
1

Assisting Developers Towards Fault Localization by
Analyzing Failure Reports

Krystalenia Tatsi1 Kostas Kontogiannis2

1National Technical University of Athens
Athens, Greece 15780
2Western University

London ON., Canada N6A 5B7

Abstract—Large software applications encompass many com-
ponents with complex interdependencies. When a failure occurs,
developers usually have limited information and time in their
disposal for localizing the root cause of the observed failure.
The most common information developers have readily access
to includes failure reports, stack traces, and event logs. In this
context, a major challenge is to devise techniques that assist
developers utilize this information in order to zero-in their focus
on specific methods that have a high probability of containing
the root cause of the observed failure. Once such an initial set of
methods has been identified, other more elaborate, complex, and
computationally expensive data flow analyses could be applied. In
this paper, we present a technique which aims to identify such an
initial set of suspicious methods by first, retrieving information
from failure reports obtained from Bugzilla repositories, second
by combining this information with graph models that denote
actual dependencies obtained from the subject system’s source
code in order to create an hypothesis space and third, by applying
a ranking score to identify methods that have high likelihood of
containing the root cause. The technique is shown to be tractable
when applied to systems with several thousands of source code
methods and exhibits high accuracy on the obtained results.

I. INTRODUCTION

A common problem software developers face when a failure
occurs, is to locate its root-cause [4]. This is a daunting
task when the system comprises several thousands of files
and very complex interactions. Event logs and stack traces
may provide valuable information, but these are not always
easy to decipher especially when the root cause is hidden
deep in a call sequence, or it is embedded in complex
data or control dependencies which can only be revealed by
performing detailed data flow analysis [1], [2]. Furthermore,
developers do not always have readily access to the appropriate
infrastructure in order to replicate the state of the system
when a failure occurred. This is especially true for mobile
applications that depend on a number of unforeseen parameters
(e.g. the device’s battery level, the network provider, the state
of the device), or in large systems with complex component
dependencies. Strict time-to-fix constraints may make also dif-
ficult for developers to re-run test cases or accurately replicate
the failure. Finally, many industrial systems are not written in
one single language, but comprise different modules written
in different languages, including also scripting languages and
complex configuration files. This makes difficult for detailed

data flow analysis to be applied, as such analysis would require
not only parsers for all languages used but also, specialized
linkers so that an end-to-end data flow analysis (e.g. slicing
and dicing) accross all modules can be applied. In this paper,
we take a different approach, proposing a technique which
provides to developers a ranked list of methods in which the
root cause of the observed failure is most probably localized.
Once such a list of methods or functions is identified, then a
more detailed data flow analysis can be applied. This addresses
not only tractability analysis issues but also, the multiple
language problem mentioned above, as the methods which
are listed as possible root causes, most often are contained in
specific modules likely written in one programming language,
or refer to a more localized system context. In our quest to
devise such a technique, we aim to use information that is
only available in the bug repository entries, minimizing thus
the dependence of the fault localization process on specialized
and detailed source code analyzers.

In this respect, the question is ”whether it is possible,
by using only information available in the bug repository,
to help developers identify a set of functions or methods
where with a high degree of confidence the root-cause of the
observed failure resides”. Information that is typically found in
bug repositories contains descriptions of the observed failure,
developers’ comments, and stack traces. Our premise was put
into test by developing a layered approach towards root-cause
analysis and fault localization. More specifically, we propose
a technique which operates in two main phases, an expansion
phase, and a matching phase. In the expansion phase, first
the source code entities that appear in an initial failure report
R are expanded by considering all source code entities to
which these entities have an incoming or an outgoing source
code relation and second, by collecting and expanding all
reports in the repository which are conceptually similar to
the initial failure report, using Latent Semantic Indexing and
cosine similarity, yielding thus an hypothesis space. A ranking
score is then used in order to rank the source code entities in
the hypothesis space. The ranking score is based on how the
source code entities in the hypothesis space relate with source
code entities of the initial report.

The objective behind this expansion and consequent ranking

2

is twofold. First given a small set of source code entities we
want to create a search space that is large enough to ensure
within a level of confidence that the root cause will not be
omitted, aiming thus for a high recall. This is the expansion
phase. Second, once such a large but coherent search space is
identified, we would like to select those elements that highly
relate with the extended set of the tokens found in the initial
bug report. This is the filtering or selection phase.

The approach has been tested in six large open source
systems each one of which is written in various programming
languages, with promising results. The results indicate very
high levels of recall and the majority of the methods which
constitute the root cause consistently rank in the top 20 posi-
tions among several thousand candidates in the search space.
The system suffers from low precision as many candidates are
returned in the result, but the ranking mechanism compensates
to a certain extent for the low precision.

This paper is organized as follows. In Section II we present
related work in bug localization. In Section III we outline the
architecture of the proposed system, while in Section IV we
present the domain model and the bug report token extraction
phase. In Section V we discuss the generation of the search
space and we present the ranking of the elements of the search
space. In Section VI we present the results of applying the
proposed method in the bug repositories of six large open
source systems, while in Section VII we conclude the paper
and provide pointers for future research.

II. RELATED WORK

Fault localization is an area where significant and inten-
sive research has been conducted over the past years. The
approaches which have been proposed by various research
groups fall in three main categories. The first category encom-
passes techniques that are based on the analysis of information
that can be extracted either by the static analysis of the source
code, or the analysis of test case traces. In this category
indicative works include the approach proposed by Chen
and Cheung [2] where the concept of dynamic dicing for
program debugging is introduced, the work by Agrawal et.al
[1] where specific input data from successful and unsuccessful
tests are used to compute more accurate slices for program
debugging, and the work by Wong and Sugeta [3] where
execution dices are combined with the premise that code that
passes more tests is likely not to contain faults, while code
that is involved in more failed tests is more likely to contain
faults. Another interesting approach is the work by Renieris
and Reiss [5] where the authors present a nearest neighbor
based approach between successful and unsuccessful tests
modeled as sequences of statements executed by these tests,
combined with a program dependence graph for capturing
additional statements which may be the root-cause of the
observed failure, and the work by Jones and Harrold [6], where
the Tarantula system is presented.

The second category deals with the use of data mining
and machine learning techniques that aim to associate specific
input data, program states, or outcomes of test cases with
specific system behavior or system faults. In this category

indicative works include the approach by Wong and Qi [8]
where back propagation neural networks are trained by cov-
erage data (i.e. executed statements) for each test as well
as by the outcome of each such test. Other works in this
category include the approach by Brun and Ernst [10] where
properties of correct and incorrect models are used to build
a learning model. Once the model is built, properties of new
programs can then be used by the model to infer how these
properties associate with faulty behavior. The work by Livshits
and Zimmermann [11] introduces a system which utilizes the
mining of revision histories as well as dynamic analysis in
order to reveal application specific coding patterns some of
which are responsible for inducing system failures. The work
by Zhou et al. [12] introduces an approach where text mining
and machine learning are utilized to classify bug reports
as corrective or as entries related to adaptive or perfective
maintenance operations. The work by Nguyen et al. [20]
utilizes a topic based model to associate entries of a bug
report with source code structures in order to locate buggy
source code files given a bug report. The work by Le et al.
[19] proposes a multi-model approach for locating bugs by
combining information retrieved from bug report repositories
and program data collected during the execution of test cases.
The approach builds a model that maps a bug to its possible
location. The work by Chappell et al. [22] compares initial
results obtained by using machine learning techniques for
finding bugs with the results obtained by using classic static
analysis techniques. An analysis of different techniques for
bug localization which use text analysis models can be found
in Rao [21].

Finally, the third category deals with model-based ap-
proaches which aim to utilize models that denote various
types of dependencies such as cause-effect relationships, data
and control flow dependencies in source code entities, or
dependencies that explain the difference between the observed
and the expected system behaviors. In this category indicative
works include the work by Wotawa et al. [14] where first order
logic is used to classify properties of programs and test cases
and, the work by Mateis et al. [13] which utilizes dependency
models to denote the structure of a program, while first order
logic models are used to denote program behaviors. The work
by Zawawy et al. [15] uses goal models to denote cause-effect
relations between system behavior and system properties. SAT
solvers and probabilistic reasoning can then be used to verify
or deny specific hypotheses given collected event logs from
the running system.

Our system falls between the category of systems that
perform data mining and the systems that perform source code
analysis. More specifically, data mining is applied to scout the
bug repository, while source code analysis is applied to extract
source code relations from the system under consideration.

III. SYSTEM ARCHITECTURE

The system follows a data flow architectural style which
is composed of four main phases as depicted in Figure 1. In
the first phase, an extraction component utilizes an XMLRPC
client to read reports from Bugzilla repositories and populate

3

Fig. 1: Overall System Architecture

a meta-model yielding an instance model for each Bugzilla
record extracted by the reader. The instance model is then
stored in the form of JSON records in MongoDB for persistent
storage and further processing. The meta-model serves as an
isolation layer between the different types of bug repositories
and the back end analysis. In this respect, different readers
can access different types of bug repositories and populate the
same meta-model. In the second phase, the source code of the
subject system is parsed and a graph model of its source code
is created. The nodes of the graph correspond to source code
entities such as files, functions, variables, and types, while
edges correspond to relations such as includes, calls, uses,
sets, defines, and declares. In the third phase, a bug report pre-
processing component utilizes NLP as well as the information
stored in MongoDB in order to identify in each bug report the
tokens that correspond to source code entities. This is achieved
by comparing each token, through a hash table, with entities
extracted from the source code. Furthermore, in this third
phase the set of the source code entities found in the initial
report is augmented by additional source code entities from
other reports collected by using Latent Semantic Indexing
and applying cosine similarity based search and expansion.
This augmented set forms the hypothesis space. Finally, in the
fourth phase, the bug localization is achieved by analyzing the
source code system graph against the expanded set of source
code entities and by ranking the hypotheses.

IV. INFORMATION EXTRACTION AND MODELING

A. Source Code Representation

In order to generate a graph model of the source code
entities (SCE) we have used the Fetch framework (Fact
Extraction Tool-Chain) [23]. This tool chain is composed of
the Red Hat Source Navigator which parses the code and
generates an intermediate dbdump as a collection of .snav files,
the Snav2Famix which analyzes the .snav files and generates
a .cdif file which is a comprehensive representation of the
AST of the source code parsed, and the cdif2rsf tool which
generates a .rsf file (Rigi Standard Format file) that contains
source code entities (i.e. files, functions, variables, types) and
relations between them.

More specifically, the rsf file provided by cdif2rsf repre-
sents source code entities and their relations by triplets in the
form:

ENTITY 1
RELATION−−−−−−→ ENTITY 2 (1)

B. Bug Report Domain Model

The purpose of the domain model is to abstract and de-
note bug repository information in a way that is agnostic to
the underlying structure or schema utilized by the specific
repository framework. The outline of the domain model is
depicted in Figure 2. The key element of the domain model
is a BugReport class which is associated with a Component
which in turn is part of a Product. A BugReport is associated
with a Description which is a narrative of the symptom
written in plain natural language along with possibly additional
information such as stack traces, and references to source
code entities (e.g. file names, variable names, function names
and, types). A BugReport record may have dependencies with
other records. Such dependencies pertain to whether a record
blocks or is blocked-by another record or is a continuation-of
or depends-on other records. A BugReport may be associated
with a Comment which is also written in free plain text and
may contain additional information with references to specific
source code entities. Finally, a Comment is also associated
with a Creator, an Assignee and, an End User.

An example JSON segment denoting information extracted
from a Bugzilla repository for the gtk+ system is presented
below.

{
"BugReport": [
{
"creation_time": "Wed Jan 07 11:08:00 EET 2004",
"resolution": "INCOMPLETE",
"summary": "Crash in GtkTextView
(gtk_text_layout_validate_yrange)",
"severity": "critical",
"product": "gtk+"
"status": "VERIFIED"
}
],
"comments": [
{
"creation_time": "Wed Jan 07 11:05:07 EET 2004",
"text": "Package: gedit Severity: critical
Version: GNOME2.2.2 2.2.2
Debugging Information: Backtrace was
generated from ’/usr/bin/gedit’ (no debugging
symbols found)...Using host libthread_db
library \"/lib/tls/libthread_db.so.1\".
[Thread debugging using libthread_db
enabled] [New Thread -1218553264
(LWP 3542)] 0x00a6d5ce in _dl_sysinfo_int80 ()
from /lib/ld-linux.so.2 #0 0x00a6d5ce
in _dl_sysinfo_int80 () from /lib/ld-linux.so.2
}]}

C. Failure Report Extraction Phase

The first part of the overall fault localization process is to
extract, represent, and store the different entries (i.e. records)
found in bug repositories such as Bugzilla. The failure report

4

Fig. 2: Bug Repository Meta Model

extraction phase is based on the proxy pattern [9] where an
abstract interface API and a dedicated domain model are used
to decouple the specific service APIs offered by different
bug repositories (e.g. Bugzilla, Mantis, Trac, TeamConcert),
as well as their record structure and schema, from the back
end analysis components. Our extraction service API is used
to a) establish connection to different repositories, b) extract
records, and c) parse the records and populate the domain
model.

The bug report extraction framework utilizes the XMLRPC
protocol to access a specific bug repository for a given
product. The obtained information is then passed through an
analyzer/populator which instantiates the corresponding part
of the domain model for each entry read. Consequently, a
transformer module, transforms the extracted reports which are
now represented in the unified domain model, in JSON format,
and a loader module stores each obtained report to a MongoDB
which is configured for this task. However, the descriptions
and the comments found on each Bugzilla repository record
do not conform to a specific standard, although a basic set
of fields and reporting guidelines are prescribed for use by
each support team. In this context, we have to identify and
process the source code entities which are embedded in the
submitter’s comments and description of the observed failure,
as these constitute important pieces of information for fault
localization. These tokens of interest include names of source
code related entities such as directory names, module names,
files, functions, variables, and types, as well as the context in
which these appear (e.g. configuration options, pre-processing
directives, environment variables). Since the description and
the comments sections of a bug report are free text narratives,

their preprocessing using a tokenizer is a necessary first
step. The preprocessing step receives as input a set of free
text segments, one for each report description and comments
section, and outputs a set of strings where each one is a source
code entity, omitting all the unrelated free text words. For this
work, we have utilized Apache’s NLP analyzer which parses
and tags the description and comments section of the bug
report, eliminating at the same time stop words. The extracted
collection of tokens is then compared with the tokens that
appear in the .rsf file that is generated by the Fetch tool chain,
as discussed in Section IV-A. Such comparison is based on
the use of a hash table and is performed once. The result is a
set of source code entity tokens tR1 , t

R
2 , ...t

R
k (i.e. file names,

function names, variable names, and types) for each bug report
record R in the repository D.

V. FAULT LOCALIZATION

By examining a large number of cases, we observed that the
set of the source code entity tokens that appear in the initial
bug report (i.e. the first reporting of a failure), in most cases
does not contain the root cause of the observed symptom. For
this reason, before we are able to localize the root cause we
need to expand this initial set (we refer to it as the search
space generation phase) and consequently rank each element
in the search space with respect to its ”connectedness” to the
tokens of the initial set. To better illustrate the approach we
refer to Figure 3.

As depicted in Figure 3, let R be the initial failure report
risen by the specific failure we focus on. As bug reports form a
chain in a bug repository D, an initial report is the first report

5

Fig. 3: Expansion Example

appearing on this particular chain of records related to this
specific failure. In this respect, after applying the NLP tagging,
stop word elimination and, source code token identification, let
TR = {tR1 , tR2 , ..., tRk } be the set of source code entity tokens
extracted by the report record R. For example in the upper
left corner of Figure 3 we observe the set TR, containing the
tokens tR1 , tR2 ,... ,tRk .

The expansion of the set TR is performed in four steps. In
the first step, each token tRi ∈ TR is expanded by collecting
all other source code token entities which are connected to tRi
by using the relations Accesses, Sets, DefinedIn, DeclaredIn,
MethodBelongsToClass and, Calls in the .rsf file. The relations
which are used for such an expansion according to the different
types of source code entities involved, are depicted in Table I.
For example, if token tR10 is the function name ”getCustomer’,
then any other function that is called by ”getCustomer”
or ”getCustomer’ calls, will be collected through the Calls
relation. We refer to this set as ER

i . The union of all such
sets ER

i for i = 1, 2, , k is referred to as IR. For example, as
depicted in the lower left part of Figure 3, the token tR10 is
expanded to set ER

10 in IR.

In the second step, we identify all documents (i.e. report
records) in the repository D which are similar to the initial
report R, by applying Latent Semantic Indexing and cosine
similarity, using all tokens tRi ∈ R as a query in the corpus
of documents D. For each record P ∈ D that bears cosine
similarity above a certain threshold (0.9 in our case) with R,
we obtain its set of source code entities TP yielding thus the
set {tP1 , tP2 ,... tPn }. We refer to this set also as SP,R, denoting
that record P bears similarity with the initial record R. We
refer to the union of all sets SX,R for all records X that bear
similarity with record R as SR, and we consider each token
tXj ∈ SR as an initial hypothesis seed.

In the third step, each token tXj of a set SX,R ∈ SR, is
expanded by incoming or outgoing .rsf relation paths of length
3. The union of all such expanded sets yields the expanded
set ESX,R

j . The union of all sets ESX,R
j ∪ SR yields the set

ESR. An expansion of more than three relations deep would
yield a very large set in the fourth step, especially for systems
that their source code entities are connected by many relations
(e.g. when the system has a dense call graph) and generates

Source Code Type Relation Type Used
GlobalVar Accesses
Attribute Sets

File DefinedIn, DeclaredIn
Class MethodBelongsToClass

Method Calls
Function Calls

TABLE I: Relations used to generate expansions

significant amount of noise.

In the fourth step, each source code entity w in an expanded
set ESX,R

j along with its neighboring source code (i.e. the
source code entities that are related to w) forms the hypothesis
space Hw for the element w. All expansions utilize incoming
and outgoing relations for a given source code entity, as
depicted in Table I.

In the example in Figure 3, a bug report record R is parsed
and a set of tokens TR = {tRi |i = 1, 2, ,m} is generated.
Each such a token tRi ∈ TR is expanded to generate the set
ER

i . The union of all such sets produces the set IR. At the
same time reports P and Q are identified as similar to R
using LSI and cosine similarity with token sets {tP1 , tP2 , tPm}
and, {tQ1 , t

Q
2 , t

Q
k } respectively. The union of all these sets is

referred to as the Search Space Set SR, where each element
tXi ∈ SR (e.g. the token tQ20 in Figure 3) is considered a seed
for generating the hypothesis space. In the next step, each such
token tXi that appears in a report in SR, is mapped to a fully
extended set of tokens by gathering all source code entities that
can be reached by a path of length 3. In this respect, for each
tXi ∈ SR there is a corresponding set ESX,R

i . The union of
all ESX,R

i sets produces the set ESR. For example, token tQ20
(which was collected because report R bears similarity with
report Q), yields the set ESQ,R

20 which contains the tokens n
and w. The expansion of tokens n and w of path length 3 in the
rsf graph collects additional tokens which form the hypotheses
sets Hn, and Hw respectively. The rank of the hypothesis w
is provided by the formula in equation (3).

A. Latent Semantic Based Indexing and Expansion

Latent Semantic Indexing (LSI) takes a vector space repre-
sentation of documents based on term frequencies as a starting
point, and applies a dimension reduction operation on the
corresponding term/document matrix using the singular value
decomposition algorithm [16]. Similarities among documents
and queries can be more reliably estimated in the reduced
space representation than in the original representation. This
is because documents which share topics will have a similar
representation in the reduced space representation, even if they
have few or even no terms in common. LSI is commonly used
in areas such as web retrieval, document indexing [17] and
feature identification [18]. Latent Semantic Indexing consists
of the following phases:

First, is the creation of a vocabulary of tokens from entries
of the input corpus (i.e. the bug repository). This is referred
to as the text tokenization and is achieved by extracting terms
from the entries of the input corpus and refining the terms by
applying a normalization process and selection process. In our

6

Fig. 4: LSI Bug Report
Clusters for Amarok

Fig. 5: LSI Bug Report
Clusters for Dolphin

case the result of this step is a list of tokens that are related
to source code entities of the subject software system. The
tokenization and stemming steps are applied to all bug reports
in the repository, and results to a complete vocabulary that
contains flat words (source code entities such as file names,
function names, variable names, types) from all records in the
bug repository.

Second, is the creation of the term-document matrix. This
is an m by n dimensional matrix where m represents the total
number of documents in the corpus and n is the total number
of terms (vocabulary) generated in first step. Thus, a row of
this matrix is a signature vector corresponding to a bug report.
A column of this matrix is a vector representing a term in the
vocabulary.

Third, is the definition of a distance function between the
terms of a bug report and a set of terms that are considered as
search keywords. In the context of bug report indexing, each
bug report R in the repository D is considered a document,
and the similarity function is the cosine similarity between
two vectors.

Finally, is the application of the cosine similarity function
for obtaining the documents (i.e. bug reports) that best match
a collection of search keywords (i.e. source code entities in
the initial bug report) which are considered the query. In this
respect, a conceptual similarity can be established between the
tokens of the initial bug report and the rest of the bug reports
in the repository.

As a simplified example, consider a bug repository which
contains reports R1, R2, ..., Rn containing the source
code entities classA.method1(var1), classB.method2(var2),
classA.method2(var1, var2). The vocabulary of terms is then
[classA,method1,method2, var1, var2], which is a vector
of size 5. If the report R1 in the repository contains the
source code entity classA.method2(var1, var2), then its term
frequency vector index is [1, 0, 1, 1, 1] indicating that in the
first position which corresponds to the term classA in the
vocabulary, this term appears once in R1. The same idea holds
for the other terms for the vector representing R1. If we wanted
now to compute the conceptual similarity between a bug report
Q that contains the source code entity classA.method1(var1)
and which has the term frequency vector [1, 1, 0, 1, 0], with
the bug report R1 and which has the term frequency vector
index [1, 0, 1, 1, 1] as mentioned above, we estimate the cosine
similarity between the two vectors. This estimated cosine

similarity in this case is 0.75 [26]. The value of 1 indicates a
full alignment while a value of 0 indicates orthogonal vectors
(i.e. not matching vectors). A value of -1 indicates diverging
concepts.

Bug reports with adjacent coordinates relate to similar
concepts through cosine similarity and form concept clusters.
Figures 4 - 5 depict such clusters formed in all bug reports for
the Amarok and Dolphin systems (please see also case studies
in Section VI).

In order to select the closest reports Q among the ones
which bear cosine similarity with the initial bug report R
we must consider a threshold value. This threshold value
varies for each system being considered and can be set by
the programmer, depending on how large the search space the
programmer wants to be. We have considered our experiments
with a threshold value of 0.9. The reports Q, P which bear
cosine similarity above the threshold value form the Search
Space Set SR, as depicted in Figure 3. In order to trim
the Search Space we also eliminate tokens which frequently
appear in the bug reports in the SR. Such tokens include the
name of the system, and other tokens which for some reason
appear in most reports (e.g. the token public). A separate
redundancy threshold with value 0.7 is used to discard the
tokens which are so frequent that basically provide only noise.
For tokens in TR which do not appear in any of the obtained
reports in SR, we set their score to max and keep them all.
The formula used to discard the commonly occurring terms is
based on the Inverted Document Frequency (IDF) concept as
follows:

HF score(t) = log(
reports ∈ SR

reports containing t
) (2)

B. Hypotheses Ranking

The fault localization process is based on a score which
depicts the ”closeness” a source code entity w (i.e. the
hypothesis for a root cause) has with other source code entities
tRj , as these have been extracted from the initial bug report R.
The ”closeness” of a root cause hypothesis source code entity
to the source code entities of the initial report are evaluated
according to the reachability properties of the .rsf graph which
denotes the dependencies and relations between the system’s
entities. The rationale is that the source code entities tRj which
relate to the symptoms will have a path leading to the root
causes of the observed failure, and that this path contains nodes
(i.e. tokens) which are in the ”vicinity” of, or a reachable
by both the elements of the set IR pertaining to source code
entities of the initial symptom, and the elements of the set Hw

pertaining to the source code entity w which is considered the
hypothesis.

Referring to Figure 3 let us assume that the initial bug report
R contains tokens (i.e. source code entities) tRi , where i = 1,
2,...,k. As discussed these tokens form the set TR. By taking
each token in TR along with its neighboring tokens using the
.rsf relations we create the set IR. Furthermore, let us assume
that we have applied Latent Semantic Indexing in order to
represent as vectors of token frequencies each bug report in the

7

Fig. 6: Matching Schematic Example

repository D. Using all tokens tRi in R as a query, we identify
all bug reports which bear a cosine similarity with the initial
report R that is above a certain threshold. For our experiments
we have used a threshold value of 0.9. The collection of all
such bug reports which bear similarity with R is identified
as the search space SR. Each element of such identified bug
report (e.g. the token tQj) is expanded by collecting all source
code elements that are pointed-by or point-to the token (e.g.
the token tQ20), creating clusters of tokens ESQ,R

j . The union
of all such clusters forms the extended search space ESR.
An element w in a cluster in ESQ,R

j , is an hypothesis (i.e.
a possible root cause). The hypothesis w in a cluster ESQ,R

j

along with its neighboring elements using the .rsf relations
forms the set Hw The hypothesis ranking score is based on
the overlap between the tokens in Hw and the tokens in the
extended initial token set IR using the following formula:

Rank(w) =
|Hw ∩ IR|
|Hw ∪ IR|

(3)

The rationale behind this approach is to find a maximal set
that overlaps with the tokens found in the initial report as well
as with the tokens that are in the neighborhood (i.e. can be
accessed by .rsf relations) of the initial report.

As an example of the idea behind the ranking mechanism
let us consider the schematic in Figure 6. On the upper left
corner of Figure 6, the tokens of the initial report are collected
and form the set TR. This is also depicted in Figure 3. This
set is extended as discussed in Section V yielding the set IR

which is depicted in the lower left part of Figure 6 and also
in Figure 3. The nodes that pertain to three steps expansion
from a token of the initial set TR are depicted as rectangles in
the lower part of Figure 6. This extended set corresponds to
a graph that has the elements of the set IR as its nodes, and
the rsf relations between these nodes as its edges. Similarly,
the set TR is also extended by finding similar reports and
in turn extending their elements as discussed in Section V,
yielding the ESR depicted in the top right part of Figure
6. Each element w in every set in ESR is an hypothesis
and yields the set Hw, depicted lower right part of Figure

System Name SLOC # Files # total Reports
Amarok 265,116 2,089 17,976
Dolphin 102,354 853 7,227
Kopete 387,753 3,729 9,765

Konqueror 112,436 6,248 38,135
GTK+ 118,352 6,248 21,803

Nautilus 180,675 2,720 52,130

TABLE II: Details for the systems used as case studies

6. The set Hw corresponds to a graph, as discussed above,
which has the elements of the set Hw as its nodes, and the
rsf relations between these nodes as its edges. This graph has
common nodes with the graph that corresponds to the set IR

produced by the expansion of the initial report. In Figure 6
these common nodes are shown as solid filled rectangles. The
rectangular nodes that match are shown in Figure 6 as aligned
with the dashed double pointing arrows. The computed rank
for w is then the cardinality of the intersection of the two
sets (i.e. the number of the matched elements) divided by the
cardinality of the union of the two sets. In the example of
Figure 6 there are four matched elements (the four solid filled
rectangles), while the cardinality of the union is 12 nodes
(excluding w), yielding a rank of 4/12 = 0.33. The idea behind
this technique is to compare the neighborhood of the nodes
which are in the vicinity (in rsf graph terms) of the source
code entities in the bug report, with the neighborhood of the
nodes which are in the vicinity (in rsf graph terms) of the
source code entities in all bug reports in the repository which
are conceptually similar (in cosine similarity terms) with the
initial bug report.

VI. CASE STUDIES

In order to evaluate the proposed approach we have con-
ducted a series of experiments on six large open source
systems each of which is written in different programming and
scripting languages. The evaluation focuses on assessing a) the
performance and characteristics of the search space generation
phase, and b) the accuracy of the obtained results as compared
with the ground truth results indicated in the final resolution of
the each initial bug report for which we had access to. We have
evaluated our approach on the Amarok 2.8 , the Dolphin 2.1,
the Kopete 1.0.80, the Konqueror 4.0, the GTK+ 3.19, and the
Nautilus 3.8.0 system. The Amarok system is an open source
music player running on Windows, Unix, and Linux platforms.
The Dolphin system is a file management system and is part
of the KDE released applications. The Kopete system is an
industrial strength instant messenger framework that could in-
tegrate with a number of systems such as AIM, ICQ, Windows
Live Messenger, Yahoo, Jabber, Gadu-Gadu and others. The
Konqueror is a web browsing, file management system, and
file browsing system for local or remote files. It is based on the
KHTML engine, and it supports pdf and word editing as well
as spreadsheet functionality. The GTK+ system is a toolkit
for implementing graphical user interfaces. It is part of the
GNU project and it is suitable for small or large integrated
applications. Finally, the Nautilus is a file management system

8

System
Avg. #
of reports
obtained
via LSI

Avg. #
of SCEs
per input
report
(reports)

Avg.
size of
SR

(tokens)

Avg.
size of
ESR

(tokens)
Amarok 3,104 11.76 (7) 4,132 8,056
Dolphin 336 6.83 (12) 262 1,057
Kopete 1,457 10.7 (8) 5,537 9,569

Konqueror 5,215 113.4 (5) 8,263 11,774
GTK+ 9,597 14.46 (13) 12,746 21,537

Nautilus 7,931 11.7 (7) 1,654 1,606

TABLE III: Details for the systems used as case studies

for the GNOME platform. It supports the management of local
file systems as well as remote file systems accessible via FTP,
HTTP, WebDAV, and SFTP servers. Basic source code size
statistics and bug repository related statistics for these systems
are depicted in Table II.

A. Search Space Generation Case Studies

The objective of these case studies is to evaluate the overall
behaviour of the use of LSI for generating a coherent search
space and consequently forming collections of hypotheses. The
case studies focused on a) assessing how the LSI-obtained
reports relate to each other and whether they form a coherent
set, and b) assessing the characteristics of the obtained results
as a function of the size initial report’s token set.

Table III depicts the characteristics of the generated search
space as a function of the size of the initial report’s token
set. More specifically, we have obtained on average 3,104
reports for Amarok per initial bug report by applying LSI and
a similarity threshold score of 0.9. Each initial bug report out
of the 7 we have considered, contains on average 11.76 source
code entities. The generated search space SR contains on
average 4,132 source code entities for each of the 7 initial bug
reports R being considered for Amarok, while the extended
search space ESR contains on average 8,056 tokens. Similar
statistics are depicted for the other five systems we have
examined and are also depicted in Table III. The important
aspect to note is that starting with less than fifteen tokens in the
initial report, the search space and the extended search space
contains three orders of magnitude as many related tokens as
the initial bug report R. For example, in GTK+, as depicted in
Table III, the 14.46 tokens in the initial report yield, through
the search space generation process, 12,746 tokens for the set
SR, and 21,537 source code entity tokens, for the set ESR.

B. Accuracy of the Obtained Results

In this set of experiments, we have considered different
initial bug reports for the six systems we have applied the
technique on. Tables IV - IX present the obtained results.
More specifically, as depicted in Table IV for the Amarok
system, we have considered 7 different cases pertaining to 7
different initial bug reports for which we have access to their
ground truth, that is how each of these initial bug reports
were finally resolved by a FINAL type of record entry in
the bug repository. In this respect, for each such initial bug
report, we have clear and unambiguous information on which

Bug IDs Methods Rank /
List Size

Recall
(%)

Precision
(%)

323156 getTrack() 86/3286 100 0.0304
323614 slotShufflePlaylist() 6/8963 100 0.0335

SortWidget() 5/8963
run() 7/8963

323635 Base(QWidget) 118/8938 83.3 0.0335
BallsAnalyzer(QWidget) Not Found
B̃lockAnalyzer() 19/8963
resizeEvent(QResizeEvent) 8/8963
paintEvent(QpaintEvent) 1/8963
drawBackground() 28/8963

325006 createMenus() Not found 50 0.0112
loadQtBinding() 1/8968

328445 updateTimeLabelTooltips() 14/4537 100 0.022
334479 addTrack() 5/8926 50 0.0112
337725 toString() 1/5061 100 0.0198

TABLE IV: Fault Localization Results for Amarok

Bug IDs Methods Rank /
List Size

Recall
(%)

Precision
(%)

161385 setUrl(KUrl) 2/1112 100 0.089
250787 InformationPanelContent(QWidget*) 14/1090 100 0.460

showItem(KFileItem) 1/1090
showItems(KFileItemList) 2/1090
showIcon(KFileItem) 5/1090
showPreview(KFileItem,QPixmap) 3/1090

267171 run() 1/1297 66.67 0.154
UpdateItemStatesThread() 2/1297
updateItemStates() Not Found

287829 selectedItems() 2 /1276 100 0.078
302264 updateItemStates() 5/169 100 1.775

setData() 8/169
run() 25/169

303742 slotRoleEditingFinished() 30/911 100 0.120
304524 editedRoleChanged() 8/1231 100 0.162

closeRoleEditor() 2/1231
306147 slotRoleEditingFinished() 64/1330 100 0.075
306167 paint() 5/1400 100 0.071
306459 createSecondaryView(int) 786/1277 100 0.156

KFileItemModel(QObject*) 7/1277
307254 slotTrashActivated() 3/233 100 0.429
308018 closeRoleEditor() 2/956 100 0.209

editedRoleChanged() 1/956

TABLE V: Fault Localization Results for Dolphin

methods were modified in order for the initial bug report to
be resolved. The tokens that correspond to the names of the
methods/functions modified as part of the resolution constitute
the ground truth for this initial bug report.

While conducting all of our experiments, we have excluded
the FINAL resolution report from the repository.

Going back to the obtained results, in Table IV and for the
initial bug report with ID 323156 its resolution entailed the
modification of the method getTrack() in class sqlRegistry (not
shown in Table IV for space considerations). The proposed
technique for the bug report ID 323156 considered a search
space of 3286 tokens (as these were generated by applying
LSI, cosine similarity and expansion), and the score of the
method getTrack() by applying equation (3) placed this method
in the 86th position among 3286 candidates (first line in Table
IV). The recall of the obtained 3286 results is 100% and
the precision is 0.0304%. Similarly, for bug ID 323614 in
Table IV there were three methods in the ground truth set
which were placed in 6th, 5th, and 7th position among 8963
hypothesis candidates calculated by our expansion method.

9

Bug IDs Methods Rank /
List Size

Recall
(%)

Precision
(%)

153117 hp removeDupe() 3/599 100 0.167
153533 slotAddClosedUrl(KonqFrameBase*) Not Found 66.66 0.020

testAddTab() 4/9819
testDuplicateSplittedTab() 374/9819

155225 saveConfig() 16/9419 100 0.012
155434 focusNextPrevNode(bool) 8/10266 100 0.029

setActiveNode(NodeImpl*) 1687/10266
setFocusNode(NodeImpl*) 687/10266

156658 openBrowserWindow() 6/6889 100 0.087
createNewWindow() 5/6889
...WindowWithSelection() 4/6889
...WindowFromProfile() 1/6889
...WindowFromProfileAndUrl() 2/6889
...ProfileUrlAndMimeType() 3/6889

TABLE VI: Fault Localization Results for Konqueror

The recall was also 100% and the precision 0.0335%. In Table
IV we observe also that there were two methods, the method
BallsAnalyzer() which was not found by our method as it was
not captured while generating the search space S323635 for
bug report ID 323635, and the method createMenus pertaining
to the resolution of the bug report ID 325006 which was
also not found. More specifically, for the bug report ID
325006 the ground truth includes two methods createMenus()
and loadQtBinding(). The second method was found by our
technique and was even placed in the first position among
8968 candidate tokens. However, the Fetch tool was not able
to generate a source code relation in the .rsf file which links
these two methods. Therefore, it may be possible to enhance
the accuracy of this technique by using source code analyzers
which generate more detailed relations between source code
entities.

Bug IDs Methods Rank /
List Size

Recall
(%)

Precision
(%)

243653 editAccount(QWidget*) Not found 0 0
251226 logout(QString) 1/10020 100 0.0099
254494 setDisplayNameSourceContact() 6/6682 100 0.0897
265295 logout(QString) 1 /10017 100 0.0099
268056 smt messageSent() 124/10021 100 0.0299

gotFileMessage() 287/10021
deleteTasks() 74/10021

270797 TranslatorPlugin() 12/6676 100 0.0299
TranslatorPlugin(QObject*,QStringList) 37/6676

273070 TranslatorPlugin() 12/6674 100 0.0299
TranslatorPlugin(QObject*,QStringList) 37/6674

277606 setDisplayNameSourceContact() 10/6672 100 0.0149

TABLE VII: Fault Localization Results for Kopete

The results from the other five systems examined, indicate
similar results. More specifically, in most systems and for most
initial bug reports examined, the method captures the ground
truth and exhibits high recall values. This is depicted in the
Tables V - IX which list the results from the other five systems.

Furthermore, most of the obtained results are ranked within
the first twenty positions of the overall search space. An
exception can be seen in one method in bug report 306459
as shown in Table V. Similar exceptions occur for in bug
reports 153533, 155434 in Table VI, in bug report 268056 in
Table VII, in bug report 757282, 758442, 758609, 760942, and

Bug IDs Methods Rank /
List Size

Recall
(%)

Precision
(%)

757282 gtk window resize() 9/21555 100 0.0139
... configure request size() 94/21555
... resize to geometry() 3/21555

757805 get shadow width() 2/21572 100 0.0092
gtk.... get shadow width() 3/21572

758442 ... context set path() 13/21651 100 0.0092
gtk... add to widget path() 235/21651

758609 gtk window show() 171/21563 100 0.0092
gtk window move() 2/21563

758901 ... wayland window configure() 5/18407 100 0.0054
759091 get widget coordinates() 5/21555 100 0.018

tab prelight() 1/21555
get tab at pos() 11/21555
... leave notify() 2/21555

759299 ... window set transient for() 12/21602 100 0.0046
759705 gtk window show() 22/21564 100 0.0092

gtk window realize() 5/21564
759764 warn response() 6/21555 100 0.0046
760213 ... set window cursor() 20/21548 100 0.0046
760640 gtk notebook destroy() 83/21659 100 0.0046
760942 ... border window() 10/9053 100 0.0111
761128 ... entry draw text(GtkEntry*,cairo t*) 132/21535 100 0.0046

TABLE VIII: Fault Localization Results for gtk

761128 in Table VIII, and in bug reports 697890, and 703349
in Table IX. However, in almost all these cases a single method
is affected, and we believe that the developers having seen the
rest of the results for the same record, will be able to pin point
the low ranked function as well. Future work should include
the identification of additional relations which may link these
methods in the ground truth set, so that we can further enhance
the accuracy of the proposed method and increase the ranking
score of the methods which are currently ranked lower that
they should.

Finally, the examination of the bug reports for which their
results were ranked low by our approach, revealed that these
were isolated modules with very limited relations with other
source code entities and for which the Fetch tool did not
bring enough rsf relations to consider. It will be possible by
considering another source code relationship extractor, to be
able to increase the ranking score of these isolated entities.

Bug IDs Methods Rank /
List Size

Recall
(%)

Precision
(%)

333265 real update menus(NautilusView*) 10/3247 100 0.031
697183 apply columns settings() 6/2695 100 0.074

create and set up tree view() 3/2695
697890 filtering changed callback(gpointer) 23/3673 100 0.081

invalidate one count() 88/3673
collect all directories() 25/3673

698190 column chooser use default callback() 1/3673 100 0.109
get column order() 7/3673
get visible columns() 8/3673
nautilus list view reset to defaults() 3/3673

702546 nautilus window slot dispose() 5/4284 100 0.023
71480 custom icon file chooser response cb() 73/4267 100 0.023
703349 append directory contents fields() 143/2914 100 0.034

TABLE IX: Fault Localization Results for Nautilus

VII. CONCLUSION

Identifying the location of a bug given a symptom or a
failure report is a difficult task. The software engineering

10

community has proposed a number of different techniques that
aim to address the problem. One type of techniques aims to
pinpoint the statements which constitute the root causes for a
failure. These techniques utilize static and dynamic analysis,
machine learning, as well as models that link root-causes with
symptoms. These techniques require full access to test cases,
test results, and specialized parsers and analyzers to perform
specialized static analyses such as slicing and dicing. Another
type of techniques aims to identify the files or even functions
of the system which are highly suspicious of containing the
root cause of an observed failure. In this paper, we report
results of a system that allows for the identification of a ranked
list of functions and methods that have a higher likelihood,
based on our experimental results, to contain the root-cause
of a failure. The major benefit of the approach is that it
uses information readily available from bug repositories, and
information that can be easily obtained from the source code
using only simple parsers or scanners, eliminating thus at this
level, the use of detailed source code analyzers. This work
can be extended in a number of ways. First, it is interesting
to experiment by considering a richer set of source code
entity relations. This can be achieved by using a different or
additional source code fact extractors and analyzers such as
srcML. Second, the ranking method can be altered so that
the score can be based on graph comparison as opposed to
token matching. More specifically the tokens IR that stem
from the initial bug report along with their relationships can
be considered as the ”source” graph, while the hypothesis
token set Hm along with the relations can be considered as
the ”target” graph. The ranking score can then be the distance
between these two graphs. A third direction is to consider
examining graph related properties between the hypothesis
tokens and the tokens in the initial bug report. For example, we
could investigate whether there are cliques formed when we
consider these two sets as nodes of the rsf graph, and rank the
resulting nodes by their connectivity strength and properties
(e.g. using a hub and authorities type of analysis). Finally, one
could also consider the history of changes, giving thus higher
ranking into hypotheses that relate to error prone or frequently
changed source code elements.

REFERENCES

[1] H. Agrawal, J. Horgan, S. London, W. Wong, ”Dynamic Program
Slicing”. In Proceedings of the ACM SIGPLAN’90 Conference on
Programming Language Design and Implementation, pp. 246- 256, White
Plains, New York, June 1990.

[2] Y. Chen, Y. Cheung, ”Dynamic Program Dicing”. In Proceedings of the
IEEE Conference on Software Maintenance, IEEE Computer Society, pp.
378-385 September 1993.

[3] W. E. Wong, T. Sugeta, Y. Qi, and J. C. Maldonado, ”Smart Debugging
Software Architectural Design in SDL”. In Journal of Systems and
Software, 76(1):15-28, April 2005.

[4] Iris Vessey, ”Expertise in debugging computer programs: A process
analysis”. In International Journal of Man-Machine studies 23, 5, pp.
459-494, 1985.

[5] M. Renieris and S. P. Reiss, ”Fault Localization with Nearest Neighbor
Queries”. In Proceedings of the 18th IEEE International Conference on
Automated Software Engineering, pp. 30-39, Montreal, Canada, October
2003.

[6] J. A. Jones and M. J. Harrold, ”Empirical Evaluation of the Tarantula
Automatic Fault- Localization Technique”. In Proceedings of the 20th
IEEE/ACM Conference on Automated Software Engineering, pp. 273-
282, Long Beach, California, USA, December, 2005.

[7] W. E. Wong, V. Debroy and B. Choi, ”A Family of Code Coverage-based
Heuristics for Effective Fault Localization”. In Journal of Systems and
Software, 83(2):188-208, February, 2010.

[8] W. E. Wong and Y. Qi, ”BP Neural Network-based Effective Fault
Localization”. In International Journal of Software Engineering and
Knowledge Engineering 19(4):573-597, June 2009.

[9] Frank Buschmann, Kevin Henney, Douglas C. Schmidt, ”Pattern-Oriented
Software Architecture, Volume 4, A Pattern Language for Distributed
Computing”. Willey Publishers, 2007.

[10] Y. Brun and M. D. Ernst, ”Finding Latent Code Errors via Machine
Learning over Program Executions”. In Proceedings of the 26th Inter-
national Conference on Software Engineering, pp. 480- 490, Edinburgh,
UK, May 2004.

[11] B. Livshits, T. Zimmermann, ”DynaMine: Finding Common Error
Patterns by Mining Software Revision Histories”. In Proceedings of the
10th European Software Engineering Conference, ACM New York, pp.
296–305, Lisbon 2005.

[12] Y. Zhou, Y. Tong, R. Gu, H. Gal, ”Combining Text Mining and Data
Mining for Bug Report Classification”. In Proceedings of the 2014 IEEE
International Conference on Software Maintenance and Evolution, IEEE
Computer Society, pp. 311-320, September 2014.

[13] C. Mateis, M. Stumptner, and F. Wotawa, ”Modeling Java programs for
diagnosis”. In Proceedings of the 14th European Conference on Artificial
Intelligence, pp.171-175, Berlin, Germany, August 2000.

[14] F. Wotawa, M. Stumptner, and W. Mayer, ”Model-based debugging or
how to diagnose programs automatically”. In Proceedings of the 15th
International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems: Developments in Applied
Artificial Intelligence, pp. 746-757, Cairns, Australia, June 2002.

[15] H. Zawawy, S. Mankovskii, K. Kontogiannis, J. Mylopoulos, ”Mining
Software Logs for Goal-Driven Root Cause Analysis”. In book ”The Art
and Science of Analyzing Software Data”, eds. C. Bird, T. Menzies, T.
Zimmermann, Waltham: Morgan Kaufmann, 2015, pp. 519-554.

[16] G. Golub and C. Reinsch, ”Singular value decomposition and least
squares solutions”. In Numerische Mathematik, vol. 14, pp. 403–420,
April 1970.

[17] L. Wu, J. Feng, and Y. Luo, ”A personalized intelligent web retrieval
system based on the knowledge-base concept and latent semantic indexing
model”. In Software Engineering Research, Management and Applica-
tions, ACIS International Conference on, vol. 0, pp. 45–50, 2009.

[18] D. Poshyvanyk, A. Marcus, V. Rajlich, Y.-G. Gueheneuc, and G. An-
toniol, ”Combining probabilistic ranking and latent semantic indexing
for feature identification”. In ICPC ’06: Proceedings of the 14th IEEE
International Conference on Program Comprehension, (Washington, DC,
USA), pp. 137–148, IEEE Computer Society, 2006.

[19] T. B. Le, R. J. Oentaryo, D. Lo, ”Information Retrieval and Spectrum
Based Bug Localization: Better Together”. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ACM New
York, pp. 579-590, 2015.

[20] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, ”A topic-based approach
for narrowing the search space of buggy files from a bug report”. In
Proceedings of the 2011 Automated Software Engineering Conference
pp. 263-272, November 2011.

[21] S. Rao, A. Kak, ”Retrieval from Software Libraries for Bug Localiza-
tion: A Comparative Study of Generic and Composite Text Models”.
In Proceedings of the 8th Working Conference on Mining Software
Repositories, pp. 43-52, May 2011.

[22] T. Chappell, C. Cifuentes, P. Krishnan, S. Geva, ”Machine Learning for
Finding Bugs: An Initial Report”. In Proceedings of IEEE International
Workshop on Machine Learning Techniques for Software Quality Eval-
uation (MaLTeSQuE), IEEE Computer Society, pp. 21-26, Klagenfurt,
Austria 2017.

[23] B. Du Bois, B. Van Rompaey, K. Meijfroidt, E. Suijs, ”Supporting
Reengineering Scenarios with FETCH: an Experience Report”. In ECE-
ASST Journal, vol. 8, Nov. 2007.

[24] V. Tzerpos, R. C. Holt, ”ACDC : An Algorithm for Comprehension-
Driven Clustering”. In Proceedings of IEEE Seventh Working Conference
on Reverse Engineering, IEEE, pp. 258-267, 2000.

[25] Famoos, http://scg.unibe.ch/archive/famoos/, Im-
ber(1991)Imber:1991:CDI:184274.184298 Mike Imber, Software
Engineering Environments, 1991.

[26] http://scistatcalc.blogspot.ca/ 2015/11/cosine-similarity-calculator.html

