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1. Introduction

By some estimates, there will be close to one billion
wireless devices capable of Internet connectivity within
five years, surpassing the installed base of traditional wired
compute devices. These devices will take the form of cel-
lular phones, personal digital assistants (PDA’s), embedded
processors, and “Internet appliances”. This proliferation of
networked computing devices will enable a number of com-
pelling applications, centering around ubiquitous access to
global information services, just in time delivery of person-
alized content, and tight synchronization among compute
devices/appliances in our everyday environment. However,
one of the principal challenges of realizing this vision in
the post-PC environment is the need to reduce the energy
consumed in using these next-generation mobile and wire-
less devices, thereby extending the lifetime of the batteries
that power them. While the processing power, memory, and
network bandwidth of post-PC devices are increasing ex-
ponentially, their battery capacity is improving at a more
modest pace.

Thus, to ensure the utility of post-PC applications, it
is important to develop low-level mechanisms and higher-
level policies to maximize energy efficiency. In this paper,
we propose the systematic re-examination of all aspects of
operating system design and implementation from the point
of view of energy efficiency rather than the more traditional
OS metric of maximizing performance. In [7], we made the
case for energy as a first-class OS-managed resource. We
emphasized the benefits of higher-level control over energy
usage policy and the application/OS interactions required to
achieve them. This paper explores the implications that this
major shift in focus can have upon the services, policies,
mechanisms, and internal structure of the OS itself based
on our initial experiences with rethinking system design for
energy efficiency.

Our ultimate goal is to design an operating system where

major components cooperate to explicitly optimize for en-
ergy efficiency. A number of research efforts have recently
investigated aspects of energy-efficient operating systems
(a good overview is available at [16, 20]) and we intend
to leverage existing “best practice” in our own work where
such results exist. However, we are not aware of any sys-
tems that systematically revisit system structure with en-
ergy in mind. Further, our examination of operating system
functionality reveals a number of opportunities that have
received little attention in the literature. To illustrate this
point, Table 1 presents major operating system function-
ality, along with possible techniques for improving power
consumption characteristics. Several of the techniques are
well studied, such as disk spindown policies or adaptively
trading content fidelity for power [8]. For example, to re-
duce power consumption for MPEG playback, the system
could adapt to a smaller frame rate and window size, con-
suming less bandwidth and computation.

One of the primary objectives of operating systems is
allocating resources among competing tasks, typically for
fairness and performance. Adding energy efficiency to the
equation raises a number of interesting issues. For exam-
ple, competing processes/users may be scheduled to receive
a fair share ofbatteryresources rather than CPU resources
(e.g., an application that makes heavy use of DISK I/O may
be given lower priority relative to a compute-bound appli-
cation when energy resources are low). Similarly, for tasks
such as ad hoc routing, local battery resources are often
consumed on behalf of remote processes. Fair allocation
dictates that one battery is not drained in preference to oth-
ers. Finally, for the communication subsystem, a number of
efforts already investigate adaptively setting the polling rate
for wireless networks (trading latency for energy).

Our efforts to date have focused on the last four areas
highlighted in Table 1. For memory allocation, our work ex-
plores how to exploit the ability of memory chips to transi-
tion among multiple power states. We also investigate met-



Operating System Functionality Energy Efficient Techniques
Disk scheduling Spindown policies [18, 6, 5, 14, 11]
Security Adaptive cryptographic policy based on computation/

communication overhead
CPU scheduling Voltage scaling, idle power modes [32, 19, 22]
Application/OS Interaction Agile content negotiation trading fidelity for power, APIs [8]
Memory allocation Adaptive placement of memory blocks, switching of hardware

energy conservation modes
Resource Protection/Allocation Fair distribution of battery life among both local and distributed

tasks, “locking” battery for expensive operations
Communication Adaptive network polling, energy-aware routing, placement of

distributed computation, and server binding [27, 13, 28, 25, 26]

Table 1. Operating system functionality along with potential techniques for optimizing energy utiliza-
tion.

rics for picking energy-efficient routes in ad hoc networks,
energy-efficient placement of distributed computation, and
flexible RPC/name binding that accounts for power con-
sumption.

These last two points of resource allocation and re-
mote communication highlight an interesting property for
energy-aware OS design in the post-PC environment. Many
tasks are distributed across multiple machines, potentially
running on machines with widely varying CPU, memory,
and power source characteristics. Thus, energy-aware OS
design must closely cooperate with and track the character-
istics of remote computers to balance the often conflicting
goals of optimizing for energy and speed.

The rest of this paper illustrates our approach with se-
lected examples extracted from our recent efforts toward
building an integrated hardware/software infrastructure that
incorporates cooperative power management to support mo-
bile and wireless applications. The instances we present in
subsequent sections cover the resource management poli-
cies and mechanisms necessary to exploit low power modes
of various (existing or proposed) hardware components, as
well as power-aware communications and the essential role
of the wide-area environment. We begin our discussion with
the resources of a single machine and then extend it to the
distributed context.

2. Resource Management

A fundamental OS task is efficient management of host
resources. With energy as the focus, the question becomes
how to make the basic interactions of hardware and software
as energy efficient as possible for local computation (e.g.,
disconnected operation). One trend observed in traditional,
performance-centric resource management involves latency
hiding techniques. A significant difference and challenge

in energy-centric resource management is that power con-
sumption is not easy to hide.

As one instance of power-aware resource management,
we consider memory management. Memory instructions
are among the more power-hungry operations on embedded
processors [29], making the hardware/software of mem-
ory management a good candidate for optimization. Intel’s
guidelines for mobile power [12] indicate that the target for
main memory should be approximately 4% of the power
budget (e.g. an average 1.3W for 96MB)for year 2000 lap-
tops. This percentage can dramatically increase in systems
with low power processors (e.g., Transmeta Crusoe [10]),
displays [21], or without hard disks. Since many small de-
vices have no secondary storage and rely on memory to re-
tain data, there are power costs for memory even in oth-
erwise idle systems. The amount of memory available in
mobile devices is expanding with each new model to sup-
port more demanding applications (e.g., multimedia) while
the demand for longer battery life also continues to grow
significantly.

Our work on energy in memory systems [15] is moti-
vated by the emergence of main memory technologies for
portable systems composed of one or more DRAM devices
with the ability to control the power state of individual
memory chips. Direct Rambus DRAM (RDRAM) [23] is
one concrete example. RDRAM’s novel communication
protocol allows individual devices to be in any of the fol-
lowing power states in decreasing order of power consump-
tion and increasing order of access time: Active, Standby,
Nap, and Powerdown. Figure 1 shows the power states and
their relativepower costs as well as the possible transitions
and relative transition times into active mode, as required
for access.

Our work investigates intelligent page allocation for en-
ergy efficiency that can be used by an informed OS to com-
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Figure 1. RDRAM Power States

plement hardware power management strategies. We con-
sider both static and dynamic hardware policies for deter-
mining the power state of a memory chip. A static hard-
ware policy is one in which every power-aware DRAM chip
in the system resides in the same base power mode when
there are no outstanding memory requests for that device.
A dynamic hardware policy tries to determine the appropri-
ate power state for a chip, based on access patterns, using
thresholds of time between accesses to trigger transitions to
the next lower power state. OS support appears to be crucial
for fully exploiting such hardware capabilities. We consider
the effect of code and data placement policies that choose
the mapping of virtual pages to physical locations within
power-aware memory chips. Our “sequential first-touch”
allocation policy aims to group active pages according to
their temporal locality. It allocates pages in the order they
are accessed, filling an entire chip before moving on to the
next. In this way, we place related pages within the smallest
number of DRAM devices, in effect trading power for avail-
able parallelism. This technique enables more devices to be
in a low-power state while providing performance close to
that achieved by placing all DRAM devices in the fastest
but highest power state. Further, this technique can reduce
the energy overhead of reading data from memory.

We have explored the effectiveness of these policies at
improving energy efficiency in a set of simulation experi-
ments using two simulators: a trace-driven simulator and
a detailed out-of-order execution-driven processor simula-
tor. Our trace-driven simulation uses a simplified processor
and memory system model to process instruction and data
address traces from a set of productivity applications [17]
as a workload representative of mobile laptop and handheld
devices. We also use an execution-driven simulator with a
more detailed processor and memory model to evaluate a
set of programs from the integer SPEC2000 suite that place
higher demands on the memory system than the available
traces. We measure the energy savings within the RDRAM-
based memory system and any additional delay in execu-

tion time resulting from these power-aware page placement
strategies, expressed in terms of an Energy�Delay metric.

Our simulation results show that

� Power-aware page allocation by an informed operat-
ing system coupled with dynamic hardware policies
can dramatically improve energy efficiency of mem-
ory. Power-aware allocation allows a 6% to 50% im-
provement in Energy�Delay over the best static hard-
ware policy which uses nap as its base power state.
This translates to an improvement of 99% to 80% over
a traditional full-power memory system without coop-
erative hardware/software policies.

� Power-aware page allocation when used with just static
hardware policies can improve Energy�Delay by 12%
to 30%.

� Dynamic hardware policies without informed OS sup-
port (i.e., using random page allocation) do not im-
prove energy efficiency as measured by Energy�Delay.

3. Communications

Another fundamental OS function is to support commu-
nication among computing devices. As new devices (e.g.,
PDAs, sensors, etc.) continue to permeate our daily lives,
wireless communication becomes an ever more important
aspect of system design. However, the combination of
new scenarios and restrictions on energy consumption cre-
ate new challenges for designing wireless communication
substrates.

Recent advances in ad hoc networks (for an overview
see [1]) allow mobile devices to communicate with one an-
other, even in the absence of pre-existing base-stations or
routers. All mobile devices are able to act as routers, for-
warding packets among devices that may otherwise be out
of communication range of one another. Important chal-
lenges include discovering and evaluating available routes
among mobile devices and maintaining these routes as de-
vices move, continuously changing the “topology” of the
underlying wireless network. In applications with limited
battery power, it is important to minimize energy consump-
tion in supporting this ad-hoc communication.

There are numerous opportunities for power optimiza-
tions in such environments, including: i) reducing transmis-
sion power adaptively based on the distance between sender
and receiver, ii) adaptively setting transmission power in
route discovery protocols, iii) balancing hop count and la-
tency against power consumption in choosing the “best”
route between two hosts, and iv) choosing routes to fairly
distribute the routing duties (and the associated power con-
sumption) among nodes in an ad-hoc network [27].



Our initial investigations exploit the following prop-
erty of wireless communication: received signal strength
decreases exponentially with increased distance from the
transmitter. In the simplest model, the signal decreases
with the square of the distance from the transmitter [24],
and decreases even faster when obstacles or ground reflec-
tion are considered. Although wireless network interfaces
can be a large component of overall power consumption
[13, 28], in many cases transmitter power consumption may
be larger than required. Many devices transmit a signal
strong enough to reach the receiver from their maximum
range independent of their actual distance from the receiver.

We are currently investigating the design, implementa-
tion, and evaluation of a power-aware version of the DSR
(Dynamic Source Routing) ad-hoc routing protocol that we
call DSRp. We modify the RTS/CTS exchange in the IEEE
802.11 specification to determine the amount of power re-
quired to transmit to a given destination (such hardware sup-
port will be available, for example, in Bluetooth devices).
The fundamental observation is that five ten-meter hops to
a given destination will likely consume more power than ten
five-meter hops (at the cost of increased store and forward
latency). We use this information to augment route discov-
ery to include end-to-end power requirements in addition to
hop count, allowing the sending host to optimize its route
selection along multiple axes. For example, time sensitive
communication may minimize latency, while normal com-
munication may minimize power. Our preliminary results,
using the monarch/ns simulation infrastructure, show that
adaptively reducing transmit power can reduce overall en-
ergy consumption by 32% to 56% for minimum hop-count
routes.

One interesting implication from our work is that the
total power consumed on behalf of wireless communica-
tion can be dramatically reduced by limiting transmission
power. Our work in DSRp attempts to find power-optimal
connected paths through ad hoc networks. A related effort
into Epidemic Routing [31] demonstrates that it is possible
to deliver application data among mobile hosts even when
there is never a connected path from source to destination.
In this work, we leverage pairwise connectivity among hosts
to selectively flood application data (as oppossed to the con-
trol packets typically flooded for route discovery) through
connected subsets of an ad hoc network. Unseen messages
are exchanged among hosts when they come into contact
with one another. We employ per-message hop limits and
a FIFO queue to limit the resources consumed in deliver-
ing any single packet. Our simulation results in monarch/ns
demonstrate high message delivery rates (100% if no re-
source limits are enforced given random movement), with
message delivery latencies directly predicted by the relative
connectivity of the underlying network.

With respect to energy consumption, Epidemic Routing

demonstrates that it is possible to maintain high delivery
rates in ad hoc networks even when unilaterally reducing the
maximum transmission range of network interface cards to
the point where not all hosts are directly connected to one
another. For example, reducing tranmission range to 70%
of maximum could reduce power consumption in transmit-
ting packets by 50%. Such mechanisms will be increas-
ingly important with the emergence of short-range wireless
technologies (e.g., Bluetooth [9]) where power is a primary
consideration.

4. Leveraging Remote Computation

Many post-PC applications depend upon location-
independent access to Internet resources. System support
for energy efficient access to data located on the web is
thus an important priority for an energy-aware OS. Beyond
that, the question becomes whether remote computational
resources can also be exploited to conserve local energy
consumption. Rather than statically assigning program ex-
ecution to the local host (e.g., handheld device, PDA), the
system may dynamically determine that it is more efficient
to migrate a program to a remote site (e.g., with line power
or with more computational resources) and to retrieve its re-
sults when execution completes. If the time or energy saved
on the mobile device is more than the time or energy con-
sumed to: i) send the process, ii) idle until results can be
retrieved, and iii) receive the results, then this method may
be effective for conserving either time or energy. Thus, en-
ergy can be viewed as an available Internet resource similar
to other remote resources.

Our approach is based upon achieving such efficiency
through mobile code—programs able to dynamically mi-
grate and replicate in response to the local and wide-area
environment. Mobile code is emerging as the enabling tech-
nology for transparent access to Internet resources.

This work extends our previous work in mobile code
within the WebOS project [30] to embrace mobile and
wireless clients. There are a number of similarities be-
tween wide-area and mobile/embedded systems—for in-
stance, highly unpredictable network and computational
characteristics and the associated need to address such vari-
ability. Our primary goal is to support intelligent program
placement to achieve an appropriate balance between per-
formance and energy consumption. We are developing en-
ergy efficient mechanisms for placement and migration of
programs originating from diverse sources (e.g., handheld
computers to servers) as well as policies to determine the
conditions under which a program should migrate.

The considerations and tradeoffs are inherently differ-
ent when optimizing for time versus power. The client-side
must evaluate the cost (in time and energy) of transferring
the computation over a slow and/or expensive wireless link



versus continuing to run it locally, with variable and un-
certain information upon which to base its decision. Our
initial investigations have shown that the key to effectively
using remote energy for execution is to bevery selectivein
choosing the processes which are likely to benefit, where
the computation is significant relative to the data shipped
and the processor/implementation on the server receiving
the task is significantly faster than on the mobile device. We
believe that application-specific knowledge will be required
to determine the proper tradeoffs.

An interesting problem in this domain is the need to
maintain information about network characteristics and re-
mote computational resources. For example, to determine
whether a remote server is an appropriate target for offload-
ing local computation, a mobile host must estimate the char-
acteristics of the network between it and the remote server
(to determine the amount of time/energy required to trans-
mit the request and to retrieve the results) as well as re-
motely available CPU, memory, and disk resources (to de-
termine the amount of time necessary to carry out the re-
quest at the remote site). The naive approach to maintain-
ing such information might involve periodic communica-
tion among the mobile host and remote sites to track remote
characteristics. We are investigating the use of anti-entropy
techniques and efficient bounding of numerical error [33]
(e.g., remote CPU load or available bandwidth) in replicated
data to minimize the communication required to maintain
an accurate view of remote resources.

5. Content Specialization

One special case of exploiting remote execution is the
use of a transcoding proxy for transforming multimedia web
content to save bandwidth (and thus energy consumed by
the local device by receiving less data) or to specialize im-
age data for display, given the destination device charac-
teristics (thus saving energy for rendering). Unfortunately,
one danger with aggressively transcoding is that the result
delivered may become degraded in quality so much as to be
unusable. In our preliminary work [2], we have developed
an informedquality-aware transcodingtechnology that ad-
dresses this deficit, preserving quality by allowing transcod-
ing to be selectively applied. We have demonstrated [3] that
this technique can be applied at a proxy to reduce the wire-
less bandwidth required to deliver good quality images.

Mobile devices can also achieve improved average im-
age quality and reduced power consumption by perform-
ing transcoding operations locally. In [4], we show that our
techniques allow a battery-limited mobile/wireless device
that generates images (e.g., a digital camera) to maximize
the number of quality pictures that can be stored before
memory or battery resources are exhausted.

6. Implementation and Structure

Finally, we need to reconsider the internal structure and
activity of the OS itself from this new perspective as exist-
ing structures are likely to be wasteful of energy. For exam-
ple, daemon processes often perform periodic maintenance
functions (e.g. compaction, garbage collection); however,
any nonessential activity is an energy drain and possibly
should be deferred until the device is once again plugged
in and fully charged unless the energy costs of operating in
a degraded state (e.g. highly fragmented disk) outweigh the
overhead. Tradeoffs have to be reevaluated for techniques
that exploit “idle” cycles to perform optional management
functions since they can no longer be considered free when
energy consumption replaces time as the important metric.

7. Summary and Conclusions

This paper advocates revisiting all aspects of Operating
System design and implementation with energy-efficiency
as the primary objective rather than the traditional OS met-
rics of maximizing performance and fairness. Energy is
an increasingly important resource for post-PC battery-
powered devices. Our initial investigations have indicated
that this change in viewpoint has significant implications for
the services, policies, mechanisms, and structure of the OS.
We illustrate with examples of power-aware memory man-
agement, power-aware ad hoc routing protocols, and energy
exploitation of remote resources in the context of a coopera-
tive wide-area distribution system that encompasses mobile
and wireless devices.
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