
Anca Daniela Ionita
University “Politehnica” of Bucharest, Romania

Marin Litoiu
York University, Canada

Grace Lewis
Carnegie Mellon Software Engineering Institute, USA

Migrating Legacy
Applications:
Challenges in Service Oriented
Architecture and Cloud
Computing Environments

Migrating legacy applications: challenges in service oriented architecture and cloud computing environments / Anca Daniela
Ionita, Marin Litoiu, and Grace Lewis, editors.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-1-4666-2488-7 (hardcover) -- ISBN 978-1-4666-2489-4 (ebook) -- ISBN 978-1-4666-2490-0 (print & perpetual
access) 1. Systems migration. 2. Service-oriented architecture (Computer science) 3. Cloud computing. 4. Software
maintenance--Management. I. Ionita, Anca Daniela, 1966- II. Litoiu, Marin. III. Lewis, Grace A.
 QA76.9.S9M45 2012
 004.67’82--dc23
 2012026466

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Editorial Director: Joel Gamon
Book Production Manager: Jennifer Romanchak
Publishing Systems Analyst: Adrienne Freeland
Development Editor: Monica Speca
Assistant Acquisitions Editor: Kayla Wolfe
Typesetter: Erin O’Dea
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2013 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

303

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

DOI: 10.4018/978-1-4666-2488-7.ch013

Michael Athanasopoulos
National Technical University of Athens, Greece

Kostas Kontogiannis
National Technical University of Athens, Greece

Chris Brealey
IBM Canada, Canada

Considerations of Adapting
Service-Offering Components

to RESTful Architectures

ABSTRACT

Over the past few years, we have witnessed a paradigm shift on the programming models and on ar-
chitectural styles, which have been used to design and implement large-scale service-oriented systems.
More specifically, the classic message-oriented and remote procedure call paradigm has gradually
evolved to the resource-oriented architectural style, inspired by concepts pertinent to the World Wide
Web. This shift has been primarily driven by multifaceted functional and non-functional requirements
of Web enabled large-scale service offering systems. These requirements include enhanced interoper-
ability, lightweight integration, scalability, enhanced performance, even looser coupling, and less
dependence on shifting technology standards. As a consequence, several, and sometimes antagonistic,
architectures, design patterns, and programming paradigms have emerged on a quest to overcome the
constantly expanding enterprise software needs. In the context of resource-oriented architectures, the
Representational State Transfer (REST) architectural style has gained considerable attention due to its
simplicity, uniformity, and flexibility. More specifically, the potential for scalability and loose coupling,
the uniformity of interfaces, and the efficient bridging of enterprise software systems with the Web are
significant factors for software architects and engineers to consider REST when designing, implement-
ing, composing, and deploying service-oriented systems. These issues stir discussion among academics
and practitioners about how to properly apply REST constraints both with respect to the development
of new enterprise systems and to the migration and adaptation of existing service-oriented systems to
RESTful architectures. In this chapter, the authors discuss issues and challenges related to the adapta-
tion of existing service-oriented systems to a RESTful architecture. First, they present the motivation

304

Considerations of Adapting Service-Offering Components to RESTful Architectures

INTRODUCTION

During the past decade, service-orientation has
become the dominant computing paradigm in the
domain of enterprise software systems. More spe-
cifically, it has been argued that Service-Oriented
Architectures (SOAs) provide significant benefits
to organizations, and generally allow for better
alignment of business needs and IT solutions.
The fundamental principle is that SOAs orga-
nize functionality as collections of interoperable
services with standardized interface specification
and description methods. Furthermore, service
communication is independent of implementation
and infrastructure allowing thus, for heterogeneous
systems to communicate effectively, and for low-
ering costs related to integration and interopera-
tion. Even though, SOA as a set of architectural
principles is not bound to any specific technology,
W3C’s Web Services technologies and standards
have been the primary choice of architects when
implementing SOAs, especially for enterprise and
B2B systems. For example, it has emerged as de
facto standard that Web Service components are
described by specifications written in the Web
Service Description Language (WSDL), and in-
voked by utilizing the SOAP family of protocols.
These service components usually follow one of
two binding styles: Remote Procedure Call (RPC)
and document-based message exchange. The RPC
binding style explicitly references the service
operation to be invoked, while document-based

binding style promotes the usage of messages that
include schema-based elements. These schema-
based elements are interpreted by the receiver
(i.e. server) in order to dispatch and invoke the
appropriate operation. An advantage of this ap-
proach is that it is easier to validate the requests
since there is a direct reference to a schema to
which the message is supposed to conform to.
As a result, although RPC was considered to
be the dominant style when Web Services were
first introduced, tools and frameworks started
to support a document-based invocation style.
However, in practice has been proven that the
inclusion of the operation’s name in the mes-
sage is quite significant for the interoperability
and consequently, many document-based Web
Service frameworks adopted and implemented
a special pattern of document-based style called
the “wrapped document” pattern. In the “wrapped
document” pattern the message that is sent, is es-
sentially a schema element that is named after the
operation’s name, and the message that is received
is also a schema element whose name follows a
similar operation-based convention. In this con-
text, a procedure is known to the service consumer,
and it is readily addressable and available to be
invoked by service messages, regardless of the
particular binding or even technology the service
may use to expose its functionality. Services that
are published following the procedure-oriented
Web Services stack of protocols are integrated
over the Web and not through the Web—making

behind such an adaptation need. Second, the authors discuss related adaptation theory, techniques,
and challenges that have been recently presented in the research literature. Third, they identify and
present several considerations and dimensions that the adaptation to REST entails, and the authors
present frameworks to assess resource-oriented designs with regard to compliance to REST. Fourth, the
authors introduce an adaptation framework process model in the context of enterprise computing sys-
tems and technologies, such as Model Driven Engineering and Service Component Architecture (SCA).
Furthermore, they discuss open challenges and considerations on how such an adaptation process to
REST can be extended, in order to yield systems that best conform to the REST architectural style and
the corresponding REST constraints. Finally, the chapter is concluded with a summary and a discussion
on the points raised and on some emerging trends in this area.

305

Considerations of Adapting Service-Offering Components to RESTful Architectures

the term “Web” included in their name rather
unfortunate. Organizations are realizing the need
for a more natural integration of their systems
with the Web and through the Web in a way that
would not have to overcome the challenges that
the Web Services stack of protocols sets. Such a
development would enable the potential that is
raised by exposing existing pieces of software
or data as common Web resources so that, the
conventional service-providing usage will become
easier, and serendipitous re-usage of the resources
will be possible, following the example of Web
2.0 technologies such as, mash-ups and widgets.

Resource-orientation, on the other hand,
introduces the concept of content-driven decom-
position of service capabilities into resources that
capture and convey information. Resources are
usually defined as “things” that can be named,
have state, share a common, uniform interface,
are visible, and possibly manipulable through
representations of their state. Also, resources
are associated with universal identifiers and are
addressable by accepting clients’ requests that,
depending on the communications protocol may
include control data (that is, information on how
to understand and interpret the client’s request),
resource metadata, representation data and meta-
data. Consequently, resources are conceived as
information-rich, stateful conceptualizations that
not only provide data and functionality but also,
link to each other according to specific structural
and operational relationships. REST, which stands
for Representational State Transfer, is an archi-
tectural style containing a set of constraints that
can be used to build network-based, resource-
oriented architectures. Architectures based on
REST demonstrate several significant properties
for distributed applications such as scalability,
simplicity, reusability and performance, to name
a few (Pautasso & Wilde, 2009; Pautasso, Zim-
mermann, & Leymann, 2008; Vinoski, 2008; Al
Shahwan & Moessner, 2010). The largest example
of resource-oriented architecture is the Web itself,
and its architectural success attracts significant at-

tention from the software engineering community
onto how REST could be adopted in the enterprise
software domain as well.

Apart from the desired properties and con-
textual architectural choices, traditional service-
oriented systems on the one hand, and REST-based
service systems on the other, demonstrate an
obvious conceptual mismatch in offering service
capabilities. Specifically, the procedure-oriented
approach of providing software services differs
significantly from the resource-oriented approach
due to the distinct methodology of decomposing
and publishing service capabilities as address-
able units of functionality and data. In the first
case, units of functionality are organized into
services and service operations, which not only
have specific process semantics but also, allow
for data retrieval and manipulation. In the latter
case, service capabilities are modeled as stateful
resources and functionality is published through
interaction (retrieval and manipulation) of service
consumers with such content-rich resources. Fur-
thermore, an additional diversification between
procedure-oriented and resource-oriented services
is that the latter makes less out-of-band or a priori
assumptions, regarding the client’s knowledge
of an application’s intra-service protocols and
conventions and consequently, rely more on
the understanding of common and most often
standardized processing models and resource re-
lationships. It should be noted that REST’s target
are Web-scale architectures that span multiple
domains and the decisions made regarding the
design of such systems should be based on the
effect that each decision has in a network-level
scale. For example, in an environment like the
above, generality is preferred over efficiency in
the components’ interfaces. Actually this particular
choice is formalized by REST with its Uniform
Interface constraint. The uniformity of interfaces
imposed by this constraint essentially promotes the
level of independence between the communicating
parts with regard to their internal technological or
architectural evolution, reducing the coupling to

306

Considerations of Adapting Service-Offering Components to RESTful Architectures

a minimal set of commonly accepted agreement
points. Such interface constraints do not usually
restrict architects that employ procedure-oriented
approaches, where arbitrary operations are defined
to encode custom, component-specific semantics.

It could be noted that during the last few years
the community is intensively working on bridg-
ing the gap between being able to develop truly
conformant large-scale implementations and the
currently available methods, models and tooling.
More specifically, specialized programming mod-
els, development environments, languages, and
models along with infrastructure frameworks are
required for organizations and businesses to be able
to widely adopt RESTful approaches for designing
and implementing new resource-oriented service-
offering enterprise systems. However, the need for
resource-orientation and alignment with the Web
goes beyond new systems that are implemented
from scratch. Existing service-offering enterprise
systems are products of significant investments,
and most often provide mission critical, well
validated functionality, to a variety of clients.
Redeveloping existing functionality in order to fol-
low a more resource-oriented approach and better
align service-offering procedural components to
RESTful environments would include significant
costs of redesigning, re-implementing and re-
testing such systems as well as, maintaining du-
plicate functionality when required. Furthermore,
fully migrating already deployed components to
REST-based ones would break existing clients,
which is usually not acceptable as a choice for
large organizations. These issues highlight the
need for a methodology to enable an automated
or semi-automated adaptation of existing service-
offering components in a non-intrusive manner
to REST-based exposure of their functionality. In
this context, there are interesting questions that
arise regarding how someone may map arbitrary,
domain, or business-specific procedural interfaces
to actions that belong to a uniform interface
across a set of resources (which is also unknown
beforehand in an adaptation process and should be

also specified), and to whether two paradigms as
diverse as the above may converge so that existing
components provide their functionalities utilizing
both paradigms. In this chapter, we discuss issues
and challenges that exist in this domain and we
provide a holistic view of a roadmap for adapting
procedure-based service-offering components to
a resource oriented architecture style. In this re-
spect, we present an adaptation framework along
with a process model of how to facilitate and
significantly automate the process of providing
RESTful expositions of procedural functionality.

This chapter’s scope and focus is to provide
a baseline and a roadmap for researchers and
practitioners to consider, while attempting to ad-
dress the SOA/WS to REST adaptation problem.
Specifically, it aims to provide and discuss the
fundamental challenges pertaining to the adapta-
tion problem and present a high-level model as
a conceptual guidance for a systematic approach
in addressing static, dynamic, and deployment-
related adaptation concerns. As a roadmap for the
adaptation concepts, that are discussed in detail
in Section 3 of this chapter, we first examine the
management of quality characteristics that proce-
dure-oriented implementations of service-oriented
systems demonstrate in the context of an adapta-
tion/migration process, and how they relate to the
proposed adaptation approach. Once the focus
of the approach is clarified in the functional and
architectural aspect, we proceed discussing issues
related to the conformance of a resource-oriented
architecture to REST architectural constraints, as
these are defined in the REST specification by
Fielding. The purpose of such discussion is to pres-
ent the means by which we can assess the degree
of conformance of a migrant/adapted architecture
to the REST constraints and to present existing
approaches that can assist a software engineer
in deciding or evaluating the level of RESTful-
ness that the adapted view of the system should
demonstrate. Since, the adaptation process has
to be considered within the context of a practical
implementation methodology and deployment

307

Considerations of Adapting Service-Offering Components to RESTful Architectures

scenario, Section 3 discusses the principle of
Model-Driven Engineering (MDE) and Service
Component Architecture (SCA). MDE allows for
the necessary infrastructure to represent software
artifacts as MOF-compliant models and the pro-
grammatic manipulation of such models for the
purposes of adaptation. Similarly, SCA provides a
rich framework whereby service-oriented systems
can be specified as models and their interactions
can be represented in a way that can be customized
in the form of different bindings. The interesting
implication is that a software architect can include
new bindings (such as bindings for supporting
RESTful interactions with the service) and the SCA
runtime will provide the necessary infrastructure
for the new binding to be ubiquitously deployed
and used. The interested reader who may want
to embark on such an adaptation project can also
delve into technical papers presented in various
IEEE, ACM, and other venues, conferences, and
workshops for obtaining more insights of the
various low-level technical challenges involved. A
collection of such related approaches is presented
and discussed later in the chapter (Section 2.2).

The rest of the chapter is organized as follows.
In Section 2, we summarize the background of
resource-orientation, the theory of REST and
RESTful services in practice, in order to provide
to the reader the necessary context and for un-
derstanding the basic principles, constraints, and
practical considerations of RESTful architectures.
Furthermore, Section 2 discusses and presents
related work with regard to specific approaches
to RESTful service modeling and the adaptation
problem, as these are found in the related litera-
ture. In Section 3, we present and discuss a set of
considerations related to the proposed software
adaptation process, as outlined above. In Section
4, we present an adaptation framework as a road-
map to gradually meeting REST’s requirements
by addressing REST’s constraints. Limitations of
the approach as well as open issues of the adap-
tation problem are discussed in Section 5 and a

summarization of the chapter along with future
research directions are presented in Section 6.

BACKGROUND AND
RELATED WORK

REST in Theory and in Practice

REST in Theory

REST is an architectural style defined by Roy
T. Fielding in his dissertation in 2000 (Fielding,
2000). Modern Web’s scalability, flexibility, and
robustness are often attributed to Web’s general
conformance to the REST style. However, REST is
not tied to any particular standard or protocol and
there are no such direct references to Web’s tech-
nologies or standards for its definition. Fielding’s
dissertation describes several architectural styles
along with the examination of induced properties
and he derives REST by combining such styles.
Specifically, he describes how each constraint af-
fects architectural elements and what properties are
expected to be induced when the constraints are
applied in coordination. The specific constraints
included in the REST specification are: Client-
Server, Stateless, Cache, Uniform Interface, Lay-
ered System, and the optional Code-on-Demand
constraint. The first three constraints were applied
to the Web since its early architecture, while the
next three were formalized and applied as the
Web architecture evolved. Additionally, the Uni-
form Interface constraint is regarded as a central
feature in REST. Brief descriptions of REST’s
architectural constraints are provided in Table 1.

RESTful Web Services

For a system’s architecture to be fully RESTful it
should conform to all of aforementioned REST’s
constraints. In this respect, utilizing HTTP and
URIs to offer services through a Web API does

308

Considerations of Adapting Service-Offering Components to RESTful Architectures

not necessarily mean that REST is applied, since
HTTP offers a variety of features that may or may
not be used in accordance to REST. Additionally,
RESTful architectures may be implemented using
any communication protocol other than HTTP, as
long as it would allow for conforming to REST’s
constraints. Having said that, the fact that HTTP
is inherently REST-enabled and, HTTP’s client
and server implementations are widely deployed
and adopted, make this protocol a very popular
and, presumably, a sound choice for implementing
systems that are supposed to conform to REST.
Figure 1 provides an example of a bookstore
service offered through both a procedure-oriented
and a resource-oriented API. The left hand side of
the picture depicts the use of a procedural service
API of a bookstore service where a customer is
able to search a catalog, create new orders, add
and remove items from orders and submit orders.
These operations are directly mapped as “proce-
dures” that pertain to services offered by a service-
oriented architecture infrastructure. In this classic

service-oriented paradigm, services are invoked
by name using appropriate parameters. On the
right hand side of the figure, the same scenario is
illustrated but at this time is based on a resource-
oriented architecture. In such a context, instead of
services there are resources such as “bookstore,”
“catalog,” “order collection,” “order item” and
“order status.” These resources are manipulated
using standard HTTP operations such as GET,
PUT, POST and DELETE. For example, to create
a new order item resource, a POST request can be
issued from the client to the server pertaining to
the orders collection resource. Similarly, to update
the status of a bookstore order a PUT request can
be issued to the order status resource.

The subset of Web-based service systems that
truly follow REST principles are called RESTful
Web services (Richardson & Ruby, 2007). These
services utilize HTTP and URI along with com-
mon Internet’s media types and Web’s standards
such as XML and JSON for data formatting.
Furthermore, during the last few years the com-

Table 1. REST architectural constraints

Architectural
constraint

Description

Client-Server The Client-Server constraint models the interactions and separates the role of requesting and the role of pro-
viding service.

Stateless
(communication)

Stateless constraint refers to client-server communication and requires that every request from the client to the
server is independent from previous ones. Consequently, there is no server-side session state kept during such
interactions and each request should be descriptive enough to be fully understood on its own.

Cache The Cache constraint mandates that responses by the server should indicate (probably implicitly) whether they
can be cached or not.

Uniform Interface The Uniform Interface constraint imposes the generality of components’ interfaces and requires that these in-
terfaces have system-wide universal semantics. Also, this constraint introduces and describes the resource-ori-
entated modeling of a system’s content, realized by its dependence to further architectural constraints, usually
referred to as Uniform Interface’s subconstraints. Specifically, REST states that the uniformity of interfaces
in a RESTful architecture is obtained by its conformance to the four following constraints: identification of
resources, manipulation of resources through representations, self-descriptive messages and hypermedia as the
engine of application state (usually referred to as HATEOAS or the “hypermedia constraint”).

Layered System The Layered System constraint mandates that the organization of the system follows a hierarchical, layered
fashion, where each layer provides services to the layer above and consumes services from the layer below.

Code-On-Demand Code-On-Demand allows for client agents’ logic to be extended by downloadable and executable code. This
last constraint is an optional constraint and Fielding argues that it should be supported by an architecture
conforming to REST in the general case. However, there may be contexts that this behavior is disabled and
that possibility should be acceptable.

309

Considerations of Adapting Service-Offering Components to RESTful Architectures

munity has established several conventions into
using such Web’s protocols and standards to fa-
cilitate the systematic development of RESTful
Web services. These conventions relate for in-
stance to the mapping of HTTP’s methods
(“verbs”) to CRUD-like semantics (for example,
using HTTP’s POST method to create a new re-
source, GET to read a resource, PUT to update
an existing resource, and DELETE to delete a
resource), restricting the broader semantics that
these methods have according to HTTP specifica-
tion. Similarly, terms like ROA (Resource-Ori-
ented Architecture) (Richardson & Ruby, 2007)
and WOA (Web-Oriented Architecture) (Gail,
Sholler, & Bradley, 2008) were introduced and
defined in order to help the community better
organize and communicate the concepts and the
variations that REST-based designs demonstrate.
Furthermore, several REST-inspired SOA patterns
have been proposed (Balasubramanian, 2008),
and significant research is also being conducted
in the area of RESTful service composition (Pau-
tasso, 2009).

Software Adaptation
and Related Work

Software adaptation has been proposed as a dis-
cipline over the past few years (Brogi, Canal, &
Pimentel, 2006; Canal, Murillo, & Poizat, 2004,
2008); however, the problem of adapting existing
software components is an area of long research
and discussion (Kell, 2008). Software adaptation
relates to the challenges that emerge when reusing
existing software artifacts in new applications and
which can be addressed by introducing a category
of special computational component elements
called adaptors. These adaptors are responsible
for enabling the communicating components to
interact effectively, overcoming mismatches that
may exist on both functional and non-functional
aspects. These mismatches may relate to any of
the four interface levels such as signatures, be-
haviors, non-functional properties, and semantics.
Additionally, adaptation must be non-intrusive
and, automatic or at least semi-automatic. In addi-
tion, the need for software adaptation is regarded

Figure 1. Bookstore service example: procedure and resource-oriented alternatives

310

Considerations of Adapting Service-Offering Components to RESTful Architectures

as independent of the point in the life cycle that
the system may be in and emerge at any stage of
its life cycle.

In order to characterize an adaptation process
three parameters can be used: (a) the time that the
need for adaptation is detected (requirements,
static, dynamic), (b) the adaptation management
(manual, automatic), and (c) the adaptation con-
tent (functional, non-functional). In this respect,
the adaptation approach discussed in this chapter
can be categorized as a software adaptation ap-
proach that is non-intrusive (existing component
implementation is not modified and keeps offering
services to existing consumers), the adaptation
need is realized at the maintenance stage and
the process model demonstrates a high level of
automation, limiting user involvement to mostly
providing declarative refinement feedback.

Apart from the practitioners’ interest in being
able to expose existing functionality in a REST-
ful manner, the challenges and issues that the
transition of existing systems to resource-oriented
architectures have also attracted significant at-
tention in the academic world. The adaptation
approach presented in this chapter was designed
and developed by generalizing, abstracting and
extending existing methods and techniques in
the area of mapping procedure-oriented service-
offering systems to resource-oriented ones
(Liu, Wang, Zhuang, & Zhu, 2008; Laitkorpi,
Koskinen, Systa, 2006, 2009; Athanasopoulos
& Kontogiannis, 2010; Upadhyaya, Zou, Xiao,
Ng, & Lau, 2011; Kennedy, Stewart, & Jacob,
2011). Although different in several aspects, our
framework demonstrates similarities with earlier
contributions to the problem, and focuses on a
systematic approach of decomposing the adap-
tation problem into sub-problems pertaining to
REST’s architectural constraints and to possible
architectural decisions that can be taken by the
user for driving the adaptation process.

In Laitkorpi et al. (2006) authors introduce
a UML-based approach to abstract legacy APIs
into a canonical interface model that can be used

to expose REST-like services. Their approach
works on the interface level of the legacy system
and above. Specifically, they regard as input an
API documentation with sufficient information
to run the analysis. This information is assumed
to involve a set of UML models that describe the
structural as well as behavioral aspects of the API.
However, such models are not usually available
in practice and they would require considerable
effort to create them from scratch -probably
comparable to writing the adapter code manu-
ally. The process proposed in that paper is split
into three basic steps: a) API analysis in order to
extract an API architecture, which is performed
manually, b) canonicalization in order to move
from the API architecture to a canonical interface
model, and c) operation and structure mapping to
generate the adapter code. Similarly, a subsequent
work from the same group (Laitkorpi, Selonen,
& Systa, 2009) describes a model-driven process
for gradually transforming procedure-oriented
specification models (e.g. a Sequence Diagram
of top-level components) to resource-oriented
interfaces. More specifically, the authors describe
a process of analyzing and processing functional
specifications to create an information model
of the service. This model is then mapped to a
resource model, which in turn is translated into
RESTful service specification artifacts. Both ap-
proaches demonstrate how UML can be utilized
in a model-driven process to facilitate the process
and allow for model-based transitions from pro-
cedural conceptualizations of service capabilities
to resource-oriented ones.

Furthermore, in Liu et al. (2008), the authors
propose a process for reengineering legacy sys-
tems to REST. The process starts by analyzing the
source code of the system. Informative entities
driven methodologies are then used to extract
candidate resources. Rules and experts’ opera-
tions are applied to refine the resource list, and
URIs are designed and generated based on map-
ping strategies. URIs may also carry information
with regard to scope, resource representation, and

311

Considerations of Adapting Service-Offering Components to RESTful Architectures

even business rules. Then methods are assigned
and representations are designed. Finally, legacy
services are wrapped by mappings to REST-based
interactions. The starting point of the analysis is
the source code as well as models such as ER
diagrams, UML diagrams, requirements, and
documentation, implying significant human in-
volvement. Furthermore, the process is focused
on the design and refinement of URIs in order
to map relationship, action and other semantics.

Similarly, in Athanasopoulos and Kontogiannis
(2010), a technique for identifying resources from
legacy service descriptions is presented. In the
adaptation technique presented, WSDL files are
analyzed in order to extract REST-like resources.
The technique works on the interface level using
as input the machine-readable description of the
service. Initially a model that captures signature
information of the operations is built from the
WSDL description. Then the model is extended
by categorizing its elements and rules are applied
to extract potential resources. Next, a rule-based
resource selection is applied and the dependen-
cies between the actual resources are captured in
dependency graphs. Finally, resource identifiers
are produced based on resources dependencies
and operations are assigned according to patterns
present on the signature model.

More recently, in Upadhyaya et al. (2011),
the authors present an approach and a prototype
for migrating Web Services based on SOAP, to
REST-based services. The authors describe sev-
eral steps for the migration process including:
the identification of similar operations through
clustering, the identification of the resources
utilizing operation names as well as input and
output parameter names, the identification of
resource methods by attempting to map HTTP
verbs to existing operations and finally, the mes-
sage conversion between SOAP-based and HTTP
messages. Their prototype also allows the user
to review and possibly refine the output of the
techniques before deploying the service wrapper.

Finally, viewing the problem from the client-
side, the authors in Kennedy, Stewart, and
Jacob (2011) discuss a protocol adapter so that
SOAP-enabled clients could be used to invoke
RESTful services, taking advantage of all of the
Web’s optimizations and especially caching. The
authors provide a discussion around the problem
and present a wizard-like prototype that can help
the user drive the protocol adapter generation in
a user-friendly manner.

Here, in accordance with most of the aforemen-
tioned approaches we also propose a model-driven
approach for gradual analysis and transformation
of software artifacts. Additionally, we extend
the collection of the concerns that relate to this
type of software adaptation, and pertain to REST
constraints and features of RESTful services, and
we introduce a clear separation of concerns be-
tween structural (static) and behavioral (dynamic)
concerns. Then, we propose a process that aims
to organize the addressing of these concerns, the
capture and description of the required input, as
well as, intermediary and output artifacts, and the
user’s involvement, so that a systematic adaptation
can be achieved.

ADAPTATION CONSIDERATIONS

Service Quality Issues

Statelessness and Transactionality

Stateful communication with services is an impor-
tant issue in service-oriented computing that has
to be addressed before applying any adaptation
technique. It should be noted that REST’s require-
ment for statelessness affects the communication
and not the service itself (resources are inherently
stateful entities). Specifically, REST requires that
no request should be dependent to a previous one
in order to be understood and interpreted. In this
respect, server-side volatile session state should
not exist in a RESTful system (or at least, should

312

Considerations of Adapting Service-Offering Components to RESTful Architectures

not be observable) and messages should be self-
descriptive, completely indicating how they can
be understood and interpreted independently for
any previous interaction.

Since preserving non-persistent session state
is not acceptable in RESTful architectures, a chal-
lenge that emerges in the adaptation of SOA/WS
systems to REST is how transaction semantics
can be modeled effectively in a truly RESTful
manner. The general approach that has been
proposed in the literature is designing an appro-
priate resource model that can model transaction
semantics persistently when required. Along this
lines, a specification for supporting atomicity in
REST-based distributed transaction scenarios with
coordinated outcomes (such as the two-phase
commit protocol) is proposed by the REST-* initia-
tive through defining transaction coordinator and
transaction participant resources. Nevertheless,
whether REST can accommodate or, whether it
is generally suitable as an architectural style for
supporting distributed transaction models has
been a topic of long debate (Little, 2009; Pardon
& Pautasso, 2011). In this respect, several propos-
als in the literature are exploring transactions and
REST through introducing a variety of transaction
models and techniques (Marinos, Razavi, Mos-
choyiannis, & Krause, 2009; Razavi, Marinos,
Moschoyiannis, & Krause, 2009; Da Silva Maciel
& Hirata, 2009, 2011; Pardon & Pautasso, 2011).
The incorporation of such methodologies in an
adaptation process may require extensive and
probably intrusive reengineering of the adapted
system and may fit better in a more generic mi-
gration effort—not one leading to encapsulation
of existing implementations that this chapter is
focused on.

General QoS Features

Most existing Web 2.0 RESTful services have
usually relaxed requirements with regard to QoS
features when compared to enterprise service
scenarios. WS* QoS specifications usually demon-

strate a high level of sophistication; however, they
are often significantly complex and this is usually
why they are not widely adopted. Discussions
around RESTful enterprise systems with such
requirements advocate a careful analysis of the re-
quirements’ rationale and goals and, the utilization
of existing Web technologies as means of fulfilling
them. To date, the application of standardized QoS
frameworks has not been widely examined and
only a few such initiatives and respective artifacts
exist. This fact may be attributed to a prevailing
view in the REST community that the simplicity
and generality of RESTful HTTP implementa-
tions is a significant advantage that architects
should try to preserve, even in complex business
scenarios—solutions to business-level problems
should not be technical. We consider that an ar-
chitect should first investigate whether the QoS
requirements for the system can be achieved in
the context of a RESTful architecture and whether
the properties expected to be induced by applying
REST, according to its definition, are compatible
with the adaptation objectives.

An adaptation approach like the one discussed
in this chapter focuses mostly on the functional
characteristics of the interfaces and the adaptation
process is centered on resource-based exposure
of service capabilities. More specifically, the
major concern of such an adaptation process is
the exposure of source system’s functionality
as a set of artifacts that define corresponding
RESTful interfaces (e.g. collection of resources,
media types, universal actions, hypermedia, etc.).
Even though QoS requirements for the system
are important and should be taken into account
in a migration effort, general QoS features can
be considered as concerns that go beyond the
functional translation of the service interface and
could be separately addressed, with the exception
probably of statelessness and transactionality as
discussed above. In this respect, quality charac-
teristics can be regarded as being configurable
in the underlying technology level, similar to
SCA’s methodological, independent treatment of

313

Considerations of Adapting Service-Offering Components to RESTful Architectures

QoS aspects. In this way, certain quality features
can be achieved by appropriate configuration
choices of the underlying run-time component.
For example, a configuration point would be
whether to utilize HTTP or HTTPS for meeting a
security requirement. Having said that, it should
be noted that there are other quality characteristics
of service-oriented systems, whose preservation
is either under question with most of the existing
implementation technologies and standardization
efforts of RESTful services, or may, in general,
require extensive reengineering of the system in
order to be supported in the adapted RESTful view
of the system. Such issues are still open research
challenges in the community.

Levels of RESTful-ness and Induced
Properties for the Target System

Evaluating the conformance of REST-claiming
systems to REST’s constraints is significant in two
aspects. First, REST is an architectural style and as
such, is used to convey certain architectural prop-
erties of interest, facilitating the communication
and understanding between software architects,
designers, and developers. Characterizing systems
as being RESTful while they are not (which is a
quite common case on existing Web APIs), may
lead to misinterpretations among parties involved
in the software development process and, eventu-
ally create misconceptions with regard to what
REST really means. Second, REST includes a
coordinated set of constraints, meaning that when
these constraints are applied together, certain
properties are expected to appear in the architec-
ture. When one or more constraints are relaxed,
probably due to certain, weighted architectural
decisions that address specific issues for an ap-
plication, then this deviation should be able to be
captured systematically, so that the trade-offs that
are included can be examined with regard to the
system-wide desired properties. In this respect,
REST is not a good fit for all applications and
alternatives or compromises will always be present

in practice. Evaluating RESTful-ness by examin-
ing the conformance of an architecture to REST’s
constraints assists architects in making better
decisions with regard to patterns and practices
used. Such conformance analysis of a design to
REST constraints is important for both developing
new systems and adapting existing components
to REST. For this purpose, we discuss below a
collection of models, approaches and techniques
that have been proposed in the literature as means
to assist software engineers evaluate the degree
of conformance of the target adapted architecture
to the REST constraints.

Evaluating Maturity and
Constraint Conformance

Since there may be different architectural choices
for a system, a collection of levels of maturity
(or levels of conformance to REST) have been
proposed. These levels of maturity of existing
HTTP-based service systems with regard to
REST have been empirically organized in a model
presented by Leonard Richardson, the so-called
Richardson’s Maturity Model (RMM) as referred
to by Martin Fowler (2010). RMM has four lev-
els, each of which essentially represents different
degrees of conformance to REST’s constraints,
and mainly to the Uniform Interface constraint.
Figure 2 presents the RMM levels and depicts
respective examples of HTTP-based interactions.
The goal of each interaction is to retrieve a list of
order items that have been validated that is part
of a Shopping service.

Starting from Level 0, the HTTP protocol,
although it is an application-layer protocol, is
used as a transport mechanism, mainly for invok-
ing remote procedures. At this first level, service
systems usually offer a single URI as service
end-point which consumers use to send mes-
sages to the server that manages the URI to be
processed. The Level 0 example in Figure 2 dem-
onstrates a single service endpoint that receives
an invocation call for the “listValidOrders” op-

314

Considerations of Adapting Service-Offering Components to RESTful Architectures

eration using the POST HTTP method and returns
a list of order items included in a generic envelop
structure. The messages usually contain structured
data in formats like XML or JSON, with or with-
out protocols like SOAP encapsulating the data.
XML-RPC, XML-JSON and WS* Web Services
over HTTP are typical examples of such services.

Level 1 is the first transition to a more REST-
ful approach by decomposing single endpoints
to multiple ones, which provide semantically
distinct functionality and data within a service.

These “endpoints” are identified by and accessed
through different URIs. In other words, Level 1
introduces the usage of REST-like resources as a
way to model and expose service functionality. Up
to this level, HTTP methods are not necessarily
used according to their semantics and HTTP is
mainly used as a medium to tunnel requests rather
than as a way to convey the intent of interactions
between client and server. In Figure 2, the Level
1 example illustrates that “orders” are assigned a
separate URI and the invocation call is targeted

Figure 2. Levels of Richardson maturity model with examples

315

Considerations of Adapting Service-Offering Components to RESTful Architectures

towards that URI (POST is still used as the HTTP
method for the interaction). The response includes
an indication of the invoked functionality and a
list of order items.

Level 2 introduces the usage of HTTP methods
(or verbs) according to their semantics in order
to convey to the server (and probably intermedi-
aries) the purpose of the request. To generalize
this concept, Level 2 includes services that utilize
HTTP’s control data to indicate the semantics and
the properties of the interaction (to the extent that
this can be done using a predefined set of control
data). For example, GET is used for the retrieval
of representations and the safety property (i.e.
there should be no server-side side effects because
of the interaction) that the HTTP specification
requires for GET, is respected. Usually, CRUD-
based services are created up until this level for the
manipulation of data-rich resources. The Level 2
example illustrates the use of a GET instead of a
POST, and the use of a URI to identify the proper
collection of resources that the specific interac-
tion operates upon, that is the valid orders. The
response contains a representation of the resource,
which is a list of valid order items.

Level 3 refers to the hypermedia constraint.
Servers provide hypermedia elements to guide
clients as to which are the possible future commu-
nication interactions, directing thus the transitions
of the application state. Level 3 of the maturity
model is regarded as a precondition to REST—but

not the only one, since several more constraints
must be fulfilled to meet full conformance. Level
3 goes a step further by introducing the usage of
hypermedia elements (i.e. links, forms, and con-
trols). In the Level 3 example depicted in Figure
2, in addition to the use of a GET verb and the
correct use of a URI to identify the resource, the
response from the server also contain hyperme-
dia elements that can be used by the client to
correctly interpret the response and plan for the
next interaction.

RMM apart from indicating the maturity
levels with regard to REST, it also summarizes
categories of Web services that are developed
under the prism of conflicting forces and es-
sentially represent trade-offs that architects have
to make, in order to induce properties to their
architectures that may partly differ from the ones
induced by REST. With respect to RMM and
related discussions on addressing the issue of
examining interface uniformity there is work that
proposed a conceptual framework for evaluating
and assessing a service interface against REST’s
uniform interface constraint (Athanasopoulos,
Kontogiannis, & Brealey, 2011). The Uniform
Interface Conceptual Framework (UICF), which
was proposed, models a layered approach in
constraint conformance evaluation, an abstracted
view of which is depicted in Figure 3.

Specifically, architectural constraints in the
first layer have direct reference to REST’s defini-

Figure 3. Abstracted view of uniform interface conceptual framework

316

Considerations of Adapting Service-Offering Components to RESTful Architectures

tion according to Fielding (2000), while design
criteria in the second layer constitute practical
interpretations of these architectural constraints
but in a technology-neutral way. These criteria
often represent compromises or conventions after
meticulous argumentation over how to implement
abstract architectural concepts in order to obtain
a uniform interface without becoming context or
technology-specific. Currently, the UICF’s design
layer includes interpretations extracted through
reviewing the literature and publications on REST
organized in a set of criteria that cover a significant
spectrum of issues that a REST designer faces.
The major differentiating feature of design crite-
ria at the second layer of the proposed framework,
when compared to architectural constraints of the
first layer, is that it lowers the level of abstraction
by introducing a set of identifiable, concrete
practice-oriented conceptual units in order to guide
or assess design in a way that is technology-ag-
nostic while not being technology-ignorant. Fi-
nally, the design criteria of the second layer are
manifested as instantiation techniques in the third
layer. In this respect, the instantiation layer is
populated with realization-level configurable
techniques, which can be used to either examine
the conformance of an interface to the REST
architectural style, or guide the implementation
of systems in order to conform to it.

UICF, RMM and analogous models are of
special interest in an adaptation process since
such a process should be flexible enough to ac-
commodate architectural compromises based on
user input, making deviations from REST con-
straints’ requirements possible. Specifically, the
user that drives an adaptation process, should be
able to intervene and apply decisions that serve
his/her requirements, goals or policies but that
may reduce the general conformance to REST.
Using assessment models, such deviations can
be systematically captured and organized so that
they can be further studied in terms of their effects
on desired and induced properties. Two such con-
formance assessment approaches that help assess

the effects of a reduced constraint conformance
to the induced properties, are discussed in the
next subsection.

REST Constraints and Architecture-
Wide Induced Properties

The problem of assessing and evaluating the
compliance level of a system to REST principles
has been examined on the basis of the possible
side-effects of constraint deviations to the induced
properties of an architecture (Navon & Fernandez,
2011). The analysis is performed by utilizing influ-
ence diagrams that reflect positive and negative
effects between architectural constraints/styles
and properties. Such diagrams can be constructed
and used, to systematically study how each level
of conformance may affect the properties, and to
highlight the trade-offs included in such archi-
tectural decisions.

HTTP-based APIs have been also empiri-
cally examined with regard to Uniform Interface
constraint and its subconstraints by Jan Algermis-
sen (2010), where a discussion is also provided
regarding how each expected architecture-wide
property is affected, given the level of conformance
to Uniform Interface constraint (which essentially
defines a categorization of HTTP-based URIs).
The examination is performed with regard to
properties such as performance (network perfor-
mance, network efficiency), visibility, modifi-
ability (evolvability, extensibility), simplicity,
scalability, as well as different costs pertaining to
the architecture’s lifecycle (initial, maintenance,
and evolution costs).

We consider that in the adaptation process,
the level of RESTful-ness for the target system
results from the choices that the user guiding the
process, makes. We regard the above frameworks
as complementary methodologies and we do not
explicitly use predefined compliance levels since
the adaptation framework should be able to cover a
wide range of requirements. However, the architect
driving the adaptation process should be aware

317

Considerations of Adapting Service-Offering Components to RESTful Architectures

to the above concepts and trade-offs, and should
be able to recognize the probable side effects of
the choices he or she makes during the process.

Practical Considerations: Model-
Driven Engineering and Service
Component Architecture

Model-Driven Engineering (MDE) (Schmidt,
2006; Kent, 2002) has been proposed as a meth-
odology that is based on creating, processing and
using models to describe, develop and document
software. Software models are abstractions that
represent knowledge about the domain and the
application, and they are used to design, develop
and even to automatically generate system arti-
facts, such as source code. MDE technologies are
regarded as an effective way to address the com-
plexity related to the design of software systems
with complex requirements. We view the SOA/
WS to REST adaptation process as being “model-
driven,” significantly utilizing respective Model-
Driven Engineering standards and technologies.
Specifically, throughout the process, models
that capture system, application, technology, or
adaptation-specific information can be extracted,
analyzed, processed, and generated.

A model-based approach in building service-
oriented systems and applications is proposed by
Service Component Architecture (SCA). SCA is
a set of specifications that uses open standards
and significantly separates the concerns of non-
functional requirements and service implementa-
tion assembly. SCA specifications are a product
of wide collaboration in the software engineer-
ing community (Open SOA Collaboration), and
since 2007, the specifications are in the process
of formal standardization through OASIS (Open
CSA member section). In addition, SCA provides
a domain of research and several contributions on
service-oriented computing research are based
on or are extending SCA notions (Chu, Shen,
& Jiang, 2009; Li, Zhang, & Jin, 2009). In the
context of SCA and model-based assembly of

service-oriented architectures, the need for con-
verging procedure-oriented and resource-oriented
components on the interface level becomes criti-
cal. In a typical SCA assembly scenario, an SCA
composite is created by connecting together SCA
components that provide and consume services.
These SCA composites can be also used as SCA
component implementations in other assemblies.
Each component provides services whose inter-
faces are restricted in that they should be translat-
able into WSDL (although the actual translation
may never occur in practice) with respect to the
exposed functionality. The access mechanisms
for the exposed services are separately handled
by the definition and usage of different bindings
(e.g. SOAP Web Service, JMS, EJB Session Bean,
JCA, JSON-RPC, etc.).

Due to the SCA’s dependency on the concept of
operation, the introduction and usage of RESTful
Web services in SCA assemblies is not as easy as
it would be expected for such an assembly model.
Similarly, the usage of procedure-oriented service
systems through RESTful exposition and bindings
becomes quite cumbersome. Workarounds that
have been proposed include the implementation
of additional source code, to manually encap-
sulate capabilities or the annotation of existing
implementations with REST-specific tags. Both
cases require considerable effort from the analyst,
whose primary focus should be the composition of
business functionality instead of technical issues
such as infrastructure code or implementation
annotations. Implementations in an SCA assem-
bly may be based on a variety of technologies,
written in different languages, and supported
by different frameworks, which make intrusive
workarounds less efficient. Our approach aims to
enable SCA infrastructure and its runtime so that
REST bindings can be added in a more flexible
way, achieving thus the goals and objectives of the
adaptation process. More specifically, SCA brings
significant flexibility in building service-oriented
architectures, and for reusing existing services
(e.g. legacy services implemented in COBOL) by

318

Considerations of Adapting Service-Offering Components to RESTful Architectures

assembling them together with new services that
utilize modern technologies and programming
paradigms. In this respect, RESTful exposition of
procedural systems would provide additional ben-
efits to organizations reusing and exposing their
well-validated, value-proven systems to wider
audiences, and even the Web, in a Web-friendly
manner. We consider that SCA and SCA runtime
environments can provide an important role in
automating the adaptation process and deploying
the RESTful adapted services in a unified and
transparent way. For example, by utilizing a model-
based framework such as SCA and by adding a
new REST binding, one could access back-end
system and services in a RESTful way, without
losing, through the SCA runtime, the capability
of accessing the same services with all the other
bindings defined for this component/service.

Figure 4 depicts MDE’s and SCA’s roles in
the adaptation framework we are proposing. In

this figure, we borrow the idea of the “horseshoe”
model from the area of software reengineering
(Byrne, 1992; Bergey, Smith, Weiderman, &
Woods, 1999) and adapt it to abstract and simplify
the adaptation process we discuss in detail in the
following sections, and also to highlight MDE’s
and SCA’s involvement. In a nutshell, the left part
of the horseshoe model relates to the analysis of the
original procedurally-invoked service components
and the extraction of possible domain models
from service descriptions and data schemas. The
top part of the model deals with the identification
of resource descriptions and actions (i.e. create,
read, update, delete) to the identified resources,
given the existing functionality. The right part of
the model relates to the generation of SCA infra-
structure aiming to add REST bindings to existing
SCA service components and SCA assemblies
so that, service related resources that have been
identified can be accessed in a RESTful manner.

Figure 4. MDE’s and SCA’s roles in the adaptation framework

319

Considerations of Adapting Service-Offering Components to RESTful Architectures

ADAPTATION PROCESS AND
FRAMEWORK

As discussed above, the non-intrusive adapta-
tion of procedure-oriented service systems to
REST-based ones requires a methodology and a
corresponding process model that addresses the
complete set of the required constraints included
in REST. In this respect, we propose an adapta-
tion framework working on the interface level and
above, having as general target the ability to restrict
the description of the system according to each
constraint, in a systematic manner. Consequently,
the framework entails components, which imple-
ment adaptation steps that are part of the overall
adaptation process, and each of which addresses
specific concerns regarding the set of REST’s
constraints. First of all, the adaptation process is
divided into two phases based on the “time” of
the application of the adaptation task: design-time
phase and run-time phase. The design-time phase
attempts to adapt the facets and align the views
of the system’s data and functionality to most of
the principles of the Uniform Interface constraint
(referred to as static/structural concerns), and
also caching, hypermedia and certain additional
interface rendering issues (referred to as dynamic/
behavioral concerns). Run-time phase addresses
Client-Server, Layered-System, and Stateless
communication constraints. The goal of the ad-
aptation is that the external view of the system
may eventually conform to REST by respecting
the restrictions each REST constraint imposes to
the architecture. However, whenever this is not
possible or there are trade-offs related to a full
conformance to REST, the adaptation process
should allow for user refinement and tuning. In
this respect, the adaptation outcome should trans-
parently allow for RESTful interactions with the
service-offering component (at least to the extent
that the architect decided to go). In this section,
we present a model for the adaptation process
along with the intermediate artifacts, to serve as

a roadmap for further research to automate the
vertical architectural adaptation of “RESTifing” a
procedural service system. Figure 5 demonstrates
the process model of the adaptation framework.

Process Model: General Description

As discussed above, the adaptation process is
split into two phases: the design-time phase and
run-time phase. During the design-time phase a
set of techniques are applied to the specification
and description artifacts of the system along with
adaptation configuration metadata. User involve-
ment is modeled in the form of output inspection
and review, which essentially depends on the so-
phistication of the employed techniques as well as,
on user’s interest in applying specific architectural
decisions (e.g. relaxing a certain constraint in the
context of an identified architectural trade-off).
The run-time phase consumes the outcome of
the design-time phase and does not require user
involvement other than the configuration of the
run-time context (e.g. artifacts required for an
SCA runtime environment). During the run-time
automated mapping and management of interac-
tions take place, which can be tuned to different
levels of “smartness” given the adaptation goals
(for example, managing virtual resources that
represent process instance semantics and do not
exist in the back-end).

The design-time phase is conceptually further
split into sub-phases based on a separation between
static/structural concerns of API modeling and
dynamic/behavioral ones. In the first sub-phase,
the process takes as input the existing API descrip-
tion and adaptation configuration metadata, it then
applies several specialized techniques, and finally,
renders a RESTful service model as an output,
along with feedback data that can be edited by the
user to refine the techniques’ application. Specifi-
cally, during this step, resources are extracted from
existing interface description artifacts and they are
organized into a model based on their properties

320

Considerations of Adapting Service-Offering Components to RESTful Architectures

and relationships. Next, the second sub-phase takes
place, where the RESTful service model along with
a dependency model of the service operations and
user-defined policies about caching and resource
exposition is submitted to a process that creates
the final adaptation specification. This output
incorporates instructions about several dynamic
aspects of a RESTful service.

The RESTful adaptation specification is then
used as input in the run-time phase to render an
adapter that will handle requests, map them to
invocations to the existing component and provide
responses in a way that is compliant to REST (or
to some chosen compromise). In the next section,
the adaptation phases, components, and artifacts
are further discussed and descriptions of each
adaptation component and input/output artifacts
are provided.

Adaptation Framework Components

In this section, we discuss in more detail the
adaptation process as this is depicted in Figure 5.

Procedure-Oriented API Specification

We regard the adaptation process as taking place
on a per service level where the term “service”
represents a set of one or more operations (also
referred to as procedures or functions), offered
by the service-providing component in order to
accomplish one or more specified tasks, and/or
to provide functionality and data to service con-
sumers. In this respect, a procedure-oriented API
specification can be any programmatic application
interface description that inherently follows the
procedural paradigm for functionality and data

Figure 5. Adaptation framework process model

321

Considerations of Adapting Service-Offering Components to RESTful Architectures

description, according to which a server-side op-
eration should be invoked to process the specified
input, and provide computed output in predefined
forms (that is input and output parameters and
their types are defined, described and known
before the invocation). For example, interface
description languages (e.g. WSDL) and generally
any formalized language for expressing operation
signatures and parameter types, would qualify for
such an API specification. Going a step further,
different syntaxes are acceptable as long as they
are WSDL portType translatable, meaning that
their expressiveness could be mapped concisely
to the W3C language for Web Service description.

Adaptation Configuration Metadata

•	 The selection of the communication pro-
tocol that should be used and possibly the
RESTful usage conventions of that proto-
col should be employed (control metadata,
resource metadata, etc.) for representation-
al state transfer.

•	 The selection of the identifier mechanism
that should be utilized in order to assign
identifiers to the extracted resources and
of the predefined rules or templates that
should be followed in order to meet identi-
fier design requirements.

•	 The design of the format of the exchanged
messages and the representation type ne-
gotiation that should take place during
interactions.

RESTful Service Model (RSM)
and RSM Generation Process

The RSM generation process takes as input the
aforementioned artifacts and produces a service
model that ideally (with the exception of alter-
nate, less RESTful, configurations) conforms to
the Uniform Interface constraint and especially
to the subconstraints: identification of resources,

manipulation of resources through representations
and self-descriptiveness. The generated RESTful
Service Model (RSM) contains a set of extracted
resources, a set of identifiers that map to each
extracted resource, a set of possible manipula-
tion actions that belong to a predefined fixed set
of actions, as well as, a set of representations for
these resources. For each resource, identifier and
representation that are extracted, explicit mappings
that trace back to the original procedural service
are also captured and included in the model. RSM
also contains certain structural relationships be-
tween the extracted resources. More specifically,
the hypermedia constraint is not fully addressed at
this point; however certain resource relationships
(such as containment relationships or construction
dependencies) that are extracted during the gen-
eration process in conjunction with the values of
respective RSM rules would also supply enough
information to inject certain hypermedia informa-
tion during interactions as metadata.

As discussed above, during the generation
process a set of REST-like resources is extracted.
This set may also be extended with virtual re-
sources to accommodate specific modeling and
mapping patterns (e.g. model non-canonicalized
procedure invocations as resources with full life
cycle). Furthermore, the resource relationships
are discovered based on structural and naming
conventions identified at the API specification.
Operations are characterized with respect to
their potential semantics and properties, and the
interactions are “canonicalized” to the predefined
choices of the selected communication protocol
and possibly the subset of these choices indicated
by the conventions that the user chose to be used
(e.g. HTTP CRUD-like, HTTP GET-POST-only
conventions). The RESTful service model should
also internally preserve the appropriate mapping
information that is required to eventually construct
valid invocation messages to the existing back-
end component.

322

Considerations of Adapting Service-Offering Components to RESTful Architectures

RSM Rules and Patterns

Aside from the configuration metadata, the gen-
eration of the RESTful service model requires
the application of certain transformation rules
and mapping patterns. Such rules and patterns
guide and configure the resource model extraction
process, the assignment of resource relationships,
the mapping between operation semantics, the
properties and communication protocol’s control
metadata and, the creation of virtual resources to
accommodate for different levels of conformance
to REST’s constraints. These rules and patterns
are selected and populated with values during
the RESTful Service Model (RSM) generation
process. After that, the end user should be able to
edit these values and reinitiate the RSM generation
process which when executed again should render
a RESTful service model that is compliant to the
rules and values that the user chose. Some of the
challenges that this set of rules and patterns aim
to answer pertain to:

•	 The resource modeling patterns that should
be used when possible, the selection of
mapping patterns that are of highest prior-
ity, and the selection of the generic/static
resource relationships that are of interest
and of heuristics that should be utilized to
extract such relationships.

•	 The selection of the specific rules to uti-
lize for characterizing operations’ proper-
ties (e.g. safety, idempotency, etc.), and the
heuristics that should be used for the “ca-
nonicalization” of the interaction intents
as identified during the RSM generation
process.

RSM Generation Refinement Process

The RSM generation process is regarded as the
most significant and difficult process part to
fully automate, due to the fact that interface-level
information does not provide all the required

information to extract significant resources and
to characterize operations. Also, the apparent
deflection of procedure-oriented and resource-
oriented application modeling would sometimes
make such a generation process ineffective,
especially when working with purely command-
like interfaces (e.g. one-word operations with
generically typed input/output). In this respect,
we assume user involvement as a way to refine
the generation process by providing values to a
set of rules and patterns. In this way, an effective
output of the RESTful service model (mainly the
set of resources, a subset of their relationships,
and mappings between intents and back-end
invocations) is generated, which is consequently
inspected before examining further aspects, espe-
cially those of prescribing the dynamic behavior
of a RESTful system. However, we regard user
refinement as optional, meaning that the RSM
generation process should be sophisticated enough
to be able to identify a set of rules and patterns to
utilize. The user would declaratively participate
in the process to improve the output by refining
these rules and patterns and the values of their
points of variability. In this respect, the initial set
of rules and patterns to be utilized by the process
may as well be empty.

Above we described the steps and artifacts that
are parts of the design-time phase of the adapta-
tion. Specifically, these elements are included in
the first sub-phase during which mostly static/
structural modeling concerns of the RESTful
service interface are addressed. During the second
sub-phase of the design-time phase, the RESTful
service model that was generated is being enriched
in order to model and prescribe several aspects
of the dynamic behavior of the system that is
being adapted to the REST architectural style.
The dynamic aspects we consider are: caching
policies about the exposed resources, exposition
choices of the generated resource set (e.g. filtering)
and the effective enablement of the hypermedia
mechanism to guide the application state. Cach-
ing and exposition policies are imposed by user

323

Considerations of Adapting Service-Offering Components to RESTful Architectures

choices, which may be supported and validated
by respective mechanisms (for example, filtering
policies should be validated so that there are no
conflicts between the back-end functionality that is
expected to be mapped and the filtering options).

Intra-Service Protocol

IDLs and generally machine-readable procedural
interface descriptions like WSDL descriptions do
not usually provide information with regard to the
order and the conditions that each operation of the
service should or could be invoked. Consequently,
WSDL-translatable interface descriptions are not
adequate by themselves in order to indicate how
state transitions of the extracted resource set may
take place through their possible manipulations.
The intra-service protocol is usually implicit or
described in human-readable documentation that
accompanies the service. However, the problem
has been identified in several research areas (for
example, automated Web Service composition,
automated testing of Web Services and Web
Service behavioral modeling and adaptation),
and several techniques to extract such ordering
or dependency models between operations have
been proposed (Gu, Li, Xu, 2008; Bai, Dong, Tsai,
& Chen, 2005; Bertolino, Inverardi, Pelliccione,
& Tivoli, 2009). In the adaptation roadmap, we
regard such information either being provided
by the user or extracted through employing such
techniques. The intra-service protocol is rendered
in terms of the existing procedural operations. The
protocol’s implied dependencies are mapped to
resource dependencies and links which essentially
create the “engine” of application state, allowing
for the injection of hypermedia elements during
interactions at runtime. An indication of the ex-
pressiveness of the formalism used to describe the
intra-service protocol, is its equivalence to UML
2.0 Sequence Diagrams.

Caching Policies

Cache-ability is a central concept in REST and
resource-oriented architectures, both in theory and
in practice. REST includes it as a constraint since
responses should indicate the cache-ability of the
representation they are conveying. By caching
representations of resources the efficiency of the
communication is improved as well as, the perfor-
mance as this is perceived by the requesting end.
In this respect, cache-ability is a central aspect of
RESTful architectures and improves scalability
by allowing system-wide caching optimizations
to be applied. It is generally accepted that such
optimizations are critical for network-based
distributed systems, in order to be able to scale.
Usually service-offering procedural components
do not indicate whether the responses they pro-
vide or which parts of them may be cached and
for how long, and even if they do, they usually
provide such information following their own
patterns or techniques. However, for a system to
be REST-adapted effectively, providing a process
to handle such application of caching policies
is regarded as mandatory in the context of an
adaptation framework reference architecture. In
our conceptualization of the adaptation process,
caching information in the form of policies can
be explicitly supplied by the user. An alterna-
tive would be to utilize techniques that analyze
dynamically generated usage data. Once caching
policies are defined, they are validated and then
they are attached to the final output of the REST-
ful service model. Caching policies may also
include constraints and conditions over what can
be cached and how based on run-time information
(e.g. based on a particular value of an exchanged
representation of another resource), remaining
however protocol-agnostic.

Resource Exposition Policies

The adaptation process may have as a goal a partial
description of the system in terms of REST-like

324

Considerations of Adapting Service-Offering Components to RESTful Architectures

resources based on contextual conditions formed
at runtime. Furthermore, additional links between
the extracted resources may have to be present
under specific circumstances. For example, an
architect guiding the process may want to restrict
the granularity of the extracted resources for a par-
ticular subset of clients and provide explicit links
between particular resources under state-related
conditions, aligning the system to externally im-
posed standards or processes. In the adaptation
process model discussed here, we also consider the
processing and the application of such policies by
explicitly providing respective information to the
dynamic model generation process. In this way,
the user is able to address business or technical
concerns by allowing conditional exposition and
linking of specific parts of the resource set in a
context-aware manner.

Dynamic Behavior Model (DBM)
and DBM Generation Process

In our approach, we identify and distinguish a
subset of the dynamic behaviors that may occur
in a RESTful system which we recognized as
critical for the adaptation process and which can
be prescribed during the design-time phase. The
analysis that takes place is centered on process-
ing the application’s protocol and on taking into
account contextual and state-specific policies
that control parts of the run-time behavior of the
adapter (such as hypermedia injection, caching
information, etc.). The dynamic behavior model
that is generated includes information about these
dynamic aspects of the system in the form of con-
sumable prescriptions by a “smart” adapter. Being
able to denote and enact dynamic behavior system
models as these can be achieved by the smart
adapter, essentially addresses the HATEOAS or
hypermedia constraint which appears to be central
when the goal of the adaptation is a truly RESTful
system, as well as the REST’s cache-ability con-
straint. In addition, the dynamic behavior model
of the system is constructed taking into account

resource exposition policies, which provide flex-
ibility and better alignment of the final output of
the system to the adaptation goals.

DBM Rules and Patterns

The way that the particular dynamic aspects of
the behavior of the service system are modeled,
is guided by respective rules and patterns. These
rules and patterns follow the same paradigm with
RSM rules and patterns where the user can review
and adapt and customize in order to render the
final model. User involvement is again modeled
via a refinement loop and is optional. However,
the initial set of caching and exposure policies
should not be empty (unless the architect is not
interested in applying caching and exposition
policies). Examples of such choices are, expres-
sions regarding what sets of resources should be
cached, conditions that should be met in order for
the caching information to be injected, what rela-
tionships between the resources should become
visible to the client/agent at runtime and under
what conditions, expressions setting the resources
that should be filtered, etc.

DBM Refinement Process

At this step, the user inspects the output of the
DBM generation process along with the set of rules
and patterns that were utilized in order to yield the
dynamic behavior model of the system. He/she
is then able to modify this set by either changing
the values of the variation points of the rules, or
to rearrange the predefined patterns available for
each aspect. These actions essentially reflect to the
caching and resource exposition policies. Presum-
ably, after the refinement the generation process
should automatically render a possibly different
DBM in order to meet user’s expectations.

325

Considerations of Adapting Service-Offering Components to RESTful Architectures

RESTful Adaptation Specification

As discussed above, the dynamic behavior model
is part of the final output of the design-time phase.
Essentially, RSM and DBM constitute the REST-
ful adaptation specification. The meta-model for
this specification should be expressive enough to
cover both categories of concerns (static/structural
and dynamic/behavioral). The adaptation specifi-
cation provides all the essential information for
the runtime phase of the adaptation to take place.
In other words, whatever was extracted, mapped,
modeled and probably refined during the design-
time phase should be included or described in the
final specification, which will be used as input at
the deployment of the adapting component.

Following the design-time phase, the run-time
adaptation phase consumes the specification as
a prescription of yielding appropriate adaptation
logic for a procedure-oriented service-offering
component to provide a RESTful or REST-like in-
terface. This phase is considered fully automated,
given the RESTful adaptation specification from
the design-time phase, and an initial configuration
of the runtime/infrastructure which is the environ-
ment into which the adapter will exist.

Runtime Configuration

The adaptation process is based on the assumption
that whatever adapter may exist, there is a layer
of infrastructural components that are capable of
dealing with a variety of technical issues, such
as providing implementations and bindings for
the communication protocols to be used for the
RESTful adaptation of the system. We model the
run-time adaptation phase as being dependent to a
configuration description that essentially address-
es the issues related to integrating the adapter’s
deployment to the available infrastructure environ-
ment. Ideally, the infrastructure should allow for
the adapter to be invisible to a potential service
composition process. For instance, in SCA’s en-
vironment the adapter should be working on the

level of the domain runtime providing a RESTful
binding in a way that is transparent to anyone
that assembles a service composition. However,
the runtime may have to model the adapter as a
separate component, with or without indicating
the component’s relationship or its interaction with
the existing service-offering component.

Smart Adaption Process

At this point, the RESTful adaptation specification
is processed and a smart adaptation component
is produced, capable of accepting and processing
RESTful requests, managing resources, mapping
the requests to back-end service invocations, re-
ceiving the responses from the invoked services
and yielding RESTful responses that include
information, hypermedia and representation meta-
data (e.g. caching information). Furthermore,
depending on the extracted resource model, the
smart adapter may also serve as origin-server for
virtual resources. In terms of REST’s constraints,
the smart adapter preserves the Client-Server
style of interaction that a RESTful architecture
requires. In addition, it should be noted that the
smart adapter’s architecture should conform to
the Layered System constraint. Consequently, the
client should not be able to distinguish whether it
interacts with the origin-server or with an inter-
mediary such as the adapter.

The “smartness” of the adapter relates to the
sophistication of the mediation. For example, in an
ideal scenario, the client-server interactions initi-
ate via certain entry-points that map to an initial
set of resource identifiers (usually mentioned as
“bookmarks”). The client-server interaction be-
yond the entry-point identifiers should deliver the
service’s functionality through client’s enactment
to hypermedia provided by the smart container at
runtime. Consequently, the resources described by
the extracted resource model should become vis-
ible and probably addressable through identifiers
(or identifier construction regimens) contained
into smart adapter’s responses. Additionally, the

326

Considerations of Adapting Service-Offering Components to RESTful Architectures

adapter is responsible for applying conditional
caching and exposure policies that may include
state-based, request value-based or context-based
conditions.

The smart adaptation process is regarded as
being fully automated with respect to the produc-
tion and the configuration of the adapter, since all
the required information regarding the adaptation
should be already provided.

RESTful Service Interface (Entry
Points) and Descriptions

The smart adaptation output is the set of RESTful
entry-points available for interaction and one or
more descriptions of the RESTful interface (human
and/or machine-readable). A description should
contain the resource model, the representation
types used, and probably standardized or custom
relationship semantics between resources that
guide the transitions between states.

The adaptation process presented in Figure
5 depicts a more detailed view of the proposed
activities and tasks to transform a procedural
service-oriented API to a RESTful architecture.
Even though the horseshoe model (Figure 4) aims
to depict a high-level abstraction and simplifica-
tion of the overall adaptation in order to highlight
the relationship to existing methodologies (MDE)
and frameworks (SCA), it still associates to the
proposed adaptation process model. More specifi-
cally, the mapping between the proposed process
model and the horseshoe model can be summarized
in the following points. First, the design-phase,
as depicted in Figure 5, associates to the model
extraction, model analysis and the application of
the transformation techniques (Figure 4) as these
pertain to both structural and behavioral adaptation
aspects of the API. Second, the run-time phase
as depicted in Figure 5 associates to the model
generation and deployment phase (Figure 4) for
the target adapted system.

DISCUSSION: OPEN CHALLENGES
AND LIMITATIONS

This chapter has discussed a process model for
adapting procedural interfaces of service-oriented
systems to RESTful architectures. However, there
is a number of open research issues and challenges
that need be addressed.

First, not all service-offering components, and
not every service, are suitable for being adapted
to offer their functionality through resources
and their uniform manipulation. The uniform
interface that RESTful architectures require
generally reduces efficiency when compared to
custom procedural interfaces (Fielding, 2000).
Such efficiency may be vital for a system, and a
careful examination of the problem should take
place before offering a RESTful version of the
system’s capabilities. In this respect, an interest-
ing, open problem is how to systematically assess
which procedural interfaces are good candidates
to undergo RESTful adaptation, how to identify
the ones that might be in conflict with RESTful
exposure of the functionality, and how to capture
and evaluate such incompatibilities. It is noted
that the approach discussed in this chapter can
be applied once the procedural interface has been
empirically evaluated as a good candidate for
RESTful adaptation. Additionally, the adaptation
roadmap we propose does not generally address
QoS and non-functional requirements that may
exist for large-scale or critical software systems.
As discussed above, we regard such concerns
as being treated separately and we focus on an
adaptation process for the functional part of the
interfaces. In this respect, a systematic process
and framework for assessing API suitability for
REST adaptation should also take into account
QoS-related concerns, especially with regard to
complex security policies (e.g. authentication,
non-repudiation) that the service system should
support, since currently the major technologies and
frameworks that are used to implement RESTful

327

Considerations of Adapting Service-Offering Components to RESTful Architectures

service systems do not provide such capabilities
in a standardized fashion.

Furthermore, resource extraction is a funda-
mentally heuristic process. In most methods that
were reviewed in the literature pertaining to the
extraction of resources using existing artifacts,
fundamentally depended on the active involve-
ment of an expert/user to either manually extract
or modify the extracted resource collections. We
restrict user involvement on refining the output
of such an extraction process. However, such re-
striction requires the user to be familiar with the
effects of the variation points that are provided
for refinement. Generally speaking, the heuristic
nature of the problem is linked to the fact that
REST resources lack a strict formal definition
and long discussions and debates take place over
what should constitute a proper resource and what
should not, given the definition in Fielding’s dis-
sertation.

Intra-service protocols should essentially be
reflected to hypermedia mechanisms that eventu-
ally guide state transitions in a RESTful exposure
of the system. However, such protocols are not
usually provided, and techniques that are used to
extract them do not guarantee providing all the
acceptable use cases for a service. An interesting
approach in the hypermedia-enablement of exist-
ing services is proposed in Liskin, Singer, and
Schneider (2011). However, further research is
needed in order to minimize the required infor-
mational input.

Finally, the presented adaptation process can
be semi-automated during its design-time phase,
requiring user involvement for refining certain as-
pects of the adaptation outputs as well as explicitly
imposing caching and exposition policies. Further
automation may be achieved though formalizing
empirical knowledge into the respective issues,
both during the generation of the resource model
as well as during the modeling of the dynamic
aspects of the interface. In addition, service usage
data may play an interesting role in configuring
certain aspects of the RESTful layout of the API.

Such knowledge and data could be acquired by
observing and analyzing system execution as well
as actual user adaptation tactics when refining
rules and patterns.

SUMMARY AND FUTURE
DIRECTIONS

In this chapter, we discussed the problem and
challenges associated to adapting procedure-
oriented service-offering components in order
to yield resource-oriented interfaces through ap-
propriate runtime encapsulation. Related work in
the area was presented along with considerations
regarding to the application of a systematic ad-
aptation process. Consequently, we introduced
an adaptation framework along with a process
model and discussed the components, the steps,
and the artifacts included in the model as well
as, the context in which the framework would
operate. The roadmap describes a methodology
framework for adapting existing services into
RESTful or REST-based APIs and assists in the
direction of the convergence and interoperability
of two distinct paradigms in service interface
design namely, procedure-orientation, and re-
source-orientation. Additionally, we constraint the
framework on being implementation-agnostic and
focus our analysis on machine-readable interface
descriptions, user-provided metadata and specific
interface-level information.

The proposed adaptation process model
has been applied in a case study pertaining to
a variety of service descriptions obtained from
the Programmable Web. More specifically, we
have designed and implemented a methodol-
ogy and supporting prototype tools first, for the
representation of mappings between procedural
and resource-oriented paradigm, second, for the
automatic resource model extraction, and third
for the modeling of user refinement feedback.
In addition, we are currently experimenting with
techniques that related to the dynamic concerns

328

Considerations of Adapting Service-Offering Components to RESTful Architectures

described above and we plan to build an exten-
sion to an open source SCA runtime domain
that would better serve as infrastructure for our
smart adaptor component. Through our experi-
ence with implementing the steps of the process
model discussed above, an interesting challenge
is to maintain a balance between trade-offs that
related to, from one hand, the a wide spectrum and
structural variety of different service descriptions
(e.g. diverse possible WSDL descriptions, data
schemas), and on the other hand, restricting user
involvement to a simple, declarative, and easy to
perform sequence of tasks.

To our knowledge, there is limited work on
addressing in an end-to-end, automated or semi-
automated manner, the problem of RESTful
exposure of existing procedural services. Never-
theless, the area of REST and resource-oriented
architectures will ever grow larger, as the need for
efficient lightweight integration of components
and data considered as Web resources, increases.
In this context, interesting new emerging trends
in the area include the specification of various
QoS properties in REST as these are pertinent to
WS* protocols (e.g. WS-Security), the handling
of stateful systems in a stateless architecture
such as REST, the denotation of transactions and
transaction semantics as these are well understood
in procedural systems to REST systems, and the
consistent evolution/co-evolution of REST and
SOA/WS models and APIs once the adaptation
process is completed.

REFERENCES

Al Shahwan, F., & Moessner, K. (2010). Providing
SOAP web services and RESTful web services
from mobile hosts. In Proceedings of the Fifth
International Conference on Internet and Web
Applications and Services, (pp. 174-179). IEEE.

Algermissen, J. (2010). Classification of HTTP-
based APIs. Retrieved October 10, 2011, from
http://www.nordsc.com/ext/classification_of_
http_based_apis.html

Athanasopoulos, M., & Kontogiannis, K. (2010).
Identification of REST-like resources from legacy
service descriptions. In Proceedings of the 17th
Working Conference on Reverse Engineering,
(pp. 215-219). IEEE.

Athanasopoulos, M., Kontogiannis, K., & Brealey,
C. (2011). Towards an interpretation framework
for assessing interface uniformity in REST. In
Proceedings of the Second International Workshop
on RESTful Design, (pp. 47–50). ACM.

Bai, X., Dong, W., Tsai, W., & Chen, Y. (2005).
WSDL-based automatic test case generation for
web services testing. In Proceedings of the 2005
IEEE International Workshop on Service Oriented
System Engineering, (pp. 215-220). IEEE.

Balasubramanian, R. (2008). REST-inspired SOA
design patterns. Retrieved October 10, 2011, from
http://www.soamag.com/I24/1208-3.php

Bergey, J., Smith, D., Weiderman, N., & Woods,
S. G. (1999). Options analysis for reengineering
(OAR): Issues and conceptual approach. Techni-
cal Report CMUSEI1999TN014. Pittsburgh, PA:
Carnegie Mellon University.

Bertolino, A., Inverardi, P., Pelliccione, P., &
Tivoli, M. (2009). Automatic synthesis of be-
havior protocols for composable web-services. In
H. Van Vliet & V. Issarny (Eds.), Proceedings of
the 7th Joint Meeting of the European Software
Engineering Conference ESEC and the ACM SIG-
SOFT Symposium on the Foundations of Software
Engineering, (pp. 141-150). ACM.

Brogi, A., Canal, C., & Pimentel, E. (2006). On
the semantics of software adaptation. Science
of Computer Programming, 61(2), 136–151.
doi:10.1016/j.scico.2005.10.009

329

Considerations of Adapting Service-Offering Components to RESTful Architectures

Canal, C., Murillo, J. M., & Poizat, P. (2004).
First international workshop on coordination and
adaptation techniques for software entities. In C.
Canal, J. M. Murillo, & P. Poizat (Eds.), First
International Workshop on Coordination and
Adaptation Techniques for Software Entities, (pp.
133-147). Berlin, Germany: Springer.

Canal, C., Murillo, J. M., & Poizat, P. (Eds.).
(2008). Practical approaches to software adapta-
tion. Journal of Universal Computer Science,
14(13).

Chu, Q., Shen, Y., & Jiang, Z. (2009). A transac-
tion middleware model for SCA programming. In
Proceedings of the First International Workshop
on Education Technology and Computer Science,
(pp. 568-571). IEEE.

Da Silva Maciel, L. A. H., & Hirata, C. M. (2009).
An optimistic technique for transactions control
using REST architectural style. In Proceedings of
the 2009 ACM Symposium on Applied Computing,
(pp. 664-669). ACM Press.

Da Silva Maciel, L. A. H., & Hirata, C. M. (2011).
Extending timestamp-based two phase commit
protocol for RESTful services to meet business
rules. In Proceedings of the 2011 ACM Symposium
on Applied Computing, (pp. 778–785). ACM.

Fielding, R. T. (2000). Architectural styles and the
design of network-based software architectures.
(Doctoral Dissertation). University of California.
Irvine, CA.

Fowler, M. (2010). Richardson maturity model.
Retrieved October 10, 2011, from http://martin-
fowler.com/articles/richardsonMaturityModel.
html

Gail, N., Sholler, D., & Bradley, A. (2008). Tuto-
rial: Web-oriented architecture: Putting the web
back in web service. Retrieved October 10, 2011,
from http://www.gartner.com/id=797713

Gu, Z., Li, J., & Xu, B. (2008). Automatic service
composition based on enhanced service depen-
dency graph. In Proceedings of the 2008 IEEE
International Conference on Web Services, (pp.
246-253). IEEE.

Kell, S. (2008). A survey of practical software
adaptation techniques. Journal of Universal
Computer Science, 14(13), 2110–2157.

Kennedy, S., Stewart, R., Jacob, P., & Molloy, O.
(2011). StoRHm: A protocol adapter for mapping
SOAP based web services to RESTful HTTP
format. Electronic Commerce Research, 11(3),
245–269. doi:10.1007/s10660-011-9075-3

Kent, S. (2002). Model driven engineering. In M.
Butler, L. Petre, & K. Sere (Eds.), Proceedings
of the Third International Conference on Inte-
grated Formal Methods, (vol 2335, pp. 286-298).
Springer-Verlag.

Laitkorpi, M., Koskinen, J., & Systa, T. (2006). A
UML-based approach for abstracting application
interfaces to REST-like services. In Proceedings
of the 13th Working Conference on Reverse En-
gineering, (pp. 134-146). IEEE.

Laitkorpi, M., Selonen, P., & Systa, T. (2009).
Towards a model-driven process for designing
ReSTful web services. In Proceedings of the 2009
IEEE International Conference on Web Services,
(pp. 173-180). IEEE.

Li, W., Zhang, Y., & Jin, J. (2009). Research of the
service design approach based on SCA_OSGi. In
Proceedings of the 2009 International Conference
on Services Science Management and Engineer-
ing, (pp. 392–395). IEEE.

Liskin, O., Singer, L., & Schneider, K. (2011).
Teaching old services new tricks: Adding
HATEOAS support as an afterthought. In Pro-
ceedings of the Second International Workshop
on RESTful Design, (pp. 3–10). ACM.

330

Considerations of Adapting Service-Offering Components to RESTful Architectures

Little, M. (2009). REST and transactions? Re-
trieved October 10, 2011, from http://www.infoq.
com/news/2009/06/rest-ts

Liu, Y., Wang, Q., Zhuang, M., & Zhu, Y. (2008).
Reengineering legacy systems with RESTful web
service. In Proceedings of the 32nd Annual IEEE
International Computer Software and Applica-
tions Conference, (pp. 785-790). IEEE.

Marinos, A., Razavi, A., Moschoyiannis, S., &
Krause, P. (2009). RETRO: A consistent and re-
coverable RESTful transaction model. In Proceed-
ings of the 2009 IEEE International Conference
on Web Services, (pp. 181-188). IEEE.

Navon, J., & Fernandez, F. (2011). The essence
of REST architectural style. In Wilde, E., & Pau-
tasso, C. (Eds.), REST from Research to Practice.
Berlin, Germany: Springer. doi:10.1007/978-1-
4419-8303-9_1

Pardon, G., & Pautasso, C. (2011). Towards distrib-
uted atomic transactions over RESTful services.
In Wilde, E., & Pautasso, C. (Eds.), REST from
Research to Practice. Berlin, Germany: Springer.
doi:10.1007/978-1-4419-8303-9_23

Pautasso, C. (2009). RESTful web service compo-
sition with BPEL for REST. Data & Knowledge
Engineering, 68(9), 851–866. doi:10.1016/j.
datak.2009.02.016

Pautasso, C., & Wilde, E. (2009). Why is the web
loosely coupled? A multi-faceted metric for service
design. In Proceedings of the 18th World Wide
Web Conference, (pp. 911-920). ACM.

Pautasso, C., Zimmermann, O., & Leymann, F.
(2008). Restful web services vs. “big” web ser-
vices: Making the right architectural decision. In
Proceeding of the 17th international conference
on World Wide Web, (pp. 805-814). ACM.

Razavi, A., Marinos, A., Moschoyiannis, S., &
Krause, P. (2009). RESTful transactions supported
by the isolation theorems. In Proceedings of the
2009 International Conference on Web Engineer-
ing, (pp. 394-409). Springer-Verlag.

Richardson, L., & Ruby, S. (2007). RESTful web
services. New York, NY: O’Reilly.

Schmidt, D. C. (2006). Guest editor’s introduc-
tion: Model-driven engineering. Computer, 39(2),
25-31.

Upadhyaya, B., Zou, Y., Xiao, H., Ng, J., & Lau,
A. (2011). Migration of SOAP-based services
to RESTful services. In Proceedings of the 13th
IEEE International Symposium on Web Systems
Evolution, (pp. 105–114). IEEE.

Vinoski, S. (2008). Serendipitous reuse. IEEE
Internet Computing, 12(1), 84–87. doi:10.1109/
MIC.2008.20

KEY TERMS AND DEFINITIONS

Architectural Style: A set of constraints on
architectural elements (component, connectors,
data elements), their features, their roles and their
relationships applied in coordination to induce
certain system-wide properties to the conforming
architectures.

Model-Driven Engineering (MDE): Is a
methodology based on creating, processing and
using models to describe, develop and document
software.

Representational State Transfer (REST):
An architectural style for designing network-
based hypermedia applications. REST includes
six architectural constraints and was invented by
Roy Fielding while developing HTTP.

331

Considerations of Adapting Service-Offering Components to RESTful Architectures

RESTful Web Services: Is a collection of
technologies and practices that utilize existing Web
standards and protocols to develop and provide
services over the Web.

Service Component Architecture (SCA):
A collection of specifications that uses open
standards and separates the concerns of non-
functional requirements and service implementa-
tion assembly.

Software Adaptation: The actions related to
producing a category of special computational
component elements called adaptors in order to

be able to reuse existing software artifacts in new
applications without altering their implementation.

Web Services: A collection of standards and
technologies to implement SOAs. Web Services
use the SOAP family of protocols to exchange
XML-based messages to access service function-
ality and return service results. Service interfaces
usually include operations whose signatures and
invocation mechanisms are described by WSDL
documents. Web Services are centered on proce-
dural conceptualizations of service capabilities.

