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Abstract—As microservices become one of the predominant
architectural styles for distributed enterprise computing, there
is a need to devise frameworks which allow for the goal driven
composition and coordination of such highly granular service
components. Even though a number of service composition
and orchestration techniques have been proposed over the past
decade, these do not take into account stakeholders’ intents as
well as data, control, and temporal interdependencies between
actions microservices can perform. In this paper, we present
extensions to goal models with respect to data, logical and
temporal dependencies exhibited between tasks and actions
among microservices, and we propose a framework based on
a graph transformation approach which, when applied to the
extended goal models, can yield service invocation plans that
achieve the desired requirements and constraints denoted by
the specific goal models being considered.

Keywords-Goal models, service composition, service chore-
ography, microservices.

I. INTRODUCTION

With the proliferation of infrastructures, such as mobile
and cloud infrastructures that support dynamic provision of
services and resources, there is a dire need to bridge the gap
between the intended system requirements, the functionality
of these available services, and the stakeholders’ goals.
The problem is amplified due to the fact that in such
systems specific service functionality can now be offered
by different highly granular containerized microservices,
and the fact that usually many stakeholders with diverse
and often conflicting requirements, are involved. Examples
of different stakeholders involved are the system’s end-
users, certification bodies, regulatory authorities as well as
logging and monitoring systems which have to respect key
privacy and security requirements. The software engineering
community has responded by proposing a number of require-
ments specification and conceptual modeling frameworks for
enterprise software systems and services. These frameworks
provide valuable tools for denoting user’s intentions and
system requirements. One such framework is based of the
i∗ and the Goal Modelling formalisms [1]. In this paper,
first we propose extensions to the goal model metamodel
for capturing structural and temporal dependencies between
user intents, service goals, data resources, tasks, and ac-
tions required to achieve the system’s functional and non-
functional requirements, and second we present a collection

of transformations whereby the extended Goal Models are
transformed to a collection of graphs referred to a Action
Dependency Graphs or ADGs [2] [3]. The ADGs are topo-
logically ordered to yield alternative actions plans. These
compiled action plans can serve as templates which can be
instantiated by specific microservices.

As a motivational example, let us consider an e-commerce
company which utilises a microservices architectural model.
In such a model, highly granular components (i.e. microser-
vices) implement different functionalities related to how and
what order the goods are presented to the customer, how
discounts on different products are applied, how payments
are processed and reconciled on the back-end, how shipping
agreements with various operators (courier services, postal
service, freelance contractors) are processed, and how cus-
toms brokerage services are selected. In this context, there
may be many different shipping operator services imple-
mented as different microservices, many different customs
brokerage services, and many different payment clearing
services available in such an ecosystem. Each such service
provides unique properties and fulfills different requirements
(cost, security, processing time guarantees etc.). Further-
more, these services have to be orchestrated, so that they
conform with temporal, logical, and resource dependencies
and constraints. For example, certain goods may have to
clear customs within five hours while other goods may be
prohibited on some transportation means (e.g. air-transport).
The problem then is given the various available services
(courier, brokerage, customs, payment clearance) and which
may possibly have conflicting requirements (e.g. cost vs.
speed of processing), compose a workflow as a sequence
of actions, which will satisfy all requirements along with
any other temporal, logical, or resource constraint and at
the same time satisfy the top goal.

This paper is organised as follows. Section II presents
related work. Section III provides and an outline of Goal
Models and presents the proposed Goal Model extensions.
Section IV presents the transformations from the extended
Goal Models to ADGs supplemented a running example,
while Section V presents performance statistics by applying
the algorithm to sizeable Goal Models. Finally, Section VI
concludes the paper and discusses future research.



II. RELATED WORK

We could say that the related proposed approaches fall
into three major categories. The first category relates busi-
ness modeling and enterprise application planning. The
second category relates to service discovery and selection
using requirements and QoS criteria, while the third category
relates to service composition and orchestration.

Business and Enterprise Modeling. In [4] the authors
use a rule language based on the Event-Condition-Action
(ECA) paradigm in order to alter a business process and
produce variant processes which fulfill specific business
requirements. The main differences from our work is that
we utilise an extended Goal Model instead of ECA rules,
and that we produce action plans which take into ac-
count data dependencies, logical dependencies, temporal
constraints as well as positive and negative contribution links
between possible system operations (i.e. actions). Markovic
and Kowalkiewicz in [5] present an ontology language
for denoting business goals which are consequently linked
with services which can be used to implement such goals.
The proposed language is founded on the entities of goal,
subgoal, description, measure, deadline, priority, and level of
goal satisfaction. The proposed language is a subset of the
Goal Model meta-model, but could also serve as a language
which our approach could use to generate action plans
modulo temporal constraints and parallel compositions. In
[6] the authors present a methodology to associate Business
Processes denoted in BPMN with stakeholder objectives
denoted as Goal Models. The approach allows for the
dynamic analysis and evaluation of such relationships in a
quest to verify that business processes conform with policies
and user requirements. The authors utilise KAOS as a their
Goal modelling framework. The main differences with our
work is that first we extend the Goal Model meta-model
and second we use the extended Goal Model to generate
consistent with it action plans (e.g. business or service
workflows), as opposed to verify the compliance of flows
with the Goal Model.

Service Discovery and Selection. In [7] the authors
propose an approach which is based on Genetic Algo-
rithms and a technique referred to as quality constraints
decomposition in order to decompose the constraints of a
complex service into simpler constraints of the constituent
services. Once such a decomposition is achieved, then a
search algorithm identifies the services which can optimally
satisfy these simpler constraints. The approach is focusing
on satisfying global constraints by optimizing local ones.
In [8] Wang et al. discuss an adaptive service composition
technique which aims to tackle the problem of changing
QoS properties in dynamically altered environments such as
mobile computing environments. The approach is based on
the use of reinforcement learning and Skyline computing
as a search optimization technique. The result is a service

selection and composition environment which can adapt
its operation in environments where QoS properties for
different services are constantly changing. Zo et al. [9]
propose the use of a multi-criteria Genetic Algorithm to
identify a Pareto-optimal collection of services when various
QoS requirements are considered. The technique is using a
combination of weights and Genetic Algorithms in order
to explore the QoS criteria space and reach an optimal
combination of services which meet the specified service
selection criteria. In [10] the authors present an approach
that utilises semantic web languages such as OWL in order
to annotate services and consequently select in an intelligent
manner such services from service registries. The authors
distinguish between three types of registries, namely ontol-
ogy registries, QoS registries and general service registries.
Service compositions are specified using abstract models
which are instantiated by selecting appropriate services and
generating executable workflow specifications.

Service Composition and Orchestration. In [11] the
authors present a goal driven framework based on the
Map metamodel to capture requirements of complex service
compositions when different organizations embark into col-
laborations integrating in an ad-hoc manner various service
components. The metamodel allows for eliciting require-
ments and denoting service distribution and orchestration
properties. The fundamental premise in this approach is
that intentions can be achieved by strategies, forming thus
a directed graph which can be instantiated by concrete
services in order to compose a more complex service. In
[12] the authors present a goal driven service composition
approach capable of exhibiting adaptive behavior through
a backtracking and feedback mechanism. The approach is
based on the compilation of a Goal Abstract Graph which
can be instantiated to yield concrete compositions using a
service discovery algorithm that takes into account QoS
properties and context. The main differences of the Goal
Abstract Graph with our approach is first that we focus
on deducing action plans (i.e. microservice workflows) as
opposed of instantiating the existing plans, and second we
consider additional operators such as parallel composition,
time precedence and timeouts. Orriens, et al. [13] present
a rule based approach for generating service business flows
that meet business objectives and user requirements. The
authors propose a metamodel for service flow specification
that is founded on the concepts of provider, role, activity,
flow, condition, event and message, while they differentiate
on rule types such as structure rules, data rules, exception
rules, and constraint rules in order to capture various facets
of service flow composition. The main differences with our
work is that we utilise extended goal models, as opposed
rules, and action dependency graphs as the underlying for-
malism for workflow construction. In [14] Jiang et al. present
a model-driven approach to service composition whereby
user requirements, user intentions, and tasks are specified



using the i∗ language. The specification is then transformed
into an abstract Web service composition specification which
through instantiation yields the final concrete service. Our
approach is also using a formalism akin to i∗ but allows
for more complex dependencies to be taken into account on
the formulation of action plans. These dependencies include
positive and negative contributions, resource dependencies,
temporal dependencies, and parallelism.

III. GOAL MODELS AND EXTENSIONS

Goal models refer to a conceptual modelling formalism
proposed for representing requirements and intentions of
agents, actors, and systems. Since their introduction [15]
[16] [17], they have been widely used in the field of Software
Requirements Engineering due to their simplicity and rich
semantics. Goal models formulate the goals of a software
system in a tree-structure form. Each goal node can be
analyzed through AND/OR decomposition into subgoals.
A goal is AND-decomposed if in order to satisfy it, the
children-goals must be all satisfied. On the other hand, in the
case of a OR-decomposed goal, at least one of the children-
goals must be satisfied in order to satisfy the parent goal.
For the action composition problem, we consider two more
types of nodes Task nodes and Action nodes as proposed in
[2] [3]. A Task is considered as an abstraction of a complex
operation which can be AND/OR decomposed into simpler
Tasks and finally, into Actions. Actions are the simplest nodes
and they represent atomic operations that are necessary to
be performed in order to fulfill complex Tasks.

Action nodes may require data Resources in order to
execute. Action nodes can only be AND-decomposed into
sets of required Resource nodes. In this respect, a Resource
node represents an input parameter required by an Action.
A Resource Dependency link (rd) between an Action and a
Resource denotes that the Action node (i.e. source node of
the rd link) generates the specific Resource (i.e. the target
node of the rd link) [2] [3].

Goal model nodes can be also interconnected with di-
rected contribution links. The ++S link denotes that the
satisfaction of source-node contributes positively to the
satisfaction of target-node. The –S link denotes that the
satisfaction of source-node contributes negatively to the
satisfaction of target-node. The ++D link denotes that the
negation of the source-node contributes negatively to the
satisfaction of target node. Finally, the –D link denotes that
the negation of the source-node contributes positively to
the satisfaction of target node. In addition to these four
types of contribution links, Liaskos in [18] proposed Logical
Precedence links which denote that in order to satisfy the
target goal node, the source node must be satisfied first.

In the above model we propose the parallel node, and
four new dependency links which extend the expressiveness
and the semantics of goal models for not only representing

requirements and intentions of agents, but also tasks and
actions along with their dependencies. These are:

Parallel Node: It represents a node in the goal model
which denotes that the evaluation of two or more
nodes(tasks,actions) linked to it can be performed in parallel.
In this respect, two or more nodes can be connected via a
parallel node form a group of parallelizable nodes. Each
Parallel Node is associated with a time limit value denoting
the maximum duration in which all the parrallel actions must
be performed, otherwise, a timeout event is issued.

Parallel link (par): This type of link connects goal nodes
of the model, that must be satisfied in parallel. Many
Parallel Links can be connected to the same Parallel Node,
creating a group of parallelizable goals.

Temporal Precedence link (tp): It represents a weaker
type of relation compared to Logical Precedence (i.e.
preconditions) [18], highlighting a temporal relationship
between target and source goal node. It denotes that if two
actions end up appearing in an execution plan, then the
execution of the source action must precede the execution
of the target action.

Timeout link (to): It represents the temporal dependency
between two Action nodes regarding the maximum
period of time between the completion of the one node
(i.e. the source node) and the completion of the other
node (i.e. the target node) of the to link. Otherwise, a
timeout event is issued. In this type of link only simple
goal nodes (Actions), can be attached and the maximum
period of time is provided into the timeout value of the link.

Time Difference link (td): It represents the minimum
amount of time that must be passed from the completion of
the source Action node, before the execution of the target
Action node starts. The amount of time is stored into a field
of the link. The edges of this type of connection can only
be Action nodes.

An example model and an ADG are illustrated in Figure
1 and in Fig. 2 respectively.

IV. ACTION DEPENDENCY GRAPH GENERATION

A. Action Dependency Graphs

An Action Dependency Graph (ADG) [2] represents a
valid sequence of actions which are ordered in a way that
first satisfies the root node of the Goal Model and second, it
preserves the temporal dependencies (tp, td, to links), logical
dependencies (lp links), data dependencies (rd links), and
contribution dependencies (++S, – S, ++D, –D) which appear
between nodes in the model.

In an ADG, nodes denote Actions and edges denote
sequential orderings of actions in order to form execution
plans. Action nodes in the ADG directly correspond and



Figure 1: Example of extended Goal Model.

Figure 2: An example topologically sorted ADG for the
model in Figure 1.

refer with a 1-1 relations to the actions nodes in the goal
model. For example, if a1 and a2 are Action type of nodes
which appear in the goal model, then a1 → a2 in the ADG
will denote that in a resulting action plan the execution of
action a1 will precede action a2.

An example ADG for the model depicted in Fig. 1 is
illustrated in Fig. 2. Note here the use of the pseudonode
P1.

The ADG for a Goal Model is an iterative and incremental
process that entails six steps.

Step 1 - line 5: Starting from the bottom of the tree and
moving towards the root, one level at a time, we collect all
nodes of type Task which appear in the Goal Model. The
result is a list T which is ordered based on the depth each
task node t ∈ T appears in the Goal Model, with the first
being the ones with the highest depth.

Step 2 - lines 7-9: For each such task node t ∈ T , we
collect all actions which satisfy the node t. The result is a
set AS of sets s of Action type nodes.

Step 3 - lines 11-17: For each such set s ∈ AS we
compute a raw ”atomic” ADG. The result is a set R of
sets of raw atomic ADGs r. That is there is a raw ADG r

for each set s ∈ AS.
Step 4 - lines 20-25: For each atomic ADG r ∈ R we

apply the transformation rules discussed in Section IV-B.
The role of these transformations is to unravel the parallel
nodes, and resolve temporal dependencies, logical dependen-
cies, data dependencies and contribution links at the level of
each raw ADG r. The result of the transformations is to yield
a processed ADG r′ for each raw ADG r.

Step 5 - lines 27-31: On each processed ADG r′ we apply
topological sorting so that the edges are labeled with num-
bers in sequence. This sorting will allow for all processed
ADGs r′ to be fused in sets of final ADGs that a) respect
the ordering of its constituent ADGs (the r′s) and b) still
satisfy the root node of that segment’s root.

Step 6 - line 33: A collection AP of complete ADGs
is computed by considering the possible merges of the
individual ADG’s r′ generated in Step 5. By traversing each
topologically sorted ADG in the set AP , a set of individual
action plans p can then be formed. Each such action plan p
respects all the dependencies of the Goal Model, and also
satisfies the root node of that segment. The selection of
the optimal plan can be achieved by applying any of the
techniques proposed in the research literature as discussed
in Section II.

In order to capture the start and end parts of each individ-
ual ADG we consider two additional ADG node types. A
Split node (SP) is the root node of the graph and illustrates
the beginning of the action sequences that are represented
in that graph segment. Moreover, it is the starting point of
possible, different threads of actions that must be run in
parallel. A Join node (JP) is the final node of an ADG
and represents the end of all action sequences of the graph



segment. It is the ending point of possible, different, parallel
threads of actions. These two nodes delimit the ”start” and
”end” points of the individual atomic raw ADGs.

A formal specification of the process is given in Algorithm
Orchestrator below, while a complete running example of
the process is presented in Section IV-C.

Algorithm name: Orchestrator
Input: goalmodel:GoalModel
Output: actionplans:[PlanSet] where PlanSet is {s : s
is Action}
1: Let L = []
2: Let C = ∅
3: Let T = append([t : Task in the goal model], root)
4: // Order tasks by their depth starting from the bottom of the tree
5: T = Order(T )
6: // Find all sets (i.e. combinations) of Actions that satisfy each Task t

in T
7: for all t in T do
8: actSett = FindSatActions(t)1

9: end for
10: // For each set of Actions that satisfy root node create ADG and put

it in the ADG-Collection C
11: for all actSet ∈ actSetroot do
12: Let ADGk = ConstructRawADG(actSet)2

13: // Check if ADG is valid
14: if ContributionRule(ADGk) == 1 then
15: C = C ∪ ADGk

16: end if
17: end for
18: L = append(L, C)
19: // Apply the following
20: L = Parallel Rule(L)
21: L = LogicalPrecedence Rule(L)
22: L = TemporalPrecedence Rule(L)
23: L = ResourceDependency Rule(L)
24: L = Timeout Rule(L)
25: L = Timedifference Rule(L)
26: // Do topological sorting to all ADG
27: for all ADGCol ∈ L do
28: for all ADG in ADGCol do
29: TopologicalSort(ADG)
30: end for
31: end for
32: // Combine ADGs between various ADG collections in order to extract

uniform Action Plans
33: actionPlans = combine(L)
34: return actionPlans

B. Transformation Rules

Steps 3 and 4 presented above focus on the generation of
raw and processed ADGs. These ADGs are generated by a
collection of transformations as presented below.

Contribution Link Related Rules: The contribution links
(++S, –S, ++D, –D) dictate the co-occurrence or not of the
actions that satisfy the source node with the actions that
satisfy the target node in the same action plan. When there is

1FindSatActions is implemented by transforming the AND/OR de-
compositions in Conjunctive Normal Form (CNF).

2ConstructRawADG is implemented by linking each node in the
actSet with a SP node and a JP node.

a –S contribution type link, we have to ensure that in the final
produced action plans, actions that satisfy source node do
not coexist with actions that satisfy target node. In the case
of ++D contribution type links, we check that when there
is no a set of actions in an action plan that satisfies target
node, then there must be no set of actions that satisfies source
node. The other two types of contribution links similar dual
semantics.

Parallel Link Rule: For each Parallel node that links two
or more nodes together, this rule constructs a collection of
Action Dependency Graph sets (ADGSet). Each ADGSet
in such a collection, contains all the actions that satisfy the
nodes (e.g. Tasks) that are connected with the this parallel
node. For example in Figure 3 the Parallel node is P1 and
the connected to it nodes are the task nodes T2 and T3,
which here are specified as being able to be executed in
parallel. In this respect, our analysis should not only consider
all the different combinations of action sets that satisfy all
the task nodes connected to a Parallel node, but to also
take into account the possible decompositions of the task
nodes connected to the Parallel node (e.g. T2’s and T3’s
own AND and OR decompositions), so that all possible
combinations can be obtained. The parallel link rule creates
an ADG pseudo-node which will reference all such action
combinations that satisfy the included goals. For each such
combination an ADG is constructed and is placed in the
place of the pseudo-node. An example of how the parallel
rule works for the example model depicted in Figure 3, is
illustrated in Figure 5. More formally, the generation of an
ADG in the case of a Parallel link rule proceeds as follows:

Algorithm name: Parallel Rule
Input: L:[ADGSet] where ADGSet is {s : s is ADG}]
Output: L:[ADGSet] where ADGSet is {s : s is ADG}]

1: Let P be the set of parallel nodes in the ADG.
2: for all Pi ∈ P do
3: // Create an ADG-Collection with name Ci
4: Ci = ∅
5: Let G be the set of all goal nodes connected to node Pi

6: // Find the set SOR of nodes which are OR Decomposed for each
g ∈ G

7: Let GOR = {g ∈ G | g is OR descendant of a node in the
8: goal model}
9: Let SOR = PowerSet(GOR)

10: // Find the set SAND of AND Decomposed nodes for each g ∈ G
11: Let SAND = {{g ∈ G | g is AND descendant of a node in the
12: goal model}}
13: Let Sall = ∪S∈SOR

(S ∪ SAND)
14: // Find all combinations of sets of Actions that satisfy the goal
15: // nodes gk connected (i.e. .) to parallel node Pi

16: for all gs ∈ Sall do
17: Let acombs ={ack | ack is {a | a:Action} s.t. ack satisfies
18: all goal nodes g ∈ gs}
19: for all ack ∈ acombs do
20: Let ADGk = Create(ack)
21: // Check if ADG is valid
22: if ContributionRule(ADGk) ==1 then
23: Ci = Ci ∪ADGk



Figure 3: The Goal Model for the running example.

24: end if
25: end for
26: end for
27: L = append(L, Ci)
28: end for
29: return L

Logical Precedence Link Rule: The semantics of this
link between two nodes imply that a strict sequential or-
dering must exist between the corresponding actions in the
resulting action plans.

Temporal Precedence Link Rule: The connected nodes
of this link have a temporal dependency with each other,
which implies an execution ordering between the actions that
satisfy them. The logic is the same as in Logical Precedence
link Rule however, Temporal Precedence expresses a weaker
notion of this dependency.

Resource Dependency Link Rule: The target node of this
link denotes the data d which the source node x produces. As
a result, it is implied an execution order between the source
node x of the rd link (i.e. the producer) and the parents p
of the resource d (i.e the consumer). In this respect, a link
x

rd→ d and a decomposition link p → d will result on a
dependency ordering x→ p.

Timeout Link Rule: This rule transforms the timeout
links of the model into dependencies between action nodes
in an ADG, adding also as a constraint the timeout period
for the execution of the two actions, which will be taken
into account during runtime (see output in Section IV-C).

Time Difference Link Rule: This rule enforces a minimal
time constraint between the termination of one action x and
the start of the next action y when they appear in an plan.
(see sample output in Section IV-C).

C. Running Example
A general example of goal model, which we will use as

our running example, is illustrated in Figure 3. This model
includes parallel nodes, timeout links, resource dependency
links, and contribution links.

First, we collect all Tasks in the Goal Model ordered
from the ones with the highest depth being first, and in-
cluding also the rootnode (at the end). We then apply the
FindSatActions function (see the Orchestrator algorithm
above) in order to find the sets of actions that satisfy each
Task in the Goal Model and we obtain the following results:
• T4:{{A3,A4}}
• T5:{{A5,A6}}
• T2:{{A3,A4},{A5,A6},{A3,A4,A5,A6}}
• T3:{{A1,A2}}
• T1:{{B1,B2}}
• root:{{B1,B2,A1,A2,A3,A4},

{B1,B2,A1,A2,A5,A6},
{B1,B2,A1,A2,A3,A4,A5,A6}}

Note that the list of Tasks is sorted according to the depth
of each Task node in the Goal Model, first being the nodes
with the highest depth (see Step 1 & 2 in Section IV-A).

The process proceeds now from the top (i.e. from node
T1) by creating the initial raw ADGCollection which stores
all the nodes connected to the root node. The process is not
expanding at this point any parallel node (here node P1) (see
Step 3 in Section IV-A). Note here the use of the pseudonode
P1 which ”bundles” nodes T3 and T2, as well as the ”start”
node SP and the ”end” node ”JP”. As a result we will have
the ADG depicted in Figure 4.

Figure 4: ADG correspondong to nodes at depth 1. Node
P1 bundles tasks T2 and T3.



When the algorithm applies the Parallel Link Rule (see
also Step 4 in Section IV-A), it creates an ADGCollection
C1 (see Parallel Rule algorithm) which corresponds to ex-
panding the parallel node P1, and which stores the ADGs
that satisfy the goals of each set in Sall for node P1. For
our example, the Sall set corresponding to the parallel node
P1 is: {{T2,T3}}.

Then for each set of goals, the algorithm calculates all
the possible set of actions that satisfy all the Task nodes
in each set in Sall: {{A1,A2,A3,A4}, {A1,A2,A5,A6},
{{A1,A2,A3,A4,A5,A6}}.

For each one of these sets of actions an ADG is created
and consequently checked whether there is a constraint due
to contribution links. In this example, we cannot have an
ADG that contains the actions A4 and A5 due to the –S
contribution link between A4 and A5. Note that the –S link
denotes that the invocation of A4 prohibits the invocation
of A5. So the set {A1,A2,A3,A4,A5,A6} that contains the
actions A4, A5 is eliminated. Finally the following sets kept
in ADG Collection C1 for P1 are depicted in Figure 5:

Figure 5: Creation of threads related to node P1.

The next rule which is activated is the
LogicalPrecedence rule due to LP the link between
Task T1 and Task T3 (see also Step 4 in Section IV-A).
As a result only ADG #1 will change as B1 and B2 have
to invoked before the parallel bundle P1 where Tasks T3

and T2 can be performed in parallel and will produce the
ordered ADG depicted in Figure 6:

Next, the TemporalPrecedence Link Rule is applied on
actions on A3 and A4 due to the TP link between A3 and
A4. In this respect, A3 and A4 are now ordered in sequence.
The resulting ADG is depicted in Figure 7.

Applying the ResourceDependency Link Rule, due to the
rd link between A5, R6, and A6. The rule imposes an

Figure 6: Ordering the bundle for parallel bundle P1 to
occur after the actions of task T1.

Figure 7: Apply Temporal Precedence between actions A3
and A4.

ordering between A5 and A6, as A5 has to first create the
resource R6 before A6 consumes it. The ADG that contains
them is depicted in Figure 8.

Figure 8: Apply Resource Dependence between actions A5
and A6.

The next rule that is activated is the TimeOut Link Rule
which defines an execution ordering in the ADG due to the
TO link between B1 and B2. The ADGs that contain them
is depicted in Figure 9:

Figure 9: Apply the Timeout Dependence between actions
B1 and B2.

The final rule that is triggered is the TimeDifference Link
Rule due to the TD link between A1 and A2 and so the
ADGs that contain them is depicted in Figure 10:

Now all the necessary ADGs have been created and a
topological sorting is applied to each thread of each ADG.
As a result at the end of this procedure we obtain a specific
sequence of actions for each ADG. In Figure 11 the ADGs
are presented with the final ordering of actions

Finally, the algorithm combines ADGs from the different
ADGCollections in order to construct the final action plans.



Figure 10: Apply the Time Difference Dependence
between actions A1 and A2.

Figure 11: The individual ADGs topologically ordered.

For example combining the ADGs in Figure 11 the resulting
action plans are depicted in Figure 12.

Figure 12: A resulting ordered ADG.

The tool we have implemented enacting the above
alorithm provides its output in textual format (JSON, XML,
pretty print).

The pretty print output for the running example is:
One sequence is:
B1 B2 P1
B2 must complete execution at most 17 secs after B1 has completed its execution

One sequence for parallel P1 is:
thead1 : A1 A2
thread2: A3 A4
A2 must commence execution at least 10 secs after A1 has completed its execution

One sequence for parallel P1 is:
thead1 : A1 A2
thread2: A5 A6
A2 must commence execution at least 10 secs after A1 has completed its execution

V. EXPERIMENTS

Here we present the performance of the algorithm for
various goal models of diffferent sizes. The experiments
focus on how the number of OR-decompositions affect the
performance of the system. Furthermore, the experiments
assess how the depth of OR-decomposed nodes and depth
of nodes that belong to a parallel group influence time and
space performance. For this reason, we define the following
variable: depth = OR depth * Parallel depth, where
OR depth denotes the average depth of OR-decomposed
nodes and Parallel depth denotes the average depth of
nodes belonging to a parallel group.

A. Number of OR-Decompositions The number of OR-
decompositions is a significant factor of the performance of
the system because the number of different action plans that
will be produced depends on the different ways the root node
can be satisfied. So a large number of OR decompositions
can produce a large number of solutions, which may add an
overhead to the system.

The experiments have been conducted for different num-
ber of nodes and for different number of OR decomposi-
tions. During the experiments the parameters of the goal
models that are kept constant are a) Parallel nodes = 3;
b) Parallel links = 8; c) LogicalPrecedence links = 20; d)
TemporalPrecedence links = 20; e) Contribution links = 8;
f) Resource Dependency links = 40; g) TimeOut links = 20
and; h) TimeDifference links = 20.

1) Execution time: Figure 13 depicts the execution time
for 5 different numbers of OR-Decompositions.

Figure 13: Execution time varying the number of nodes
and of OR-Decompositions.



From Figure 13 we can observe that the number of OR-
decompositions have an exponential relationship with the
execution time of the algorithm. For each OR-decomposition
the algorithm must find all these sets of actions that satisfy
the child-nodes and then combine them all together in
order to produce all the possible sets of actions that satisfy
the parent-node. Thus, as expected the behaviour of the
algorithm in its current implementation is exponential.

2) Memory Space: For the same goal models, the re-
quired memory space is depicted in Figure 14.

Figure 14: Memory space varying the number of nodes
and of OR-Decompositions.

Like in the previous results we can observe an exponential
relationship between memory space and number of OR-
decompositions for the same reasons as descibed above.

B. Depth The higher an OR-decomposition is located in
a goal tree, the more combinations of actions that satisfy
the parent-node of the decomposition are produced due to
the large subtrees that must be processed below that level
of decomposition. Moreover, the depth of a goal node that
is connected to a parallel node defines how large will be
the subtree that must be processed in order to construct the
appropriate ADGs that will be put in the corresponding ADG
collection. The size of the subtree and the size of the con-
structed ADG are proportional and so a high average depth
of these goal nodes has a significant impact to the perfor-
mance of the system. For this reason we define, as explained
above, the variable depth = ORdepth ∗ Paralleldepth.

The parameters of model we used for experimentation
are: a) Goal nodes = 150 (Tasks = 100,Actions=50); b)
LogicalPrecedence links = 20; c) TemporalPrecedence links
=20; d) Contribution links = 8; e) Resource Dependency
links = 40; f) TimeOut links = 20; g) TimeDifference links
= 20 and; h) OR-Decomposition number = 15.

3) Execution time: Figures 15 and 16 depict the execution
time for three different configurations of parallel nodes(4,

8 and 12 nodes), along with the corresponding memory
requirements.

Figure 15: Execution time varying the model height.

Figure 16: Memory space varying the model height.

From Figures 15 and 16 we can see that the execution time
and the requirements in memory are, in general, decreasing
while the number of parallel nodes is increasing. For each
parallel node the algorithm creates a pseudonode which
represents an ADG collection that contains all the goal nodes
that are connected to that parallel node. In this respect,
the goal model is shattered into a number of constituent
pieces that depends on the number of parallel nodes, creating
smaller subtrees of the model. In these simpler submodels
the algorithm applies the transformation rules, having a
better performance in execution time and memory space.
The variance in the performance is a consequence of two
factors. Firstly, if the various dependency links of the goal
model connect, in their majority, Tasks and not Actions, then
the complexity of applying a transformation rule in Tasks
is much higher than applying the same rule in Actions.
Secondly, despite the fact that we keep constant the average



depth of OR-decompositions, we may have a case where an
OR-decomposition is located near the root node, creating
these observed variations in performance.

VI. CONCLUSION

This paper presented an incremental graph transformation
approach whereby action plans can be composed from Goal
Models. More specifically, in this paper we have focused
on two main aspects. The first aspect deals with extensions
to the Goal Model meta-model, where we are introducing
parallelism nodes, and new dependency links related to tem-
poral constraints (td, tp, to) as well as data depenedncies (rd
and logical dependencies (ld) among tasks and actions. The
second aspect deals with a graph transformation approach by
which extended goal models are incrementally transformed
to yield topologically sorted Action Dependency Graphs
which produce collections of feasible action plans. These
action plans satisfy the underlined Goal Model, and all its
dependencies and constraints. These action plans can be
directly mapped to existing workflow languages such as
BPEL for direct enactment. The proposed approach can be
part of a dynamic service provision system where microser-
vices, stakeholders, and infrastructure can be adapted at run-
time to fit diverse and possibly conflicting requirements.
The proposed approach opens some pointers for future
research. First, the transformational approach can be further
optimized by introducing parallelism. In this respect, the
Goal Model can be decomposed into independent sections,
whereby each section can be processed and transformed in
parallel with the other sections. Second, each action can
be associated with a utility score as a function of cost,
performance, reliability, availability, ease of use, and level
of trustworthiness. Such an aggregate utility score can then
be used to select the optimal action plan among the valid
ones. Finally, the proposed technique can be associated with
a Model Driven Development approach where infrastructure
code such as manifests and service deployment descriptors
can be automatically generated from actions plans.
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