
Appliance Data Services: Making Steps Towards an Appliance

Computing World

Andrew C. Huang
ach@cs.stanford.edu

Benjamin C. Ling
bling@cs.stanford.edu

John Barton
John Barton@hp.com

Armando Fox
fox@cs.stanford.edu

April 2, 2001

Abstract

Although digital appliances are designed to be easy
to use, their users often cannot even perform simple
tasks because the devices lack infrastructural sup-
port. The Appliance Data Services project seeks
to explore the attributes of an appliance comput-
ing world and develop the infrastructure required
to support users with digital appliances.

1 Introduction

Digital appliances, such as digital cameras and dig-
ital photo frames, are designed to be easier-to-use,
more powerful improvements of their non-digital
counterparts. Thus, digital appliances should en-
able all consumers to accomplish traditional and
advanced tasks more easily. For example, TiVo�
makes recording TV shows exceedingly simple by
daily downloading TV broadcast information. Be-
ing connected to the network also enables extra
functionality; TiVo� recommends shows users are
likely to enjoy by correlating the feedback of all its
viewers. The simplicity and power of such devices
is possible because they leverage the computational
power, network bandwidth, content, and aggregate
user-base of services in the infrastructure. We cap-
ture this effect by saying that these devices are “in-
frastructure enabled” [4].

Although many infrastructure enabled appli-
ances are easy to use, the reality for many digital
devices is that users are unable to accomplish even
the simplest tasks with them. Dan Carp, CEO of
Kodak�, identifies usability as the main hindrance
to widespread acceptance of digital cameras [1]:

The industry has made picture-taking
more difficult and more complicated by
cramming onto digital cameras more
features, more buttons and more bells
and whistles than most people want or

need... The one lesson that 100 years of
consumer marketing should have taught
us: In the picture business, simple
trumps megapixels, every time.

Therefore, despite a digital device’s powerful fea-
tures and low price, the user-experience turns many
consumers away.

The usability problem does not end with the de-
vice. Extracting data from these devices requires
users to install, configure, and learn how to use
new software on their PCs or handheld devices. For
example, mobile users that share information in a
collaborative setting often reconfigure the network
settings on their devices to gain network connec-
tivity. Even printing photos from a digital camera
requires the user to install new PC software. For
everyday users, having to deal with these software
issues can turn them away from adopting a digital
device.

Hence, although digital appliances are designed
to be easier to use and more powerful, the devices
and the supporting services have the exact oppo-
site attributes; they are more difficult to use and
have too many features. Such devices are unable
to achieve the status of “consumer devices” and the
appliance computing world is still unrealized.

The goal of ADS is to address these usability
problems by integrating digital appliances and In-
ternet services, identifying principles that make ap-
pliance services successful for users, and building a
testbed to validate those principles.

2 An Appliance Computing World

People express high-level tasks in terms of concrete
artifacts and the data residing on them: “Display
the notes I’ve taken on my PDA on a wall monitor
to be viewed by everyone at the meeting” or “Put
this picture taken with my digital camera onto my
Web page.” Our vision is based on this observation:

1

An appliance computing world is one in which
people move data effortlessly among artifacts
to accomplish a variety of tasks.

In the following subsections we attempt to system-
atically explore this appliance computing vision by
making observations on attributes inherent in this
vision and identifying the principles that underlie
these attributes.

2.1 Bring devices to the forefront

In an appliance computing world, the number of
steps required to perform high-level tasks should be
few and the individual steps kept simple. A key
insight into making the steps simple is this: peo-
ple find it easier to use concrete artifacts to move
data. Thus, our appliance computing vision has the
following attribute:

Attribute 1: People move data using concrete
artifacts.

In a digital world, tangible artifacts include digi-
tal cameras, flash memory cards, wall-mounted dis-
plays, and Web pages. In these examples, users
perceive the data as being produced by or resid-
ing on artifacts that are concrete and permanent,
which makes reasoning about tasks involving these
artifacts easier. The problem is that today’s dig-
ital devices force users to deal with objects they
do not understand – computers and files. Extract-
ing data from digital devices and moving the data
to the desired destination often involves interacting
with PCs. For example, posting pictures on a Web
page requires knowing what server hosts the page.
File format conversions are even harder to reason
about for some users who are unaware that files
have different formats. For example, when posting
TIFF images produced by a handheld scanner onto
the Web, a user focused on Web publishing should
not be required to fix the broken icon that results
from trying to display a TIFF file on a Web page.

To allow people to reason about the source and
destination of data, rather than the path it must
take so that data can be moved seamlessly across
artifacts, the appliances they use should be suffi-
cient to complete the task; using a secondary com-
puter, like a PC, should not be required. Thus, the
first attribute gives rise to the following principle:

Principle 1: Bring devices to the forefront.

This idea of bringing devices to the forefront and
pushing the experience of using computers into the
background is related to Mark Weiser’s vision of
ubiquitous computing where devices and computers

are “invisible” in that they are embedded into the
physical infrastructure [5]. Both allow users to focus
on the task at hand rather than the mechanisms for
accomplishing the task.

2.2 Keep devices simple

One approach to eliminating the PC experience is
to push more functionality onto the devices. For ex-
ample, some high-end cameras have networking and
image-editing capabilities. However, moving com-
puters into the devices does not solve the problem.
As Alan Cooper explains, such devices do not make
tasks easier because they are basically hard-to-use,
complex mini-PCs [2]:

My newest camera... has a full-blown
computer that displays a Windows-like
hourglass while it “boots up”... its
On/Off switch has now grown to have
four settings... and none of my friends
can figure out how to turn it on with-
out a lengthy explanation... The camera
may still take pictures, but it behaves
like a computer instead of a camera.

Cooper’s observations suggest that devices must
be be simple so that the steps required to accom-
plish a task can be made simple.

Attribute 2: Devices are simple, single-
purpose appliances.

Given that devices should be kept simple, the
software and hardware placed on the device should
be kept to a minimum. For digital devices that have
analog counterparts, this means user-controllable
features outside of the feature set to which users
are accustomed should be kept to a minimum. In
fact, the only extra mechanism required is the abil-
ity to transfer data to and from the device.

Principle 2: Keep the number of user-
controllable features on devices to a minimum.

2.3 Place software in the infrastructure

Up to this point, we have focused on simplifying
the steps required to perform high-level tasks. We
accomplish this by removing features from devices
and eliminating the need to use PCs. Now the ques-
tion is, what will people be able to do with these
simple devices? At the very least, users should be
able to use these devices to perform the same tasks
as their traditional, non-digital counterparts, if not
more.

2

Attribute 3: People perform a variety of tra-
ditional tasks, as well as a new set of advanced
tasks with their devices.

This third attribute, when put next to attributes
one and two, reveals the tension between providing
functionality and providing a usable experience. We
want to minimize the set of features placed on the
device, but we want to allow users to control data
movement using these devices without having to in-
teract with a PC. At the same time, we want to pro-
vide users with a meaningful set of tasks that they
can perform with their devices. The tension intro-
duces tradeoffs that can be addressed using human-
computer interaction and systems ideas.

So where does the functionality lie to perform
the high-level tasks that users demand? One pos-
sible location is the user’s PC. This software can
be designed in such a way as to eliminate the look
and feel of a PC, thus shielding the user from the
PC experience. However, this does not relieve the
user of other PC experiences such as installing, con-
figuring, and upgrading software. Another possible
location for placing functionality is the network in-
frastructure. Placing software in the infrastructure
has the advantage of fully relieving the user of the
PC experience:

Principle 3: Place the software required to
accomplish tasks in the network infrastructure.

Taking an infrastructure-centric approach, one
where we move functionality from PCs and devices
into the supporting infrastructure, has other ben-
efits. Having logically centralized software makes
upgrades and administration much simpler. Fur-
thermore, by selecting the Internet infrastructure,
we are able to take advantage of the wealth of ex-
isting Internet services.

2.4 Appliance Data Services

The ADS framework is a general application frame-
work on top of which appliance computing appli-
cations are built. The framework implements the
previously mentioned principles of appliance com-
puting: bring devices to the forefront, minimize the
number of features on devices, and place software
required to accomplish tasks in the network infras-
tructure.

Clearly, other principles and challenges exist in
the creation of an appliance computing world. One
example is the challenge of actually designing easy-
to-use device and system user interfaces. Although
this area of research is beyond the current scope
of this project, we design the ADS framework such

that it is amenable to new user interfaces and usage
models.

In the following sections, we describe the ADS
architecture, observations on building ADS applica-
tions, and next steps for future research.

3 The Architecture

Before discussing the ADS architecture, we describe
its basic data unit. The basic data unit is composed
of a user identifier, the command to be executed,
and the data to be operated on: (userid, command-
tag, data). The reason the userid and command-tag
are part of the basic data unit is that they are used
for:

1. Application selection: The command-tag
names the high-level application the user
wants to perform. However, since different
users may have different semantic meanings
for the same tag (e.g. the mapping for “my
Web site” is user-specific), a userid is required
to fully specify an application.

2. Access control: The userid is required to de-
termine what credentials are to be attached
to the application request since some services
may limit access to a set of authorized users.

3. Other service features: Services such as
billing, security, and personalization are not
implemented in ADS, but we have left the
userid as a “hook” for adding such capabil-
ities later.

The ADS framework architecture, shown in Fig-
ure 1, is described in the rest of this section. The
framework is split into three main components –
Data Receive stage, Application Control stage, and
Services Execution stage – each of which corre-
sponds to a high-level function that is performed
on the data.

3.1 Data Receive

The components in the Data Receive stage, Access
Point and Aggregator, interface with devices to re-
ceive data and output completed (userid, command-
tag, data) triples.

Access Point: The Access Point consists of the
hardware and software needed to receive data from
devices. Examples of hardware are IR transceivers
and cradles for “docking” a device. The software is
organized as a set of device adaptors, each enabling
the Access Point to “speak” a different device com-
munication protocol.

3

 x x x Application
Dispatcher

Modular Composable Services
Devices

Dataflow Manager

Command Canonicalizer

Data Receive Application Control Services Execution

 1

 2

 4

Access
Point

Access
Point

Aggregator

userid x
cmdtag x
data

 3 6 7

 5

 4 cont’d

Template
Database

 1

 2

 3

 4

 5

 6

 7

data sent to Access Point

completed triple sent to Dataflow
Manager
Canonicalizer converts cmdtag to
plaintext
(userid, cmdtag) looked up in
Template Database to find
matching application template

application template and data
sent to Application Dispatcher
when required data is received

Aggregator receives data, which
completes the triple: (userid,
cmdtag, data)

Application Dispatcher invokes
services on data as specified in
the application template

Figure 1: The ADS Architecture

The architectural role of the Access Point is to
address the issue of dealing with the various devices
communication protocols.

Role: Deals with device heterogeneity.

Isolating device heterogeneity to one component
relieves the rest of the system from having to
deal with device-specific communication protocols,
which makes building the rest of the system simpler.

The key challenge in designing the Access Point
is extensibility. This challenge exists because of the
lack of device standardization and the increase in
the variety of devices being introduced. Standard-
ization among competing vendors is not likely any-
time soon, and since general-purpose devices are
often difficult to use for everyday consumers, the
trend towards single-purpose devices is likely to con-
tinue. Thus, the rapid development of heteroge-
neous devices makes it crucial to make adding sup-
port for new devices simple.

Aggregator: A stateless Access Point improves
its extensibility because adaptor writers do not have
to deal with state management. To allow stateless-
ness and extensibility in the Access Point, the Ag-
gregator manages state by gathering the devices’
data and sending completed triples to the next
stage.

Role: Simplifies adding support for new de-
vices and protocols.

The net effect of separating the Data Receive stage
into Access Point and Aggregator components is to
separate the two concerns of device heterogeneity
and state management.

3.2 Application Control

In the Application Control stage, the userid and
command-tag are used to determine the chosen ap-
plication. The data is then added to a list of param-
eters required for the selected application. Once all

the parameters for a given application have arrived,
they are sent to the Services Execution stage.

Command Canonicalizer: The Command
Canonicalizer facilitates the design of “no-futz,”
easy-to-use user-interfaces. Canonicalization
involves converting the command-tag from its orig-
inal data type to plaintext. Giving the system the
ability to handle command-tags of arbitrary types
makes it possible to support arbitrary devices, even
those with limited user interfaces.

Role: Allows devices to have simple user in-
terfaces.

For example, the most natural method for digi-
tal camera users to specify the command-tag might
be to record a short WAV file annotating each pic-
ture. In this scenario, the user takes a picture and
speaks the desired command-tag into the camera;
later, when the pictures are transferred into an Ac-
cess Point, the command-tag has already been spec-
ified so the system knows what to do with the pic-
ture. Canonicalization frees the device designers
from being constrained to relying solely on menu or
other text-based user-interface elements, thus facil-
itating the most natural user interface for a no-futz,
easy-to-use experience.

Template Database: The canonicalized
command-tag, userid pair is looked up in the
Template Database to find a matching application
template. Templates define an application’s be-
havior by describing the data required for a given
application and specifying the services to invoke
on the data. Binding command-tags to application
templates in the Template Database has the benefit
of minimizing device configuration and supporting
devices with non-extensible user interfaces, thus
achieving out-of-the-box operation for devices.

Role: Minimizes device configuration.

Application templates and the command-tag
mappings are configured for a particular user in-
dependently of the user’s devices. Further, in situ-
ations where a command-tag cannot be specified,

4

such as may be the case for devices with non-
extensible user interfaces, the command-tag “de-
fault” can be mapped to the appropriate applica-
tion template.

This binding mechanism provides a level of in-
direction between application selection and appli-
cation specification, which separates the concerns
of applications users and application creators. This
separation provides an easy way for third-party de-
velopers to make their templates available to ADS
users. Furthermore, with authentication mecha-
nisms in place, third-party template providers can
effectively restrict access to the templates it has de-
veloped.

For example, say Kodak� develops a set of ADS
applications, which only Kodak� camera customers
can use. If the templates are shipped with each
camera, not only is upgrading or adding new ap-
plications difficult, it may be possible for the tem-
plate to be “pirated” and given to users with non-
Kodak� cameras. With the Template Database,
the user’s act of registering gives that user the cre-
dentials to view and select the Kodak� templates.
Furthermore, upgrading applications or adding new
ones only requires dealing only with the Template
Database.

Dataflow Manager: The role of the Dataflow
Manager is to coordinate data received from the
user and to make certain an application has all
the data it requires. When data is received from
the Data Receive stage, the Dataflow Manager uses
the application template to place the data into the
proper parameter slot for the chosen application.
Once all necessary data is received, the Dataflow
Manager sends the template and all the data to the
Services Execution stage.

Role: Coordinates data input by the user.

Coordinating data in this way allows users to
input the data from different devices and at differ-
ent periods of time. For example, a user who uses
a PDA to store captions for the photos taken on a
digital camera can create a Web-based photo album
by inputing the data from these two devices. As an
alternative, a user can input photos into ADS while
still on vacation to conserve the camera’s memory.
At the end of the vacation, the user can use a Web
browser to fill in the captions for all the pictures.

3.3 Services Execution

In the Services Execution stage, the Application
Dispatcher invokes the services specified in the ap-
plication template on the data it receives. The rea-
son modular composable services are used is that it

results in applications that are flexible and whose
components are reusable. However, such a service
framework does not preclude the use of stand-alone,
monolithic applications. Such an application would
simply be a single service in the framework and
would not be invoked in conjunction with other ex-
isting services.

3.4 Architecture Summary

The ADS framework was designed to provide appli-
cations built on top of it with the three appliance
computing principles discussed in the previous sec-
tion:

Principle 1: We bring devices to the forefront so
that people can focus on using concrete artifacts
for moving data. The Template Database sepa-
rates application selection and creation so that users
can perform high-level tasks simply by selecting a
command-tag. Meanwhile, the extensible Access
Point allows ADS to support a variety of devices.

Principle 2: We facilitate keeping the number
of features on devices to a minimum so that de-
vices can be made simple and easy-to-use. The
Command Canonicalizer allows devices to be ex-
tended for command-tag selection in the most natu-
ral way without loading-up the device with features.
Meanwhile, the Template Database minimizes de-
vice configuration by allowing application creation
and customization to be done independently of the
user’s devices.

Principle 3: We place the software required to
accomplish tasks in the network infrastructure so
that people can perform a variety of tasks without
dealing with complex devices or the PC experience.
The Dataflow Manager coordinates data so that a
variety of tasks using one or more devices can be
performed. Furthermore, all components except for
the Access Point, which can be deployed as pub-
lic Web-kiosks or appliances in people’s homes, are
placed in the Internet infrastructure to free the user
from software issues.

4 Development Experience

To test the effectiveness of our appliance computing
principles, we built a prototype of the framework as
described in the previous section. We evaluate the
implementation based on how easy it is for develop-
ers to build applications on the framework. To do
this, we built a set of services and device adaptors
that supported two target applications: Web Photo
Album and Guest Book. The Web Photo Album
shows how the usage model of digital devices can be
simplified by infrastructure services; in this appli-
cation, users create and publish Web-based photo

5

albums on Geocities� in a few simple steps using
their digital cameras. The Guest Book exhibits the
potential of ADS to coordinate input from multiple
devices; this application takes input from a Web
cam, business card scanner, and PDA to create a
Web-based guest book containing people’s pictures
and business card information.

Given the necessary services and device adap-
tors, building these applications simply involved
creating an XML application template to describe
the input data and services to invoke; no coding
was necessary. Our experience building these appli-
cations showed us that: 1. creating and extending
applications using XML templates is simpler than
building standalone applications from scratch, and
2. adding support for new devices is simple because
of the statelessness of device adaptors in the Access
Point. Thus, ADS has been successful in providing
a framework on which appliance computing appli-
cations can be quickly built, customized for each
user, and evolved. Furthermore, the ADS architec-
ture provides these applications with the desirable
attributes of our appliance computing vision in that
people use simple artifacts to move data around in
a variety of ways.

5 Next Steps

Two areas of research we intend to explore in the
immediate future involve deploying ADS in “Smart
Space” environments and adding mechanisms to
convey status information back to the user.

In Stanford’s Interactive Workspaces Room
(IW-Room) [3], researchers explore new possibili-
ties for people to work collaboratively in “meeting
rooms of the future” using a variety of computing
and interaction devices. We intend to explore ways
ADS can be deployed in “Smart Space” environ-
ments such as these by installing a production ver-
sion of the ADS framework in the IW-Room. Ini-
tial applications will include the Guest Book de-
ployed at the entryway of the room and an appli-
cation that allows users to share information from
their personal devices by “beaming” data onto wall-
mounted displays via IR-dongles. Since IW-Room
is in production use for regularly scheduled meet-
ings, we expect to gain insight on new applications
and deficiencies in the architecture that need to be
addressed.

As ADS is used in production form, we expect
users will want more feedback about the status of
the data they send into the system. The solution is
not as simple as adding error dialog boxes with error
messages. The lack of a traditional computer inter-
face and the target audience of everyday consumers

means that novel approaches to convey status and
error information to the user need to be explored.

6 Conclusion

Our vision for appliance computing is a world in
which everyday users move data seamlessly and ef-
fortlessly among various artifacts. While the de-
vices required for such a world exist, users often
cannot even perform the simplest tasks with cur-
rent devices. These devices are simply too difficult
to use because they lack infrastructural support.
The goal of the Appliance Data Services project is
to explore the attributes of this appliance comput-
ing world and develop the infrastructure required
to support users with digital appliances. To accom-
plish this, we identified three principles for realizing
this vision and implemented a testbed to see how
successful the principles are in making appliances
more useful and easier to use. Next steps involve
putting the ADS framework into production use
and gaining valuable user and developer feedback
on how the framework can be improved and what
applications are needed.

References

[1] Dan Carp. Keynote address. In Advanced
Digital Photography Forum, Boston, MA, USA,
April 2000.

[2] Alan Cooper. The Inmates Are Running the
Asylum: Why High Tech Products Drive Us
Crazy and How To Restore The Sanity. Sams,
1999.

[3] Armando Fox, Brad Johanson, Pat Hanrahan,
and Terry Winograd. Integrating information
appliances into an interactive workspace. IEEE
Computer Graphics and Applications, 20(3):54–
65, May/June 2000.

[4] Andrew C. Huang, Benjamin C. Ling, John
Barton, and Armando Fox. Running the
web backwards: Appliance data services. In
Ninth International World Wide Web Confer-
ence (WWW9), Amsterdam, Netherlands, May
2000.

[5] Mark Weiser. The computer for the twenty-
first century. Scientific American, pages 94–100,
September 1991.

6

