing reaction time. In addition, conditions in
a device network change over time. Devices fail, move, or dis-
connect, the network topology may evolve, and batteries are
used and recharged. Thus query plans must adapt dynamically

� Figure 2. Resource usage for sensors located outside a flood
area.

5000

C
os

t
in

 J
ou

le
s

Time (sec.)

1000

2000

3000

4000

5000

6000

7000

0
10000 15000 200000

Plan A
Plan B
Plan C

� Figure 3. Resource usage for sensors located inside a flood
area.

5000

C
os

t
in

 J
ou

le
s

Time (sec.)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0
10000 15000 200000

Plan A
Plan B
Plan C

� Table 1. Parameters and settings for
modeling resource usage.

Wcpu 0.000001 J/instruction

Wram 0

Wsend 0.059 J/msg

Wbdw 0.23 J/Kbytes

NbInstPerComp 5000

IEEE Personal Communications • October 2000 15

to changing network conditions and they must show a certain
degree of robustness against device failures. In addition, for
long-running queries the conditions in the device network
might change significantly while the query runs.

Acknowledgments
We thank Stephane Bressan and Tobias Mayr, who helped
debug earlier versions of this article, as well as the reviewers for
helpful comments. This article benefited from interactions with
the SensIT community. In particular, Bill Kaiser provided valu-
able information concerning the Sensoria WINS network. This
work is sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air
Force Material Command, USAF, under agreement number F-
30602-99-0528, by the National Science Foundation under
Grant No. EIA 97-03470, by NSF Grant IIS-9812020, and by a
grant from Microsoft Research to Philippe Bonnet.

References
[1] D. Estrin, R. Govindan, and J. Heidemann (Eds.), “Embedding the Inter-

net,” Communications of the ACM, vol. 43, no. 5. May 2000.
[2] DARPA: SenseIT Project, http://www.darpa.mil/ito/research/sensit/back-

ground.html
[3] D. Estrin et al., “Next Century Challenges: Scalable Coordination in Sen-

sor Networks,” Mobicom ’99, Seattle, Washington, pp. 263–70.
[4] T. Imielinski and S. Goel, “DataSpace: Querying and Monitoring Deeply

Networked Collections in Physical Space,” MobiDE 1999, pp. 44–51.
[5] P. Bonnet and P. Seshadri, “Device Database Systems, poster paper,”

Proc. Int’l. Conf. Data Engineering ICDE’99, San Diego, CA, Mar. 2000.
[6] Intel Computing Continuum Conf., http://www.intel.com/intel/cccon/
[7] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Mobile Networking for Smart

Dust,” ACM/IEEE Intl. Conf. Mobile Computing and Networking (Mobi-
Com ’99), Seattle, WA, Aug. 17–19, 1999

[8] G. Pottie and W. Kaiser, “Wireless Integrated Network Sensors (WINS):
Principles and Approach,” Communications of the ACM, vol. 43, no. 5,
May 2000.

[9] P. Seshadri, “Enhanced Abstract Data Types in Object-Relational
Databases,” VLDB Journal, vol. 7, no. 3, 1998, pp. 130–40.

[10] U. Schreierf et al., “Alert: An Architecture for Transforming a Passive
DBMS into an Active DBMS,” VLDB, 1991, pp. 469–78.

[11] P. Seshadri, M. Livny, and R. Ramakrishnan, “SEQ: A Model for
Sequence Databases,” ICDE 1995.

[12] P. Bonnet et al., “Query Processing in a Device Database System,” Cor-
nell Technical Report TR99-1775, Oct. 1999.

[13] A. Tansel et al., Temporal Database: Theory, Design and Implementa-
tion, Benjamin/Cummings, 1993.

[14] A.Dekhtyar, R. Ross, and V. S. Subrahmanian, “Probabilistic Temporal
Databases: Algebra,” Jan. 1999, University of Maryland technical report
CS-TR-3987, submitted to ACM Trans. Database Systems.

[15] L. F. Mackert and G. M.Lohman, “R* Optimizer Validation and Performance
Evaluation for Distributed Queries,” Proc. Int’l. VLDB Conf., pp. 149–59,
Kyoto, Japan, Aug. 1986, Management Systems. ICOD 1980: pp. 204–15.

[16] C. T. Yu, “Distributed Database Query Processing,” Query Processing in
Database Systems, 1985: pp. 48–61.

[17] R. Ramakrishnan and J. Gehrke, Database Management Systems, Sec-
ond Edition, McGraw Hill, 1999.

Biographies
PHILIPPE BONNET (bonnet@cs.cornell.edu) received a Ph.D. from the Univer-
site de Savoie in 1999. He is currently a research associate in the Depart-
ment of Computer Science at Cornell University. His current research
interests involve device database systems, database tuning, and next-gener-
ation database systems. He is a member of the ACM and the IEEE Comput-
er Society.

JOHANNES GEHRKE (johannes@cs.cornell.edu) received his Ph.D. degree from
the University of Wisconsin in 1999. He is currently an assistant professor
in the Department of Computer Science at Cornell University. His research
is in the areas of data mining and database systems. He is the recipient of
an IBM Faculty Award and he serves on the editorial board of Knowledge
and Information Systems. He is the co-author of the textbook Database
Management Systems (Second Edition) published by McGraw Hill in 1999.
He is a member of the ACM and the IEEE Computer Society.

PRAVEEN SESHADRI (praveen@cs.cornell.edu) received a Ph.D. from the Univer-
sity of Wisconsin-Madison in 1996. He is an assistant professor in the
Department of Computer Science at Cornell University, currently on leave at
Microsoft. His research is in the area of next-generation database systems
and data management for personal devices. He received an IBM Faculty
Award and an NSF Career Award. He is a member of the ACM and the IEEE
Computer Society.

