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a b s t r a c t 

Large information systems comprise different interconnected hardware and software components, that 

collectively generate large volumes of data. Furthermore, the run-time analysis of such data involves com- 

putationally expensive algorithms, and is pivotal to a number of software engineering activities such as, 

system understanding, diagnostics, and root cause analysis. In a quest to increase the performance of run- 

time analysis for large sets of logged data, we present an approach that allows for the real time reduction 

of one or more event streams by utilizing a set of filtering criteria. More specifically, the approach em- 

ploys a similarity measure that is based on information theory principles, and is applied between the 

features of the incoming events, and the features of a set of retrieved or constructed events, that we re- 

fer to as beacons. The proposed approach is domain and event schema agnostic, can handle infinite data 

streams using a caching algorithm, and can be parallelized in order to tractably process high volume, high 

frequency, and high variability data. Experimental results obtained using the KDD’99 and CTU-13 labeled 

data sets, indicate that the approach is scalable, and can yield highly reduced sets with high recall values 

with respect to a use case. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Large information systems consist of many interconnected com-

onents, in terms of both physical equipment and software appli-

ations. These components perform complex tasks and often run

n virtualized and dynamically provisioned environments in order

o meet a multitude of requirements. 

In such a system, infrastructure management tasks can take

he form of rolling out new software versions, migrating between

atabase schemas, instantiating new virtual platforms, invoking

n-demand software applications, migrating processes to different

irtual machines as well as, transferring, splitting, or distributing

ata and computation logic to different servers. Due to the scale

nvolved, such tasks are generally undertaken by automated tool-

ng that results in rapidly changing component topologies, often

ccompanied by shifts in the structure of the interchanged data.

oreover, at any time there can be several such operations in

ight, creating complex transition scenarios with rapidly shifting

rends. 

The operation of such systems is monitored by a correspond-

ngly large network of software and hardware sensors that emit
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 wealth of information in the form of event traces. Tradition-

lly, event log analysis is applied off-line, using a corpus of events

hat are persisted in storage, and can be retrieved for analysis pur-

oses. However, in rapidly evolving situations it is desirable to be

ble to reason about the system behavior while it is in operation.

uch a capability is pivotal to important software- and systems-

ngineering tasks such as fault root-cause analysis, run-time re-

uirements verification and automatic re-configuration. 

In this context, event processing should be applied on-line,

ithout requiring access to the whole event stream, and while be-

ng able to accommodate high volume, high frequency, and high

ariability data. However, several common analyses involve com-

utationally expensive techniques, often using algorithms with su-

erlinear time and space complexity, thus making their use for

arge volumes of data intractable. Therefore, an important objec-

ive is to devise methods that allow for the selective reduction of

he logged data according to specific filtering criteria, so that any

ubsequent analysis stages can operate on a significantly smaller

olume of data that is, however, still representative of the case be-

ng examined. 

In this paper, we propose an on-line adaptive filtering approach

ith constant space and linear time complexity. Given a set of “in-

eresting” events we refer to as beacons , it utilizes information the-

ry principles to significantly reduce the volume of incoming event

treams, without requiring a training data set. The concept of bea-

ons is commonly used in the domain of program comprehension

http://dx.doi.org/10.1016/j.jss.2017.03.057
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.03.057&domain=pdf
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( Brooks, 1983 ) and refers to code features that serve as distinctive

indicators of specific operations or data structures. Within the con-

text of our work, beacon events denote identifying information that

is of particular interest for a case, and may be defined either by

an administrator or by a third-party automated monitoring or data

mining application. For example, such a beacon event may repre-

sent an unsuccessful login attempt to a particular server, a suspect

network packet flow, a warning for a failed transaction, service re-

quests arriving at a high frequency from a group of servers, or a

performance degradation alert. 

Within our approach, event similarity values are computed be-

tween the beacon events and the events in the incoming stream,

by comparing attribute values that are then weighted by a set of

coefficients computed using information theory concepts. For ex-

ample, if an attribute value is constant across all input events, then

it cannot be used to distinguish specific events. Therefore the ap-

plied weights, which are based on its information content, should

reduce its participation when computing the overall similarity be-

tween an input stream event and a beacon event. 

As the filtering system operates and events are observed, an

adaptive threshold process is applied to determine events that ex-

hibit an aggregated similarity value with the beacon set that is

above a computed threshold value. Such events are then selected

as being significant with regard to the specific use case. 

The task of filtering and reducing the volume of event traces

which is to be considered for further analysis, must comply with

three fundamental requirements. First, the filtering process should

achieve high recall levels, high reduction rates, and acceptably high

precision levels. Second, it should be able to cope with infinite data

streams, while avoiding, if possible, windowing techniques, so that

no important events will be inadvertently excluded. Finally, the

process should be adaptive and tractable so that it can be applied

on-line as the system operates or is being re-configured. Thus, it

should be able to cope with new data streams that are potentially

introduced by dynamically provisioned nodes, and for which there

may be no prior knowledge on their event schema or other fea-

tures. 

The approach proposed in this paper satisfies these require-

ments and, in addition, has three notable advantages over exist-

ing dynamic log analysis approaches. First, it does not require any

a priori knowledge of the monitored infrastructure, such as infor-

mation on the event schema or the distribution of the monitored

values. As a result, it is readily applicable for collections of logged

data that are emitted by different monitoring components and do

not conform to the same schema, or format. This reduces the need

for event schema merging or mapping, a process that is often too

computationally expensive to be performed for on-line analysis,

and often requires human intervention. It is also important in IT

environments where services may be provided by one or more

third-party entities, in which case there may be limited visibility

into the proprietary details of the used data formats. 

Second, the proposed approach does not depend on the exis-

tence of a training data set, which is a requirement for a large

number of approaches that are based on machine-learning tech-

niques and is frequently very hard to procure. Rather, our work

is based on the on-line adaptive re-calculation of an information

content-based coefficient for each attribute value, allowing thus

the similarity score to be automatically adapted as the system

evolves or its operational profile changes. 

Finally, it has been designed for distributed operation on a com-

puter cluster , with limited shared state across nodes, which allows

it to scale for high event rates and for multiple input streams, if

needed with the dynamic addition of more computing nodes. This

is in contrast to most log analysis techniques that are intended to

analyze data in an off-line manner, while often being limited by

the capacity of a single host computer. Our prototype implemen-
ation was evaluated against the KDD’99 ( Knowledge Discovery &

ata Mining Cup Data, 1999) and CTU-13 ( Garcia et al., 2014) data

ets, allowing experiments in two different domains with dissim-

lar schemas. In addition, several tests were performed both on a

ingle node and in a cluster built upon the Apache Storm frame-

ork. 

This paper is organized as follows: Section 2 presents related

ork. Section 3 presents an overview of the proposed process,

hile 4 describes the used event model. Section 5 discusses the

vent similarity measure, while Section 6 relates the concepts that

nable the proposed system to adapt to input changes and 7 de-

cribes the data structures used in our system. Section 8 presents

he distributed-mode version of the proposed similarity algorithm

nd 9 describes the adaptive output event selection step. Finally,

ection 10 presents implementation details, 11 presents experi-

ental results, while sections 12 and 13 provide related discussion

nd conclude the paper. 

. Related work 

Dynamic analysis of system traces and event streams has been

xtensively used, both to understand the behavior of information

ystems and as a critical component in automated processes. It is

 complex problem with facets that touch upon several different

reas. 

Krempl et al. (2014) enumerate several challenges in the

roader field of data stream analysis, with high data volume, ve-

ocity, latency and volatile data patterns being among them. Simi-

arly, Tran et al. (2014) identify changing patterns as a major factor

o be addressed in event stream processing systems. 

In the field of anomaly detection, Lane and Brodley (1999) de-

cribe a method using instance-based learning, a data reduction

lgorithm and a probabilistic threshold determination process to

etect sudden changes in computer account usage patterns, in a

artially domain-independent manner. In particular, three differ-

nt object replacement algorithms were tested, in order to restrict

he number of recorded instances and thus the time and space

omplexity of the proposed method. Jiang et al. (2011) propose

n information-theoretic method that first clusters related met-

ics from a monitored system and then uses changes in the en-

ropy of the metric clusters to detect and diagnose faults. Chandola

t al. (2012) survey several anomaly detection methods for the

ask of analyzing temporal sequences, including real-time event

treams, in order to identify appropriate methods for specific prob-

ems. Pham et al. (2014) propose a technique based on the concept

f Compressed Sensing ( Donoho, 2006) to process data streams

rom large scale sensor networks. Rettig et al. (2015) describe a

istributed pipeline for detecting anomalies in high-volume event

treams using a combination of sliding windows and stream seg-

entation with either Pearson’s correlation or a metric based upon

elative entropy. In comparison, our work does not focus or rely on

he distinction between normal and anomalous behavior, does not

equire any a priori assumptions about the distribution of the tar-

et events or the applicability of any windowing techniques and it

s completely domain-agnostic. 

In the area of data set filtering, Khoshgoftaar and Rebours

2007) discuss two different data filtering and noise reduction

echniques, based on multiple-partitioning and iterative partition-

ng filtering and targeting a static pre-specified reduction rate,

or the purpose of reducing the size of machine learner train-

ng data sets. Goedertier et al. (2011) examine several data min-

ng techniques for the discovery of processes from event logs,

hile Agrawal et al. (1998) use a graph-based algorithm to
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Fig. 1. Process outline. 
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xtract workflows from execution logs. Although the methods from

oth Goedertier et al. and Agrawal et al. are able to effectively ex-

ract event sequence models, an amount of domain knowledge is

equired in order to establish dependencies between events and

o validate certain assumptions, while both approaches are ap-

lied off-line. In addition, Zheng et al. (2009) discuss a log pre-

rocessing method that uses temporal and causal relations be-

ween events emitted within a window of time to remove re-

undant events from streams originating in large computer sys-

ems. Finally, Vaarandi and Podi ̧n š (2010) use a classification en-

ine and a frequent itemset mining algorithm to cluster redundant

lerts from an IDS in order to reduce the size of the output. In

ontrast to our work, both of the aforementioned methods essen-

ially perform unguided compression, rather than targeted, while

he one by Zheng et al. requires the pre-definition of a hierarchy

f domain-specific categories, where the events are classified with

he use of regular expressions. In our prior work ( Kalamatianos

nd Kontogiannis, 2014) a domain independent approach is pro-

osed for log reduction using information-theoretic metrics. The

pproach proposed in this paper is distinguished by several dif-

erences, intended to improve the overall accuracy and perfor-

ance of the system for a larger variety of use cases. More specifi-

ally, the use of normalization functions during the computation of

he weight coefficients extends the applicability of the presented

ethod to a wider range of input streams. Moreover the intro-

uction of a distributed Map/Reduce-like processing framework al-

ows for increased throughput and scalability to multiple comput-

ng nodes. Finally, we introduce the concept of the iTree struc-

ure, which is specifically designed to address precision issues that

merge when performing distributed computation of information-

heoretical metrics on streams. 

In the field of log analysis by event feature reduction, Tan et al.

2014) propose an adaptive feature scaling (AFS) technique that it-

ratively solves multiple sub-problems in order to produce a re-

uced set of features from ultra-dimensional big data, using a set

f intermediate caching methods to improve the training efficiency.

imilarly, Wang et al. (2014) present a family of algorithms for on-

ine feature selection that reduce the training cost by requesting a

imited dynamic set of attributes from the training data set and not

elying on all features being immediately available. Zawawy et al.

2010) discuss a technique using annotated goal models and Latent

emantic Indexing for log reduction and filtering so that root cause

nalysis can be tractable for systems emitting large volumes of log

ata. Zaman and Karray (2009) use the Enhanced Support Vector

ecision Function technique along with a limited volume of train-

ng data for selecting features that can be efficiently used in a sub-

equent classification stage. Zargar and Kabiri (2009) use a Princi-

al Component Analysis approach to identify event features that

re important for dynamic analysis and, in particular, intrusion de-

ection. Finally, Chou et al. (2008) propose a two phase approach

or network intrusion detection that is based on feature reduction

nd reasoning using fuzzy clustering and the Dempster-Shafer the-

ry. In comparison to these publications, our work does not de-

end on annotations or training data that are often not available

or existing infrastructures, and focuses on reducing the volume

f the input stream, rather than its dimensionality. Additionally, it

oes not rely on any inherent assumptions about the nature of the

argeted events, as opposed to methods that are fine tuned for in-

rusion detection. 

With regard to information-theoretic attribute metrics, Fleuret

2004) proposes a fast technique based on the maximization of

he conditional mutual information and minimization of the de-

endencies between attributes for the selection of important fea-

ures in data collections. Last et al. (2001) present an information

heoretic approach that selects an optimal set of attributes by re-

oving irrelevant and redundant features, while building a single
lassification model for the input data. Similarly, Sebban and Nock

2002) present a hybrid approach for feature selection based on in-

ormation theory as well as filter/wrapper models. In general, these

pproaches attempt to detect general invariants within the input

tream, in order to reduce its dimensionality. In contrast, the sys-

em proposed in this paper assigns attribute weights in a targeted

anner by using the beacon event set B as a reference , so that ir-

elevant events may be removed. 

With regard to distributed event processing, Papapetrou et al.

2012) describe a distributed event stream sketching and sketch

ggregation technique for sliding-window applications, while

utschler and Philippsen (2013) present an adaptive middleware

or low-latency reordering of out-of-order events in a distributed

ensing environment. Hirzel (2012) contributes a partitioning Com-

lex Event Processing operator for use in distributed environments,

long with an automated code generator that implements the re-

ulting aggregations in parallel. Anceaume and Busnel (2014) de-

cribe an efficient distributed algorithm for estimating the infor-

ation divergence between an observed and an expected event

tream, with the intention of detecting streams that have been

ampered with by an adversary. In comparison, our approach uses

he information contributed by each value to target events directly

ithin the observed event stream, while avoiding the artificial con-

traints imposed by the sliding-window paradigm. 

In the field of similarity metrics, Pirró and Euzenat

2010) present an information-theoretic approach to semantic

imilarity suitable for objects referenced within an ontology, while

eco et al. (2004) suggest a metric based on Information Content

o assess the correlation between concepts in a taxonomy. In

omparison, although some concepts are shared, our work does

ot require domain-specific information, such as labeled corpora

f data or an explicit classification of concepts, and is intended

or use on real-time event streams, rather than static object

ollections. 

Overall, the main differences of our work with the related work

resented in this section are that our approach is domain and

chema independent and it does not require training data sets. In

ddition, it is applicable for large-volume real-time event stream

rocessing systems, with support for distributed operation on a

omputer cluster for scalability. 

. Process outline 

The event selection process is composed of three main steps,

s depicted in Fig. 1 . The initial step (1) involves the compilation

f a beacon event set B that will serve as a search sample. In the

econd step (2), the system iterates over the input stream. Each in-

ut event is compared to the beacon set and a similarity value is

etermined. In general, the desired events receive higher similar-

ty values than those not related to the beacon set, allowing them

o be grouped. Fig. 1 depicts the simplified form of the process

here all analysis and similarity metrics are computed on a single
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Fig. 2. Example of an event from the KDD’99 data set in JSON notation. 
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processing node. As it will be further discussed in Section 8 , step

(2) can be distributed in many different processing nodes, where

each processing node is handling a part or a fraction of the event

stream. The final step (3) is the actual selection of the output event

stream, which uses the similarity values computed in the previous

step. There are several alternative techniques that could be used at

this stage, allowing for an extensive input stream to be reduced to

more manageable levels. 

3.1. Beacon event set compilation 

The first step of the proposed process involves the compilation

of a cohesive beacon event set B = { b 1 , b 2 , . . . , b | B | } that serves as

the search pattern for the analysis process. The size of this set is

normally in the range of ten to twenty events and may be propor-

tional to the number of distinct event types that are expected in a

typical case as the one being suspected (e.g. an intrusion case). 

The beacon event set can be selected directly from the input

stream, but it can also be composed of pseudo-events with the

same internal structure. Pseudo-events are synthesized artificially

by the operator, by selecting and combining attributes and values

that are considered important or of interest, for a given case. A

beacon set built using such constructed events may result in re-

duced output noise and increased focus towards specific features. 

Since the system requires no information on the actual selec-

tion process, it is feasible to use opaque third-party utilities to

compile the beacon set. In addition, depending on the nature of

the input stream, it may also be possible to leverage certain intrin-

sic states of the monitored system, e.g. by using metrics captured

at error conditions as beacons to filter through a stream composed

by metrics sampled periodically during normal operation. Finally,

the limited size of B also makes its manual compilation using ex-

pert knowledge a tractable process. 

3.2. Similarity determination 

The second step of the process consists of the calculation of

a similarity metric S between each event e i of the input stream

E and the beacon event set B . More specifically, the calculation

of S encompasses the computation of three intermediate values,

namely the attribute-level similarity AS , the event-level similarity

ES and the event-set/beacon-set similarity SS . The attribute level

similarity AS leverages a low-level metric VS (e.g. a string dis-

tance metric), in order to compute a proximity measure between

the value of a specific attribute in an input event e i and the value

of the corresponding attribute within a beacon event b k . String dis-

tance is one metric that can be utilized to compare individual val-

ues at the attribute level. Other distance metrics are also possible

to consider without affecting the overall concept of the proposed

approach. A detailed discussion on the low-level metric VS is pro-

vided in Section 5.1 . 

The event-level function ES provides a correlation estimate be-

tween an input event e i and a beacon event b k , taking all attributes

into account. The event-set/beacon-set similarity function SS con-

siders the event-level results for all beacon events to produce the

final similarity metric S . 

The S similarity metric is stateless, in the sense that no rela-

tions between different events, such as event sequences or value

transitions, are explicitly considered. The only information that is

persisted from the input stream relates to the distribution of val-

ues for each attribute and is stored in a per-attribute repository.

This reduces the processing latency and allows for higher degrees

of parallelization. It also simplifies the tuning of the system by re-

ducing the need for detailed knowledge on the monitored infras-

tructure. Fully stateful systems, on the other hand, generally make

several domain-specific assumptions, such as the typical duration
f a session or which attributes may serve as a unique event se-

uence identifier. 

.3. Adaptive output event stream selection 

The third step of the process focuses on the selection of an out-

ut event stream O , which is only a subset of the input stream E

nd contains those events for which similarity values with B ex-

eed a certain threshold. In this context, there are different ap-

roaches for determining a proper threshold value so that an out-

ut set can be computed. These approaches include static selec-

ion of the highest values via sorting of the output set, dynamic

ercentile extraction ( Cormode et al., 2006 ) and various methods

f threshold-based selection ( Lane and Brodley, 1999 ). For our ap-

roach we consider an adaptive threshold selection method that is

iscussed in more detail in Section 9 . 

. Event modelling 

.1. Static event model 

In this section, we present the event model for the proposed

ystem. The primary requirements for such an event model were

odeling simplicity and the facilitation of processing performance.

ach event e i of the input stream E = { e 1 , e 2 , . . . , e | E | } is defined as

n unordered set of pair tuples, that consist of an attribute a j ∈ A

nd its associated value v j, i . More specifically, each event e i in the

nput stream is defined as: 

 i = { < a j , v j,i > : 1 ≤ i ≤ | E | , 
1 ≤ j ≤ | A | , 
v j,i ∈ V j } 

(1)

here A = { a 1 , a 2 , . . . , a | A | } is the set of all attributes a j appearing

n the events of the input stream, and V j is the set of all discrete

tomic values v j, i encountered for attribute a j . Similarly each bea-

on event b k is defined as: 

 k = { < a j , v j,k > : 1 ≤ k ≤ | B | , 
1 ≤ j ≤ | A | , 
v j,k ∈ V j } 

(2)

Both the input stream events and the beacon events have the

ame basic structure and lie within the same domain, therefore

haring the attribute set A . Fig. 2 illustrates part of an event from

he KDD’99 data set, with different attributes of string, numeric

nd boolean values. 

.2. Stream model 

Due to the implicit insertion of null values, it is possible to

ssume that each input event contains a value for all attributes

n the attribute set A = { a 1 , a 2 , . . . , a | A | } . This allows each at-

ribute a j to be defined as a stream S a j of its values v j, i : S a j =
 v j, 1 , v j, 2 , . . . v j, | E | } . Therefore, the event stream as a whole can be

n turn considered as a set of time series of values that evolve in
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Fig. 3. Transition from the input event stream E to an equivalent set of attribute 

value time series. 
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arallel, with one time series for each discrete attribute. For exam-

le, in a system with three event streams, each having four distinct

ttributes in each event, there will be twelve parallel time series.

ig. 3 illustrates the transition from a stream of events E to an

quivalent set of attribute value time series. 

The proposed approach is most effective when each attribute

s an independent variable with no correlation to any of the other

ttributes. Redundant information in the input stream may skew

he results of the process by incorrectly emphasizing certain val-

es, while reducing the perceived importance of others. The prob-

em of normalizing redundant information streams has been stud-

ed extensively. For example, several feature selection techniques

ave been proposed (e.g. Fleuret (2004) , Yu and Liu (2003) , Zargar

nd Kabiri (2009) ) and can be used as a pre-processing stage to

emove redundant features. 

. Event similarity metric 

In order to be able to select specific events from the input

tream, we propose a multi-layer similarity metric S that computes

 similarity value between a single event e i from the input stream

 and the beacon event B set as a whole. The proposed approach

ttempts to determine which attributes and attribute values offer

he best event selectivity with regard to a specific beacon set. For

his purpose, a statistical similarity measure based on information

heory is introduced and will be discussed in the following sec-

ions. 

For its computation, S combines the low-level value correlation

etric VS with a set of weight coefficients to generate an attribute-

evel metric AS . The AS value is then used to compute an event-

evel metric ES , which in turn is used to evaluate the final event-

et/beacon-set similarity value SS . 
The aforementioned weight coefficient set is dynamically deter-

ined and adjusted as events appear in the stream, and provides

n indicator of the importance that an attribute or a value carries

n the evaluation of a final overall similarity measure. For exam-

le, an attribute for which its value is constant throughout the in-

ut stream does not carry any significant information content for

he computation, while attribute values that vary may carry higher

nformation content . This allows a low-level similarity metric for

rimitive values (e.g. strings, or other literal values), to be used as

he basis of an event-level similarity measure. 

In a domain-specific system, such weight sets are generally pro-

ided using expert knowledge. This requires that the event domain
s extensively modeled and that the intricacies of the monitored

ystem are well understood and have been a priori compiled to us-

ble rules. In real-world applications, however, the infrastructure

odels are often too abstract, outdated due to extensive mainte-

ance, or even non-existent altogether. 

Alternatively, a training data set may be used to train a machine

earning algorithm, such as a neural network. However, the compi-

ation of a training data set is generally not a trivial process. While

egmenting a subset of the input for this purpose is generally feasi-

le, providing the feedback that is required for the training process

equires specific domain knowledge that may not be readily avail-

ble. Compiling such a data set manually is usually non tractable,

hile training data created in simulated environments is limited

y the accuracy of the simulation with regard to the correspond-

ng live system. 

The approach presented in this paper is able to determine these

oefficients in a domain and event schema independent manner,

ithout any prior knowledge on the monitored infrastructure or

he structure of the emitted events. While this reduces its effec-

iveness when compared to domain-specific tools, it also increases

ts applicability. It can be successfully deployed in cases where no

omain-specific tool is available, while it is able to adapt to differ-

nt infrastructure configurations without operator intervention. 

In order to demonstrate the calculation of the event similar-

ty metric S in some common cases, as well as the operation of

he system as a whole, we use a simple example that is based

n a constructed event stream EX with four attributes a 1 , . . . a 4 .

 1 and a 2 are essentially identical and contain a single relatively

are value, along with a few more frequent values. a 3 is almost al-

ays constant, while a 4 is highly variable. EX consists of 1,0 0 0,0 0 0

vents, with the following relative frequencies per distinct at-

ribute value: 

a j f (v j, 1 ) f (v j, 2 ) f (v j,i ) 

a 1 0.001 0.099 0.1, ∀ i ∈ [3 , 11] 

a 2 0.001 0.099 0.1, ∀ i ∈ [3 , 11] 

a 3 0.99 0.001 0.001, ∀ i ∈ [3 , 11] 

a 4 0.0 0 01 0.0 0 01 0.0 0 01, ∀ i ∈ [3 , 10 0 0 0] 

We then consider a subset e 1 , ���e 4 of EX . Targeting events e 1 
nd e 3 , which have a value of v 1, 0 and v 2, 0 for a 1 and a 2 respec-

ively, we construct a beacon set BX with two events: 

Event / Beacon a 1 a 2 a 3 a 4 

e 1 v 1 , 0 v 2 , 0 v 3 , 0 v 4 , 0 
e 2 v 1 , 1 v 2 , 1 v 3 , 0 v 4 , 1 
e 3 v 1 , 0 v 2 , 0 v 3 , 1 v 4 , 2 
e 4 v 1 , 1 v 2 , 1 v 3 , 0 v 4 , 3 
b 1 v 1 , 0 v 2 , 0 v 3 , 0 v 4 , 5 
b 2 v 1 , 0 v 2 , 1 v 3 , 0 v 4 , 6 

The beacon values for a 2 intentionally introduce a form of noise

n BX , while the ones for a 3 and a 4 continue the patterns of a

ostly constant and a highly variable attribute respectively. 

.1. Low-level value correlation ( VS ) 

As streams can be dynamically added or removed, an impor-

ant requirement for the calculation of the overall similarity met-

ic S is the use of a stateless correlation function VS that is used

o provide a measure of resemblance between the value v j, i of at-

ribute a j within the input event e i and the corresponding value

 j, k of beacon event b k for the same attribute. This function VS is

efined as: 

S ( j) : V j × V j → R (3)

In probability theory terms, VS provides an estimate for the

robability P ( v j, i ≡ v j, k ) of the two compared values being equiv-

lent. 
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Depending on the type of the values, there is a wide range

of usable correlation functions, with a simple equality condition

being the simplest alternative. The most generic data type is the

string , which allows the use of a number of string-based distance

metrics, both general-purpose and application-specific. Although

various approaches have been introduced, such methods are often

based on the lexicographic positions of the compared terms us-

ing a certain placement mechanism or on the transformation cost

of one term to the other. Typical examples include traditional edit

distances , such as the Damerau–Levenshtein ( Damerau, 1964 ) and

Hamming (1950) distances, as well as approximate or fuzzy met-

rics, such as the ones presented by Wagner and Fischer (1974) and

Sellers (1980) . 

The prototype implementation makes use of a composite metric

based on the structure of the Voting Experts ( Cohen et al., 2007 )

algorithm, where several different string distance metrics are en-

tered in a weighted average to produce the overall similarity be-

tween two attribute values. A heuristic type and value range de-

tection algorithm is used to partially detect some common data

types, such as strings, integers and floating point numbers. If type

information is available for a particular attribute, then additional

type-specific methods can be introduced, such as heuristic distance

metrics for numbers, subnet distances for IP addresses, geometric

distance metrics for geographic coordinate values, or even textual

semantic similarity metrics (e.g. Mersch and Lang (2015) , Mihalcea

and Wiebe (2014) ) for human-readable text. Although it is not nec-

essary, this allows the accuracy of the system to improve if a de-

gree of domain-specific knowledge can be inferred or is available

beforehand. 

The low-level value correlation function used in our example

with EX and BX is based on a simple equality test: 

VS (x, y ) = 1 i f x == y 
0 i f x � = y 

(4)

5.2. Attribute-level similarity metric ( AS ) 

The attribute-level similarity metric AS applies an appropriate

weight coefficient to the raw result from VS in order to modulate

the computed correlation by taking into account the importance of

each value within its specific attribute and its contribution to the

overall selectivity of the system. 

According to information theory, the entropy H of an indepen-

dent variable X is a measure of the average information content of

each sample of X . Likewise, the information content I is a metric of

the importance of a variable as a whole. If X is a discrete time se-

ries of N samples with an alphabet of n symbols and a probability

mass function of p ( X ), we have: 

H(X ) = E(−log r p(X ) ) = −
n ∑ 

i =1 

p(x i ) log r p(x i ) (5)

I(X ) = −
n ∑ 

i =1 

n i · log r p(x i ) 

= −N ·
n ∑ 

i =1 

p(x i ) · log r p(x i ) 

= N · H (6)

where the probability p ( x i ) of a symbol x i is equal to its relative

frequency within the time series. 

Within the proposed system each attribute a j is considered an

independent discrete random variable with an alphabet V j of 
∣∣V j 

∣∣
possible symbols (values). Specializing formula 6 using the individ-

ual attribute value frequencies, it is therefore possible to compute
he information content of a specific attribute value v j,i ∈ V j , as

ell as that of a discrete attribute a j as a whole: 

(v j,i ) = −n j,i · log r 
n j,i 

| E | (7)

(a j ) = −
| V j | ∑ 

i =1 

I(v j,i ) = −
| V j | ∑ 

i =1 

(n j,i · log r 
n j,i 

| E | ) (8)

The selectivity offered by each event attribute is in direct rela-

ion to the information content of the equivalent time series. Con-

eptually, highly repetitive attributes, such as domain-specific con-

tants, have a limited use as distinguishing features between events,

ut they also exhibit a relatively low entropy that can be used to

educe their participation in the event comparison process. On the

ther hand, attributes with extreme diversity, e.g. unique identi-

ers, tend to skew the similarity metric, since they have a high

nformation content despite being of limited value for determin-

ng similarity. To offset this issue, the information content I ( v j, i )

ontributed by each specific attribute value is taken into account in

elation to the information content I ( a j ) of that particular attribute

s a whole. This leads to the following definition of the information

ontent fractions IF ( a j ) and IF ( v j, i ) for an attribute and an attribute

alue respectively: 

 F (a j ) = 

I (a j ) 
∑ | A | 

j 
I (a j ) 

(9)

 F (v j,i ) = 

I (v j,i ) 
I (a j ) 

(10)

While the information content fraction IF ( v j, i ) provides an esti-

ate for the relative prevalence of a value, its selectivity within an

ttribute is more closely related to the importance of the remaining

alues, which can be derived by the complement operator: 

 = 1 − x (11)

Furthermore, the information content fraction IF and its com-

lement IF are by definition dimensionless quantities in the [0, 1]

ange. However, in most conditions these measures will only cover

 miniscule part of this range, thus compressing the range of any

etric they are incorporated into. Therefore, we define a normal-

zation operator N that uses an estimate x max for the maximum

ossible value of a variable x to decompress the input values into

he full [0, 1] range: 

 (x ) = 

x 

x max 
(12)

Based on these definitions, the corresponding normalized infor-

ation fraction complement NIF (v j,i ) is defined as follows: 

IF (v j,i ) = 1 − N (IF (v j,i )) (13)

The term NIF (v j,i ) provides a measure of the selectivity con-

ributed by the value v j, i , allowing its use as a coefficient. Fig. 4

llustrates the behavior of this coefficient for a value v j, i as an in-

ensity map, where lighter areas indicate higher values. NIF (v j,i )
as been calculated for a scenario where all other values share

he same frequency, making it directly dependent on their num-

er. It is evident that the highest coefficients are achieved by ei-

her a value v j, i that dominates a stream composed of relatively

ew values (lower right lobe), or by a rare value in a stream where

ll other values are of moderate frequency (lighter area of the left

obe). Conversely, a rare value can be overshadowed by an ex-

remely frequent one, while the effect of a prevalent value can be

educed by the presence of a large number of rare occurrences in

he stream. 
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Fig. 4. Variation of the NIF (v j,i ) coefficient depending on the relative frequency of 
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A slightly different approach needs to be considered for the

vents in B . Since these events essentially form the search pattern

or the proposed system, a zero or very low entropy indicates the

resence of a constant or near-constant attribute value. Such val-

es are often a defining feature of the selected beacon event set,

specially if they do not frequently exist in the input stream as a

hole. On the other hand, attributes with high diversity within the

 set reduce its coherency and indirectly introduce noise within

he output. Therefore, in this context, the impact of attributes with

elatively high entropy H B ,a j 
within the beacon event set should be

ttenuated, while that of values with a high frequency should be

einforced. 

Using the aforementioned principles and taking into account

he frequency of each beacon event value, the similarity metric

S j,i,k can be defined for the attribute a j values of input event e i 
nd beacon event b k in terms of the low-level similarity VS ( j, i, k )

nd its associated weight W ( j, i, k ) as follows: 

S ( j, i, k ) = W ( j, i, k ) · VS ( j, i, k ) 

= [ NIF (v j,k ) · NIF (v j,i ) · N ( f B , v j,k )] ·
VS ( j, i, k ) (14) 

here f B , v j,k is the relative frequency of the value v j, k within B for

he attribute a j . The normalization operator N maps f B , v j,k into the

0, 1] range, thus providing a measure of the importance of v j, k 
ithin B . 

For simplicity, in our example with EX we use as the estimate

 max for the normalization function N (x ) the currently known

aximum value of the input variable x , increased by 10%. We also

o not take into account value frequency changes caused by the e 1 ,

��e 5 events. Therefore, for attribute a 1 of events e 1 and b 1 , from

X and BX respectively, we have: 

I(v 1 , 1 ) = −10 0 0 ∗ log 2 0 . 001 ≈ 9965 . 786 

I(a 1 ) ≈ 3330 0 08 . 851 

IF (v 1 , 1 ) ≈ 9965 . 786 / 3330 0 08 . 851 ≈ 0 . 003 

ax (IF (v 1 , ∗)) ≈ 0 . 1 

NIF (v 1 , 1 ) = 1 − N (IF (v 1 , 1 )) ≈ 0 . 973 

AS (1 , 1 , 1) = W (1 , 1 , 1) · VS (v 1 , 1 , v 1 , 1 ) 
= [ NIF (v 1 , 1 ) 

2 · N ( f B , v 1 , 1 ) ] · 1 . 0 

= NIF (v 1 , 1 ) 
2 · N (1 . 0) 
≈ 0 . 860 t
Using the same method we calculate all AS values. It is evident

hat in our example the VS function controls the final result, but

he intermediate weights W j, i, k are visibly variable, with the less

elective attributes a 3 and a 4 receiving significantly lower coeffi-

ients: 

e i b k a 1 a 2 a 3 a 4 

W 1 ,i,k AS 1 ,i,k W 2 ,i,k AS 2 ,i,k W 3 ,i,k AS 3 ,i,k W 4 ,i,k AS 4 ,i,k 

e 1 b 1 0.860 0.860 0.860 0.860 0.008 0.008 0.008 0.0 

b 2 0.860 0.860 0.085 0.0 0.008 0.008 0.008 0.0 

e 2 b 1 0.085 0.0 0.085 0.0 0.008 0.008 0.008 0.0 

b 2 0.085 0.0 0.008 0.008 0.008 0.008 0.008 0.0 

e 3 b 1 0.860 0.860 0.860 0.860 0.030 0.0 0.008 0.0 

b 2 0.860 0.860 0.085 0.0 0.030 0.0 0.008 0.0 

e 4 b 1 0.085 0.0 0.085 0.0 0.008 0.008 0.008 0.0 

b 2 0.085 0.0 0.008 0.008 0.008 0.008 0.008 0.0 

.3. Event-level similarity metric ( ES ) 

For the event-level similarity ES we compute a weight W a j for

ach attribute a j in the input stream E : 

 a j = 

∑ 

b k ∈ B 
f E , v j,k ·

1 

1 + H B ,a j 

(15) 

The first term of the product is the collective relative frequency

f all values in a j within the input stream E that are not encoun-

ered in B , and provides an estimate of the selectivity contributed

y this specific attribute. Additionally, it has the indirect effect of

educing the impact of attributes with an extremely limited value

et, as in the general case the beacon event set will also contain a

ignificant part of those values. 

The second term, on the other hand, is a measure of the homo-

eneity of the beacon set values for a j . Values with high variability

ncur a high beacon set entropy H B ,a j 
and therefore reduce the im-

act of a j in the overall similarity. Moreover, attributes with high

iversity will often also present this behavior in B , which reduces

heir overall impact. 

To obtain the metric ES that compares two events , a simple

eighted mean is used to leverage the per-attribute similarity val-

es to the event level: 

S (i, k ) = 

∑ | A | 
j=1 

(W a j · AS ( j, i, k )) 
∑ | A | 

j=1 
W a j 

(16) 

Lin (1998) offers a formal definition of the concept of similarity,

ased on three basic intuitive tenets: (a) the more commonality

wo objects share, the more similar they are; (b) the more differ-

nces two objects have, the less similar they are and; (c) two iden-

ical objects should always reach the maximum similarity. Using

 weighted mean to aggregate the per-attribute similarity values

rom the previous stages, to an event-level metric ES i,k , satisfies

ll three basic conditions. Additionally, it allows the attribute-level

eights which are not bounded to form a bounded metric with the

ame range as the primitive correlation metrics. 

Applying formula 15 on EX and BX , we note that the beacon

et noise for a 2 has reduced its weight compared to a 1 , while the

mpact of a 3 is also greatly attenuated: 

a 1 a 2 a 3 a 4 

∑ 

b k ∈ BX f EX , v j,k 999,0 0 0 90 0,0 0 0 10,0 0 0 999,800 

H B ,a j 0 1 0 1 

W a j 0.999 0.45 0.01 0.4999 

Using formula 16 with the values of AS from Section 5.2 , we

an compute the similarity ES for each event e i and beacon b k . As

xpected, the event-level similarity ES is significantly higher for

he targeted events e and e : 
1 3 
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e 1 e 2 e 3 e 4 

b 1 0.636 3.84E-5 0.636 3.84E-5 

b 2 0.439 0.002 0.439 0.002 

5.4. Event-set/beacon-set similarity metric ( SS ) 

The final computation involves the determination of an overall

similarity SS (i ) of an input event with the beacon set as a whole.

To compute a similarity metric between a single event and an

event set using a metric defined between single events, it becomes

necessary to reexamine the three basic principles mentioned in

Section 5.3 . 

More specifically, the requirement for a maximum similarity re-

sult on identical inputs is no longer satisfiable since sets and single

items are not directly comparable. It is, of course, possible to es-

tablish a set-contains condition, which in algorithmic terms would

mean returning the maximum similarity achieved between the in-

put event and each of the beacon events. This approach, however,

would increase significantly the output noise of the system and

make it especially unstable in case of a less than perfect beacon

event selection. 

Therefore, for the final layer of the proposed similarity met-

ric, it is necessary to forgo compliance with the requirement on

maximum similarity. The prototype implementation uses a simple

arithmetic mean, averaging the similarities calculated for the input

event with each beacon event: 

S ≡ SS (i ) = E( ES (i, k )) = 

∑ 

k =1 ES (i, k ) 

| B | (17)

For the events in EX , the values of ES from Section 5.3 are ag-

gregated into the final similarity metric S, clearly separating the

initially targeted events e 1 and e 3 , and allowing the subsequent use

of various algorithms for the final event selection : 

e 1 e 2 e 3 e 4 

S 0.538 0.001 0.537 0.001 

6. Adaptivity of the proposed approach 

For a real-time event processing system to be adaptive there

are two orthogonal issues that must be taken into account. First,

the system should be able to handle new attributes as they appear,

something that may happen when a new part of the monitored

infrastructure comes on-line or an architectural alteration occurs.

This requirement is increasingly important for a domain-agnostic

system, where there is no knowledge of the schema and no as-

sumption regarding the number, type or prevalence of attributes

can be made beforehand. Second, the monitoring system should

be able to adjust to new operational trends, where certain events

may become more frequent, while other may disappear altogether.

6.1. Adaptivity to schema changes 

The proposed approach is completely domain agnostic, requir-

ing no a priory knowledge of the domain or the event schema. As

such, it operates on the inherent assumption that only part of the

actual schema has been considered at any given time. An incoming

event may contain a number of previously unseen attributes that

expand the existing view of the schema of the monitored domain.

Each new attribute is essentially treated as an independent time

series that only contained null values until its time of emergence. 

However, for most event domains and monitoring systems it

is reasonable to assume a finite set of attributes . In other cases

it is possible to use a domain-specific pre-processing stage, to
ap, for example, dynamically generated attributes into a more re-

tricted schema. Therefore, the set of attributes that are known to

he system at runtime will gradually converge towards a constant

et, with few or no new attributes being added after a sufficient

mount of time. 

.2. Information content aging 

Typical statistical algorithms are generally targeted at data sets

nd not well suited for streaming input. Therefore, their use is as-

ociated with several caveats that require handling: 

1. Common set-based metrics exhibit a form of inertia as the

number of recorded data points increases. New data have a de-

creasing effect as time passes, creating an asymmetry between

data received at the early and later stages of execution. This

creates both a conceptual and a practical problem by essentially

nullifying the effect of recent events on the system state, reduc-

ing to zero its adaptability to new system configurations. 

2. Cumulative metrics, such as the mean and standard deviation,

suffer from numerical range and precision issues when imple-

mented trivially on a computer. Using software libraries for

arbitrary-precision arithmetic alleviates this problem to some

degree, generally at the cost of increased code complexity, re-

duced portability and a significant loss of performance. 

3. Most information content metrics tend to rise in a roughly lin-

ear manner as the number of processed input events increases.

This creates significant numeric stability issues, as the preci-

sion of several mathematical operations decreases when the

operands exceed the representation capabilities of the under-

lying computer architecture. 

o avoid these issues, the proposed system makes use of object

eplacement algorithms that remove extremely old and irrelevant

alues from its knowledge base, as mentioned in Section 7.1 . In

ddition, it utilizes methods that devalue or age older data points

ith the passage of time. Daneshgaran and Mondin (1997) provide

n information theoretic definition of aging, while Cormode et al.

2009) describe a generic exponential decay model for aggregate

etrics. 

One of the concepts that is unavoidably connected with aging

s time . Real, or wall-clock, time is not always easy to handle algo-

ithmically. In some cases even its definition is not straightforward

rom a systemic point of view. For example, basic deterministic au-

omata are designed based on state change sequences and do not

andle the concept of time at all. Similarly, our prototype imple-

entation synchronizes using input events as a reference and ig-

ores any other perception of time. As a result, the decay model

sed for the aging process, is a simple step-wise exponential decay

odel. For each cycle , the information content currently recorded

or all attributes and attribute values is multiplied by a positive

ecay coefficient no greater than 1: 

 aged,t+1 = decay · I t + (I t+1 − I t ) (18)

The decay coefficient should be selected with regard to the

onitored system, most notably its event rate and other tempo-

al characteristics. Typical values for the decay coefficient during

xperimentation were in the [0.95, 1) range - a common value of

.9999 results in a 63% decay over a period of 10,0 0 0 events. 

. Data structures and memory management 

.1. Space complexity and object replacement algorithms 

Since large systems have an infinite, or at the very least un-

nown , limit for the length of their emitted log streams, it is im-

ortant for tractability purposes to keep the space complexity, i.e.
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he volume of the events being considered at any given time, con-

tant or at most sub-linear, with respect to the overall size of

he log streams. This requirement, however, cannot be satisfied

ithout modifications to the theoretical constructs presented in

ection 5 . The proposed similarity metric requires the ability to

rovide the information content contributed by each discrete value

or all attributes, which implies at the very least, the storage of an

ccurrence counter for each attribute value. 

Using the limited attribute set assumption mentioned in

ection 6.1 , the time and space complexity of the system becomes

inear with regard to the number of attributes, which can be con-

idered a characteristic of the monitored infrastructure and thus

onstant in time. The same assumption cannot be made for the at-

ribute values . In the general case, where attributes may even cor-

espond to floating point or string variables, there is no limitation

or the number of discrete values that may appear for each at-

ribute. With a macroscopically stable rate of new values, the need

or a separate counter and other metadata per value imposes a lin-

ar space requirement with respect to the total size of the input. 

This makes the use of the basic similarity metric non tractable

or event stream processing systems. For this reason, it is neces-

ary to approximate the operation of the similarity determination

lgorithm in a space-efficient manner. From the mathematical for-

ulas, it is clear that the values with the least impact are those

ith the lowest contribution of information content. Therefore, a

otential approximation involves eliminating the entries that cor-

espond to low-impact values in order to form a sketch of the value

istribution for each attribute, instead of maintaining an accurate

ount for each value. 

While it is theoretically possible to use the information content

tself as a basis for this task, this implies re-calculating the contri-

ution of all retained values with each input event, thus increasing

he time complexity of the system with respect to the volume of

etained data. 

Taking the effects of the aging process into account, one can

ntuitively identify the low-impact values as those that (a) are in-

requent or (b) have not appeared recently in the input stream.

electing items based on frequency and recency is essentially the

urpose of object replacement algorithms , more commonly known

s caching algorithms . The main intent of a caching subsystem is

o use a pre-determined amount of space to store results of past

equests, replacing ( evicting ) old or infrequent entries when neces-

ary. Therefore, we can use such replacement algorithms to provide

 hard limit for the space usage of the proposed system. 

One of the most widely known entry eviction methods is the

east Recently Used (LRU), an algorithm with O(1) complexity for

ll operations which drops the entries that were last used furthest

n the past. It is essentially a finite-size linked list and thus very

imple to implement, but it behaves incorrectly when faced with a

arge block of unique entries on its input, since said entries will re-

lace the whole content of an LRU instance without being actually

seful. 

Another well-known method is the Least Frequently Used (LFU)

lgorithm, which drops the objects with the lowest frequency.

hile LFU seems by definition closer to the ideal approach, its

omplexity is logarithmic for all operations. In addition, it is

ot adaptive, since it tends to fill-up to its capacity with old

requently-repeated entries that may be currently irrelevant on

 real-time system. There have been several attempts to address

hese shortcomings by e.g. combining LFU and LRU into algorithms,

uch as LRFU, that take both recency and frequency into account. 

For our prototype implementation, we selected the Adaptive Re-

lacement Cache (ARC) algorithm by Megiddo and Modha (2003) ,

ue to its simplicity and overall performance. It provides a good

alance between recency and frequency, while also being resistant

o pathological behaviors and able to adapt to its input. 
ARC uses a pair of LRU lists ( T 1, T 2) to store live objects, as well

s another pair of ghost LRU lists ( B 1, B 2) to store recently evicted

eys. Within each pair one list tracks keys that have been encoun-

ered only once ( T 1, B 1), while the other contains keys that have

een repeated at least once ( T 2, B 2). Hits on the ghost lists are used

s an indicator for the automatic tuning of the relative sizes of the

orresponding live object lists, removing the necessity for any ex-

ernal parameterization that would require domain-specific knowl-

dge. All ARC operations happen in constant (O(1)) time, which is

ritical for low-latency, high-throughput applications. 

.2. iTree : A data structure for computing information metrics in 

treams 

While the information theoretic metrics previously described

re well defined for offline use on an input event set , their com-

utation proves significantly more difficult when they are used on

n event stream , due to a number of complicating factors. To illus-

rate the problem, consider the non-aged information content of

n attribute I ( a j ): 

(a j ) = −
| V j | ∑ 

i =1 

(n j,i · log r 
n j,i 

| E | ) 

= −
| V j | ∑ 

i =1 

(n j,i · log r n j,i − n j,i · log r | E | ) 

= | E | · log r | E | −
| V j | ∑ 

i =1 

(n j,i · log r n j,i ) (19) 

While the first term can be computed reliably in a streaming

nvironment simply by storing the current | E | value, the second

erm is significantly more problematic. The direct approach would

e to maintain the sum as a variable, each time subtracting the

orresponding previous value and adding the new one. Due to the

imited precision of floating point operations on current comput-

rs, however, this approach is numerically unstable - adding and

hen subtracting the same number from a sum is not guaranteed

o result in the original sum value. 

The introduction of the aging coefficients worsens this instabil-

ty problem, since their use implies that the term subtracted from

he sum in question needs to have been already multiplied by an

ppropriate decay factor. For example, to update a weight sum W

hen one of its aged component weights w increases after five ag-

ng cycles, we will have W t = W t−1 − decay 5 w t−5 + w t . Essentially,

hile the value originally added was w t−5 , we now have to sub-

ract its aged equivalent before adding its updated value w . When

he intervening time intervals are large or the decay coefficient

s relatively low, the value to be subtracted can be several orders

f magnitude lower than the original, which causes a measurable

oss in precision. The accumulating errors during such a stream-

ng operation soon lead into completely incorrect results. There-

ore, in order to ensure adequately the precision of these metrics

n a streaming environment, it is preferred to completely recom-

ute each sum from the beginning, rather than update it using the

xisting value. A naive approach would have all terms existing in

 linked list and serially added after each update, with a resulting

omplexity of O ( n ) with respect to the number of terms. By using

 more complex data structure, though, it is possible to lower that

omplexity to O ( logn ). 

For the prototype implementation of the proposed system, we

resent a composite data structure we refer to as iTree , in order to

ddress the aforementioned issues. The iTree combines elements

rom several well-known data structures, in an attempt to address
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Fig. 5. An example of the iTree data structure, illustrating the accumulation of the 

frequency n and the weight w of each value, along with the product wl = w · ln (n ) , 

into the sub-tree measures n t , w t and wl t . 
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the shortcomings that each one presents on its own for our specific

use case: 

1) Hash table A hash table is used to enable constant average

time ( O (1)) access to each stored entry, mapping each attribute

value to a record that contains its observed frequency, the cor-

responding aging coefficient and other metrics. Apart from a

significant performance benefit, using a hash table for the en-

try retrieval operation removes the need to implement an entry

search capability through any other data structure, simplifying

their design. 

The implementation uses entry chaining via linked lists to over-

come the issue of hash function collisions. The use of linked

lists leads to a linear worst-case complexity for entry retrieval

operations within iTree . Therefore, in pathological situations

where the hash function is not effective, it is possible for the

performance of the structure to degrade. Such an issue was not

observed in our experimental system, although it is theoreti-

cally possible. To partially address this liability, it is possible

to achieve a logarithmic worst-case complexity for retrievals by

adaptively using an entry tree , instead of a linked list, in patho-

logical situations of hash function collisions. 

2) Binary tree An array-backed binary tree is used with the sole

purpose of organizing all entries in a binary hierarchical struc-

ture. This structure has no sort order and no constraints, apart

from the requirement to always form a complete binary tree. 

By arranging all entries in a complete binary tree structure,

it becomes possible to update any global sum in logarithmic

( O ( logn )) time. Once the individual metrics of an entry are up-

dated, the tree is traversed upwards from that entry towards

the root, updating partial sums that are recorded on each an-

cestor. The root node then provides the necessary sums for all

nodes. Since the number of updated nodes is bounded by the

height of a complete binary tree and the retrieval of the start-

ing entry itself occurs in constant time through the hash table,

the total complexity of the update operation is O ( logn ). 

Both the entry insertion and entry removal operations have

the same logarithmic complexity as well. Since the tree has

no associated constraints, inserting a new entry involves sim-

ply adding the entry at the first free array index and then up-

dating all ancestor nodes until the root node is reached. The

cost of any array resizing operations, when amortized over all

insert operations, is still a constant, leaving the cost of updat-

ing the ancestors as the determinant factor. Delete operations

are more expensive computationally, since the removed node is

essentially replaced by the node that was last inserted, but the

overall complexity remains unchanged. 

3) Object replacement algorithm A modified implementation of the

Adaptive Replacement Cache (ARC) object replacement algorithm

allows for entries to be evicted, restricting the size of the iTree

structure to a specified limit, as mentioned in Section 7.1 . The

existing hash table is used for constant-time entry retrieval,

while a number of interconnected doubly-linked lists form the

internal structures required by the ARC algorithm. 

The ARC implementation in iTree incorporates two modifica-

tions over the standard version of the algorithm. First, it fea-

tures the ability to protect entries from eviction, which is espe-

cially important for the attribute values that are contained in

the beacon event set and should, therefore, never be removed.

Second, ARC is defined with the existence of a backing main

object store in mind - misses during a retrieval operation result

in the object being implicitly pulled from the backing store. In

contrast, iTree is always used in push mode, with values being

explicitly added when retrieved from the input stream. The ARC

implementation in iTree has been modified to operate correctly
in this context. t  
Fig. 5 shows an example iTree instance for a single attribute,

erived from an actual run of the prototype system. For each at-

ribute value v that is known, e.g. “0” or “2”, there is a related

inary tree entry that contains the observed frequency n of v in

he input event stream and its aged weight w , while the product

l = w · ln (n ) can be computed on-demand. In addition, each tree

ntry contains the sub-tree measures n t , w t and wl t that sum the

orresponding fields from the current entry and both of its descen-

ant sub-trees, if any. For reasons of visual clarity, a number of

ging-related fields have been taken into account for the shown

alues and then omitted. It is evident that the n t , w t and wl t fields

f the root node provide the overall sums that may be used to cal-

ulate any information theoretic metrics that consider all entries,

hile any update only needs to propagate upwards towards the

oot, resulting in a logarithmic complexity versus the total number

f entries. 

To illustrate the use of the iTree , let us suppose that value “4”

as just been encountered for the second time in the input stream,

nd the corresponding node has just been updated. Since it is a

eaf, its sub-tree fields n t , w t and wl t will be equal to its cor-

esponding node fields n, w and wl . Focusing on the occurrence

ounters n and n t , it is therefore the case that n t = n = 2 (since

he value “4” has been encountered twice). Visiting its parent node
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1”, the sub-tree fields of “1” are reevaluated as the sum of its

wn node fields and the corresponding sub-tree fields of both

ts children. For example, n t, “1” = n “1” + n t, “4” + n t, “2” = 89 + 2 + 6 =
7 . The root node “0” is then updated in the same manner and we

ave 

 t, “0” = n “0” + n t, “1” + n t, “5” = 1 , 249 , 899 + 97 + 4 = 1 , 250 , 0 0 0 . 

sing the same principle as with n t, “0” the iTree data structure can

e used to compute w t, “0” , wl t, “0” and the other tree coefficients.

herefore, using the iTree data structure we can efficiently avoid

he mathematical precision issues that arise when computing Eq.

19) and other metrics. 

. Scalability through a distributed operation model 

Regardless of the efficiency of any event processing algorithm,

odern and interconnected large IT infrastructures are capable of

roducing very high volume and frequency data that is difficult to

rocesses on a single computer system. In order to be able to han-

le multiple high-speed event streams in a scalable manner, it is

ecessary to distribute the processing to multiple computers, while

lso using a reasonable amount of resources in comparison to the

onitored systems. 

.1. Workload distribution model 

The scalability of the proposed system can be facilitated by dis-

ributing the performed work using two orthogonal methods: 

1) Attribute-level parallelization Each processing node handles a

subset of the attributes and their corresponding values from

each input event e i . This method does not alter the seman-

tics of the previously described algorithm, since each attribute

is treated as a completely independent time series. However,

it is limited in effectiveness, since the average number of at-

tributes within each event e i may often be less than the num-

ber of available processing units when using a sizable computer

cluster. In that case some of the nodes will be underutilized,

even if the system itself has reached its saturation point. 

2) Event level parallelization Since the proposed framework ana-

lyzes each input event e i independently, it is feasible to dis-

tribute the input stream to a large number of processing nodes

using any load-balancing method, such as a round-robin sched-

uler. However, while this approach allows for a greater degree

of parallelization, it also alters the semantics of the similarity

algorithm. More specifically, since each processing node han-

dles a proportionate part of the received events, it only has a

partial view of the input stream. 

In addition to these two cluster-wide distribution approaches,

he individual processing nodes themselves may optionally employ

eacon-level parallelization . In order to produce a composite metric,

he algorithm iterates over the corresponding beacon event set val-

es for each attribute, with the intermediate similarity values be-

ng computed independently on a separate processor core. This in-

reases the parallelization of the overall architecture, although the

otential gains will be limited in most cases due to the small size

f the beacon event set. 

In order to build a distributed implementation of the proposed

pproach, a variation of the MapReduce programming model was

efined using five node types: an event source node, a mapper

ode, a processing node, a reducer node and an output node. The

ain difference from the standard MapReduce model lies in the

xistence of the processing node between the mapper and reducer

odes. This allows for the computationally intensive processing to

e separated from the I/O-intensive operations of the mapper and
educer nodes. The nodes communicate by exchanging tuple ob-

ects that may contain any simple or composite object, while sep-

rate control channels allow the transfer of critical metadata. 

Fig. 6 provides an overview of an event processing network

ith m mapper nodes, p processing nodes and r reducer nodes,

emonstrating the input and output tuples for each node. The con-

rol channel tuples are not shown in this figure, as they are to a

ignificant degree implementation-specific. 

.1.1. Source node 

The source node, or S-node , feeds an input event stream into

he topology. Each S-node corresponds to a single input event

tream src than can be either received passively (e.g. a system log

eed) or retrieved actively from remote sources. The high-level op-

ration of the node is described in Algorithm 1 . Each retrieved

Algorithm 1: Source node operation. 

input : event source stream src 

output : S-tuple stream 

1 i ← 0 ; 

2 while inputAvailable( src) do 

3 e i ← get( src) ; 

4 emit( { src, i, e i } ) ; 
5 i ++ ; 

6 end 

7 sleep() ; 

8 emitControl( { src, END, i } ) ; 

vent e i is emitted (line 4) as a tuple of the format { src, i, e i }

 S-tuple ) that contains the unique stream identifier src , the event

ounter i , as well as the composite event object e i itself. A control

hannel is used to signal (line 8) the termination of each stream to

he associated output node, allowing for the corresponding output

tream to be closed as well. 

.1.2. Mapper node 

The first task of the mapper node, or M-node , is to flatten

 Algorithm 2 , line 1) each received S-tuple { src, i, e i } converting it

Algorithm 2: Mapper node operation. 

input : an S-tuple { src, i, e i } 
output : an M-tuple for each attribute 

1 { src, i, v 1 ,i , v 2 ,i , ..., v | A | ,i } ← flatten( { src, i, e i } ) ; 
2 for j ← 1 to | A | do 

3 emit( { src, i, a j , v j,i } ) ; 
4 end 

nto an intermediate I-tuple of the format { src, i, v 1 ,i , v 2 ,i , ..., v | A | ,i } .
fterwards, the I-tuple is mapped into an equivalent collection of

ttribute/value tuples of the format { src, i, a j , v j, i } ( M-tuple ) and

hen emitted (line 3) towards the processing nodes. 

There are no constraints with regard to the allocation of source

uples to specific mapper nodes, apart from performance and load

alancing concerns. Mapper nodes are completely stateless, which

akes them equivalent at any point in time. 

.1.3. Processing node 

The processing node, or P-node , performs the core part of the

imilarity computation, operating at the event attribute level. Each
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M-tuple generated from an M-node is randomly distributed to a P-

node instance and, therefore, each stream attribute may be han-

dled by more than one P-node instance, with each one receiving

an equal but randomly assigned part of the input. 

For each input M-tuple { src, i, a j , v j, i } that is received from the

M-node instances, the contained value for attribute a j is compared

against the corresponding value of each beacon event b k using

the information-theoretic metrics that were described previously.

Thus we calculate the attribute-level similarity value AS ( j, i, k )

and the weight W a j as presented in Eqs. (14) and (15) . Each par-

tial similarity result and the associated weight are then emitted

( Algorithm 3 , line 2) towards the reducer nodes as a tuple of the

format { src, i, j, AS ( j, i, k ) , W a j } ( P-tuple ). 

Algorithm 3: Processing node operation. 

input : an M-tuple { src, i, a j , v j,i } 
output : a P-tuple for each beacon event b k 

1 for k ← 1 to | B | do 

2 emit( { src, i, j, AS ( j, i, k ) , W a j } ) ; 
3 end 

The processing nodes are the most computationally-intensive

elements of the topology. They incorporate an iTree caching value

repository for each attribute that they handle. These repositories

are updated in real-time, along with the aged information content

metrics that are associated with each attribute a j and then used to

generate the coefficients for the similarity calculation. 
.1.4. Reducer node 

The reducer node, or R-node , collects ( Algorithm 4 , line 3) the

artial results from the processing nodes and aggregates (lines 7,

) them to produce an overall similarity metric S(i ) between each

vent e i and the beacon event set B . The configuration of the P-

ode / R-node link ensures that all P-tuple objects that relate to a

pecific event e i are delivered to the same R-node instance. Mes-

Algorithm 4: Reducer node operation. 

input : all P-tuple objects { src, i, j, AS ( j, i, k ) , W a j } for an 

event e i 
output : an R-tuple for e i 

1 for j ← 1 to | A | do 

2 for k ← 1 to | B | do 

3 r[ j][ k ] ← { src, i, j, AS ( j, i, k ) , W a j } ; 
4 end 

5 end 

6 for k ← 1 to | B | do 

7 es [ k ] ← ES (i, k ) ; 

8 end 

9 S(i ) ← E(es [ k ]) ; 

10 emit( { src, i, S(i ) } ) ; 

ages received via the separate control channel from the mapper

odes allow the reducer nodes to obtain critical metadata regard-

ng their operation, such as the number of attribute/value tuples
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enerated from each input event e i . The aggregated results are then

mitted as a tuple of the format { src, i, S(i ) } ( R-tuple ). 

A point of importance is that in general each R-node instance

nly handles a randomly selected part of the output that corre-

ponds to each input stream. The final output stream has to be

econstituted from the R-node sub-streams by the output node in-

tances. 

.1.5. Output node 

The output node, or O-node , generates the final stream that

aps each input event e i to the computed similarity. The com-

unication channels between the reducer and output nodes are

onfigured so that the results from each separate input stream will

nd up in the same output node, forming a coherent output stream

hat can be delivered ( Algorithm 5 , line 3) to a single destination

or each input event stream src . 

Algorithm 5: Output node operation. 

input : all R-tuple streams for src 

output : result stream for src 

1 while not receivedControl( src, END, * ) do 

2 { src, i, S(i ) } ← receive( ) 

3 output( src, { i, S(i ) } ) ; 
4 end 

Since the O-node instances have a complete view of the out-

ut stream, they are also able to perform any per-stream post-

rocessing operations, such as reordering the result tuples to

atch the input order. Depending on the configuration of the

ode network, the reduced output selection process described in

ection 9 may be incorporated in the operation of either the re-

ucer or the output nodes. Using this process it is possible to ei-

her tag each R-tuple appropriately, or even to completely remove

ow-similarity events from the output. 

Using the R-node instances allows the selection load to be dis-

ributed to multiple physical computers, which may be necessary

or high-volume input event streams, but can have a negative im-

act on the accuracy of the overall process, since each R-node has

 limited view of the overall output stream. While this loss of ac-

uracy may be acceptable - or even unavoidable - for high-volume

treams, such a reduction of the output quality may be undesirable

n cases of low-volume input. 

The possibility of executing the selection process in the O-node

nstances addresses this issue, since the output tuple stream that

orresponds to each input event stream is completely accessible

ithin a single O-node instance. Alternatively an independent sim-

larity threshold selection node ( T-node ) may be used, allowing

omplete flexibility based on the specifics of each installation. 

.2. Distributed operation considerations 

.2.1. Input stream splitting and value repository segmentation 

Distributing the operation of the proposed algorithm unavoid-

bly results into changes of its semantics. The most important

hange is the fact that there are now multiple caching value repos-

tories for each attribute, with the value distribution sketch for

ach attribute being segmented to multiple nodes. Each repository

 and its associated processing node - only views a limited, mostly

andom, part of the input value stream for that specific attribute.

ince the contents of the repositories affect the calculation of the

eighing coefficients presented in Section 5 , this may have a neg-

tive impact on the quality of the produced results by increasing
he number of events that need to be processed by the system in

rder to generate results with a certain degree of confidence. 

In many cases, however, this issue can be ignored if a certain

egree of approximation - and a corresponding error ratio - is ac-

eptable. It is often reasonable to assume that any sizable subset of

he input stream that is evenly distributed in time will be macroscopi-

ally representative of the whole input stream . Therefore, in the long

erm each node will be able to compute accurate enough metrics

sing only the event stream subset that it has received. In general,

he distributed system after i events is expected to approach the

ehavior of a single-node system with i / p received events, where p

s the number of P-node instances. 

While it would be possible to ensure the conformance with the

ingle-node version of the algorithm by distributing all values to

ll nodes or by sharing a single value repository, any such design

ould mostly defeat the purpose of creating a distributed imple-

entation. As a mitigation method, however, it is possible to re-

uce the error ratio and avoid extreme cases of divergence, by

aving the system periodically synchronize the recorded metadata

mong all nodes, thus setting an upper boundary for the deviation

etween the different repository segments of each attribute. 

.2.2. Input event reordering and non-determinism 

In addition, on a distributed system the interactions of the var-

ous networked components are affected by timing factors that are

ot really controllable. The random distribution of the data to the

arious nodes, the introduced networking latency and the process

cheduling intricacies of the physical nodes themselves all affect

he order in which events are processed. As a result, a final re-

rdering of the output (e.g. Mutschler and Philippsen (2013) ) may

e necessary. 

A final point relates to the system evaluation process itself. On

 single-stream, single-computer system the output of each test-

ng run is generally deterministic and only depends on the input

vent stream itself. On the contrary, the equivalent distributed sys-

em will produce different results on each run due to the effects

iscussed above. This may present a degree of difficulty when eval-

ating the system, especially when targeting input event stream

ubsets of miniscule size. Performing multiple runs for each eval-

ation and aggregating the results reduces the error rate to an ac-

eptable level. 

. Adaptive output event stream selection 

Conceptually, in order to make use of the similarity algorithm

t is necessary to select an output event set with those events for

hich the highest similarity values were computed. Providing a

hreshold for that selection process, however, is not trivial. Real-

ime streams are unbounded with regard to space and impose cer-

ain latency constraints, while the amount of information that is

nown a priori is limited. Therefore an adaptive threshold selection

ethod should be used for the last phase of the process. 

Some common alternative group selection approaches include: 

Sorting: Sorting items based on their similarity to the bea-

on event set is a typical scenario employed by offline group-

ng engines. Despite its conceptual simplicity, this approach is not

ractable for event streams. Real-time sorting algorithms such as

arious insertion-sort implementations, are available, but they gen-

rally exhibit linear space complexity which makes them unusable

or input streams with unrestricted length. 

Percentile extraction: If the objective is the reduction of the in-

ut stream by a specific ratio, several efficient methods ( Zhang and

ang (2007) , Cormode et al. (2006) ) for the approximate deter-

ination of percentiles on streams have been proposed. The use

f approximate methods allows such algorithms to be effective on

arge input streams, typically with sublinear space complexity. On
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the contrary, sorting-based accurate algorithms are essentially lim-

ited to fixed sets. However, the main weakness of this alternative

is the determination of the desired output percentile. Since this is

a fixed setting, it generally requires domain-specific knowledge so

that the target events will not be missed, while also keeping the

output noise to a minimum. 

Threshold-based selection: While a fixed value cannot be used,

there are several possibilities for a more adaptive threshold se-

lection. For example, Lane and Brodley (1999) use a probabilistic

method to compute a threshold, based on a desired ratio r of se-

lected events; essentially an indirect approach to percentile extrac-

tion, with r being a site-specific setting. Alternatively, a univari-

ate clustering/classification algorithm (e.g. Qiu and Tamhane, 2007 )

could be used to select those events with the highest similarity

values that are adequately close to indicate a coherent part of the

input, while also being separated from the rest of the events. It is

also possible to use statistical measures for the dynamic determi-

nation of a threshold. For example, the standard score, which is

defined as the deviation of a specific sample from the mean of a

variable measured using the standard deviation as a unit, has been

tried with moderate to good results in our prototype system: 

Z(x ) = 

x − x̄ 

s 
(20)

A standard score threshold of 1.0 will select those events that

have a similarity to the beacon set higher than the average similar-

ity by at least one standard deviation. Unfortunately, simple statis-

tical measures like this one tend to suffer from an inertial effect in

long-running streaming systems, as mentioned in Section 6.2 . As a

result, the quality of the produced results tends to decrease as the

input stream evolves in time and new trends are encountered. 

In our approach, the resulting event set is adaptively computed

using a dynamic threshold, which is determined by detecting sig-

nificant gaps in the distribution of similarity values. Such gaps near

the high end of the similarity value range are often indicative of an

underlying distinction between matching and non-matching input

events. 

More specifically, the system maintains a constant space sketch

of the probability distribution function (PDF) of the similarity val-

ues. The sketch consists of a limited number of aggregate data

points, with each data point representing a cluster of similarity

results. New values are inserted into the cluster with the closest

mean, with a heuristic algorithm being used to determine when

two clusters should be combined to allow for the creation of a

new one. Since the number of data points is fixed, all opera-

tions happen in constant time (O(1)) with regard to the number

of inserted values. Consequently, the PDF sketch is updated with

each new similarity value in real time, as the input stream is pro-

cessed. Similar techniques based on sub-linear data sketches have

been used for approximate percentile determination on real time

streams ( Zhang and Wang (2007) , Cormode et al. (2006) ). In ad-

dition, a degree of adaptivity is provided for the threshold deter-

mination algorithm by employing an object replacement algorithm

that removes old and currently irrelevant aggregate data points. 

To determine a selection threshold, an integration method is

applied over the PDF sketch to produce the equivalent cumula-

tive distribution function (CDF) of the similarity values. The CDF

of the similarity essentially provides the ratio of rejected events

for each possible selection threshold. Sharp rises in the CDF indi-

cate the existence of a tight cluster around the same value, while a

plateau is caused by the lack of any data points in the correspond-

ing range. Therefore, using a rough computation of the derivative it

is possible to detect plateaus in the CDF, which typically separate

similarity value clusters. A heuristic algorithm is then used to se-

lect an appropriate threshold, by taking into account the distances
etween the highest valued clusters, their size and their position

ithin the similarity value range. 

Fig. 7 depicts a plot for a typical instance of the similarity

DF, captured while processing 1,250,0 0 0 input events with a bea-

on set of 20 events that match the neptune attack type from the

DD’99 data set. A gap in the similarity values, indicated by a

lateau in the CDF plot for similarities in the approximate range

f 17 − 32% , separates the matching events from the rest of the in-

ut stream. The selected threshold of ∼ 28% preserves roughly 31%

f the input stream, which is congruent with the ratio of neptune -

ype events in the same input range. 

While the threshold determination process completes in con-

tant time with respect to the input event stream size, it can be-

ome relatively expensive as the resolution of the sketch increases.

herefore new threshold values are determined periodically, rather

han constantly, in order to reduce the computing overhead. 

0. Implementation considerations 

The Apache Storm framework provides a basic infrastructure for

he creation, operation and high-level monitoring of complex dis-

ributed networks for real-time stream processing. In contrast to

atch processing frameworks, such as Apache Hadoop and Apache

park, Storm does not collect events in groups but rather operates

n a record-by-record basis. It also does not provide any facilities

or permanent or temporary data storage. Instead, it focuses on the

ast transfer, routing and manipulation of object tuples. The tuples

ay contain serializable objects of any complexity, allowing the

epresentation of both the input events and any intermediate data.

Each stream processing network, or topology , is defined at a

igh level as a directed data flow graph of the executed software.

t consists of nodes, each representing a specific software unit, that

ommunicate by exchanging object tuples in a well-defined man-

er. The Storm framework is able to execute multiple topologies

imultaneously using a single cluster of physical computers. It cre-

tes an appropriate number of instances for each software unit,

chedules their execution on specific physical computers and sets

p the necessary communication channels, according to the topol-

gy layout and its parallelization configuration. 

Each topology may contain nodes of two kinds: 

• Spouts: Spouts are the nodes that act as tuple sources , feeding

the rest of the topology. They may retrieve tuples from an ex-

ternal data store, remote sensors or even generate them inter-

nally. 
• Bolts: Bolts are the nodes that perform the actual processing.

In general they process each tuple that they receive and emit

one or more tuples as a result. They may also act as sinks , by

not emitting any tuples at all. This is typical of nodes that are

charged with delivering the output of the system or with mon-

itoring the internal operation of the topology. 

Using the Storm framework, the parallelization approach pro-

osed in Section 8 was implemented as follows: 

1) Source node In our prototype implementation the S-node was

built as a Storm spout. Each instance corresponds to a sepa-

rate input stream and is able to retrieve events from a Mon-

goDB database, a local file or a remote TCP/IP server. The input

system supports various object serialization formats (e.g. JSON,

Kryo) and compression algorithms (e.g. gzip, LZ4). 

2) Mapper node The M-node is a Storm bolt that emits tuples to

both the default channel and a separate control channel. The

control channel is used to inform the reducer node instances

of the number of attribute tuples that were emitted for each

event. 

In order to reduce the overall strain of sending multiple mes-

sages on the cluster network, the mapper node may optionally
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Fig. 7. Heuristic selection of a similarity threshold of ∼ 28% for a typical CDF instance. 

Fig. 8. The Apache Storm topology for the event filtering system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

batch multiple attribute/value pairs in a single tuple of the for-

mat { src, i, a j [], v j, i []}. This essentially shares the explicitly-sent

event metadata, as well as any implicit overhead, among mul-

tiple attributes. 

3) Processing node The P-node is a Storm bolt that is typically in-

stantiated in significantly higher numbers than any other node.

The P-node instances generate multiple tuples for each received

event attribute value v j, i - one for each beacon event. In order

to reduce the bandwidth requirements imposed by the gener-

ated amount of data, and improve the overall performance a

separate string registry server was introduced. While not part

of the Storm topology, the registry server is used by all nodes.

It converts each string into a unique numeric identifier that is

shared among all nodes, allowing for all attribute names to be

reduced into a single integer. The retrieved string identifiers are

cached by each node, thus minimizing the resources needed for

the operation of the registry server. In addition, the system may

emit multiple result tuples in a batched form, similar to the one

generated by the M-node instances, reducing the number of in-

dividual messages sent on the cluster network. 

4) Reducer node The R-node instances make use of metadata re-

ceived via the control channel to determine the number of re-
sult tuples that should be processed for each input event before

a final result can be produced. However, the proposed paral-

lelization approach makes no assumptions with regard to the

order in which an R-node may receive results from the P-node

instances. As a result, the R-node bolt instances in the proto-

type implementation may receive unordered partial similarity

results from multiple input events. 

It is therefore necessary for each R-node instance to maintain

a table of events for which it has received either partial sim-

ilarity results or control channel metadata. Each such event is

recorded upon the reception of the first relevant tuple and re-

moved from the table as soon as the final result is emitted.

The memory requirements of the pending event table may be

considered constant, as long as the following two assumptions

hold: 
• No tuples may be lost in transit. A lost P-node result tuple

would result in the processing of the corresponding event to

stall indefinitely. This is not a major issue, since the Storm

framework provides a mechanism for the reliable transmis-

sion of tuples. 
• The latency of the P-node processing stage is limited. As

long as there are pending partial results, the R-node in-

stances keep storing the incomplete event records in their

local memory. Therefore the time it takes for the P-node in-

stances to complete their operation affects the overall mem-

ory usage on the R-node hosts. 

It is possible to mitigate any system-wide effects in cases

where these assumptions are not valid by using either a

timeout or a memory overflow handler that would remove

pending events from the aforementioned table. That would

improve the reliability of the processing cluster in high-

load situations, at the cost of potentially producing partial

results. 

5) Output node The final Storm bolt is the O-node . In our prototype

implementation the resulting output stream is delivered to a

remote TCP/IP server, thus removing the need for the O-node



16 T. Kalamatianos, K. Kontogiannis / The Journal of Systems and Software 129 (2017) 1–25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u  

e  

t  

o  

1  

r  

a  

t  

c

 

m  

i  

b  

t  

S  

s  

m  

i  

p

 

d  

b  

o  

u

 

n  

p  

f  

o  

n  

a  

p

1

 

t  

e  

c  

p  

a  

a  

a  

b  

a

 

s  

t  

a  

m  

r  

1  

n  

c  

t  

e

 

d  

c  

a  

t  

a  

r  

T  
instances to be explicitly forced onto specific physical hosts

with appropriate access to storage media. 

11. System evaluation 

For the evaluation of the proposed algorithm we used two dif-

ferent labeled data sets. The first one was generated within the

scope of a competition that was held in conjunction with KDD’99,

the Fifth International Conference on Knowledge Discovery and

Data Mining. The second one consists of network traffic that was

captured in the CTU University, Czech Republic, in 2011. 

The KDD’99 data set (Knowledge Discovery & Data Mining Cup

Data, 1999) is a derivative of the DARPA Intrusion Detection Eval-

uation 1999 corpus. As such, its events represent traffic within

a computer network, while simulated security breaches are at-

tempted. These attacks, of 38 types in total, can be grouped into

four main classes; denial of service (DoS), remote probing, unau-

thorized remote access and local privilege escalation. The KDD’99

corpus, which has been extensively analyzed by Tavallaee et al.

(2009) , features about 4.8 million events and 41 distinct attributes,

of both continuous and discrete types. The KDD’99 attributes have

a minimum, median and maximum cardinality of 1, 87 and 21,490

respectively. They can be classified into three main categories: (a)

basic features of an individual connection, such as its protocol,

duration and transfer volume (b) extracted features regarding the

content of a connection, such as the number of created files or

shell commands issued (c) aggregate traffic features over a short

time window, such as connection counts and various error rates.

The last two categories essentially contain high-level information

extracted over time, which means that each entry may actually

represent multiple atomic entities. 

For the purposes of our testing, we consider KDD’99 to be a

stream of individual events. The events involved in each of the

aforementioned attack type have relative frequencies within the

input that span the range from 0.1% to about 30%, thus covering

a wide range of different statistical behaviors. Apart from the at-

tribute fields, KDD’99 contains embedded classification data (la-

bels) for each event. While these labels are, naturally, excluded

from any processing performed on the corpus, they can serve as

a reference for the evaluation of the quality metrics of any selec-

tion method. This alleviates the need for domain-specific tools or

manual intervention for the creation of the golden standard against

which our system will be evaluated. This data set was used to eval-

uate both the quality and the runtime performance characteristics

of the proposed approach, in both single-node and distributed op-

eration. 

The second corpus used was the CTU-13 data set ( Garcia et al.,

2014) and was selected in order to evaluate our algorithm against

data from a different domain. We opted to use CTU-13, first be-

cause it deals with real world cases, second due to its use of the

NetFlow event stream format which is an industry standard, and

third because it is labeled, thus providing a reference ground truth

for precision and recall evaluations. CTU-13 consists of about 20

million entries, which span 13 different scenarios involving the

presence of malware in a computer network. The entries repre-

sent network traffic that was captured in a partially controlled en-

vironment, with real user traffic being mixed with traffic from mal-

ware which was intentionally installed for research reasons. For

each scenario the data set provides a bidirectional NetFlow text

file that aggregates the captured network traffic. NetFlow is a well-

known industry file format for network flow data; in its text varia-

tion used by the CTU-13 set each entry corresponds to an individ-

ual captured network flow and has 14 comma-separated data fields

( attributes ) with a minimum, median and 90th percentile cardinal-

ity of 5, 10 0,90 0 and 4,237,587 respectively. They contain informa-

tion such as the IP addresses of the endpoints, the transferred vol-
me and the type of service. An additional field provides the refer-

nce label for each flow, classifying it into one of 1,400 categories

hat cover malware, normal and background traffic. Apart from its

rigin, schema, size and attribute cardinality distribution, the CTU-

3 corpus differs from the KDD’99 set in the fact that each entry

epresents an independent event, with no high-level features. In

ddition, some attributes contain non-primitive values such as tex-

ual timestamps and IP addresses that can be hard to detect and

ompare effectively. 

The prototype implementation was written in the Java program-

ing language and tested extensively in streaming operation, both

n single-node and distributed mode. The single-node version has

een extensively optimized for use on a single computer with mul-

iple processor cores, while the distributed version leverages the

torm framework to make use of a cluster of computers. Both ver-

ions incorporate the ability to compare the input stream with

ultiple beacon event sets simultaneously, which results in a signif-

cant performance increase by avoiding the repetition of common

arts of the computation. 

For each experiment, the beacon events used were selected ran-

omly from a specific event type, with the rest of the events that

elong to the same category being the expected result. No manual

ptimizations were attempted, as those would generally imply the

se of domain-specific knowledge by the operator. 

Compared with our prior work ( Kalamatianos and Kontogian-

is, 2014) , which was also evaluated using the KDD’99 set, the

roposed approach generally offers more uniform results over dif-

erent beacon event sets and increased resiliency to the presence

f noise in B . For example, when used with a high ratio of erro-

eous beacon events, the current technique demonstrates notice-

bly higher precision for the back and teardrop event types, while

roviding significant throughput and scalability improvements. 

1.1. Similarity metric evaluation 

To evaluate the quality of the similarity metric, it is necessary

o examine its selectivity between matching and non-matching

vents. Intuitively, an acceptable metric would provide results with

lear separation between potential matches and the rest of the in-

ut, allowing the selection of the matching results by means of

 simple similarity threshold. Ideally, the separating space would

lso not contain any noise in the form of infrequent errant values,

lthough their effect on the overall accuracy of the system would

e negligible and they could be filtered-out relatively easily using

 variety of methods. 

At the lowest level of the proposed approach lies the basic

imilarity function VS . Since VS only takes into account the at-

ribute values themselves, without considering their frequency or

ny other features, it is not directly usable as an overall similarity

etric. Fig. 9 illustrates the results of the low-level similarity met-

ic for a use case where the expected positives consist less than

/500 th of the input, mostly in two main clusters. It is evident that

o conclusion can be formed with respect to the size or the lo-

ation of the matching events with any degree of accuracy, since

here is no clear separation between matching and non-matching

vents. 

Applying the value coefficients and attribute weight functions

escribed in Section 5 results in a more usable output (i.e. denser

lusters), as depicted in Fig. 10 . Both figures were produced using

 beacon set of 20 events that match the back attack type from

he KDD’99 data set. The input set consists of 1.25 million events

nd contains two event clusters of the same type in this particular

ange, in the subranges [395615 − 396614] and [498950 − 499951] .

he corresponding similarity values rise from a baseline of about
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Fig. 10. Final similarity values for 1.25 million events with two visible clusters of potential matches. 
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 − 22% to values in the 45 − 60% range, with virtually no noise in

he intervening range from approximately 25% to 45%, thus being

n complete accordance with the golden standard. 

For a more concrete estimate, Buell and Kraft (1981) extend

he common metrics of precision and recall for use in a fuzzy en-

ironment, where the output of a retrieval process is a continu-
us value, rather than a boolean result. This allows our similar-

ty metric to be evaluated directly without interference from the

hreshold selection stage. In our prototype system, the cited fuzzy

recision and recall metrics rose from ∼ 0.2% and ∼ 25% for the

ow-level similarity to ∼ 9% and ∼ 60% for the weighted similarity

etric. 
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Table 1 

KDD’99: Single-node operation, Beacon set size ( | B | ) effect. 

Test | B | Positives True Precision Recall Reduction Accuracy F 2 
positives (%) (%) (%) (%) 

back 5 3261 1974 60.534 98.601 99.739 99.895 0.875 

back 10 2446 1980 80.948 98.901 99.804 99.961 0.947 

back 20 2181 1992 91.334 99.500 99.825 99.984 0.977 

imap 5 204,979 0 0.0 0 0 0.0 0 0 83.601 83.601 - 

imap 10 395,032 9 0.002 75.0 0 0 68.397 68.398 0.0 0 01 

imap 20 638 10 1.567 83.333 99.948 99.950 0.072 

ipsweep 5 7660 6243 81.501 82.372 99.387 99.780 0.821 

ipsweep 10 7856 6653 84.687 87.782 99.371 99.830 0.871 

ipsweep 20 7458 6650 89.166 87.742 99.403 99.861 0.880 

neptune 5 317,740 317,311 99.865 80.370 74.580 93.766 0.836 

neptune 10 204,621 204,383 99.884 51.767 83.630 84.747 0.572 

neptune 20 395,235 394,812 99.893 10 0.0 0 0 68.381 99.966 0.999 

nmap 5 416 10 2.404 0.432 99.966 99.783 0.005 

nmap 10 8738 1019 11.662 43.998 99.300 99.279 0.283 

nmap 20 8285 1014 12.239 43.782 99.337 99.314 0.288 

portsweep 5 20,549 2465 11.996 88.605 98.356 98.528 0.389 

portsweep 10 13,169 2585 19.629 92.919 98.946 99.138 0.531 

portsweep 20 13,911 2506 18.015 90.079 98.887 99.066 0.500 

satan 5 16,750 4765 28.448 88.355 98.66 98.991 0.621 

satan 10 8776 4906 55.902 90.970 99.297 99.651 0.808 

satan 20 8442 4865 57.629 90.210 99.324 99.672 0.810 

teardrop 5 1655 199 12.024 10 0.0 0 0 99.867 99.884 0.405 

teardrop 10 1685 198 11.751 99.497 99.865 99.881 0.399 

teardrop 20 1533 184 12.003 92.462 99.877 99.891 0.395 

warezmaster 5 302 16 5.298 80.0 0 0 99.975 99.977 0.209 

warezmaster 10 270 15 5.556 75.0 0 0 99.978 99.979 0.214 

warezmaster 20 184 16 8.696 80.0 0 0 99.985 99.986 0.303 
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Consequently, there is now a clear separation of the two match-

ing clusters from the rest of the input stream, which allows the

adaptive threshold selection algorithm to identify them correctly

without introducing inordinate amounts of noise. 

11.2. Quality of results (KDD’99) 

An accepted method of assessing an information retrieval pro-

cess is the measurement of precision, recall and accuracy values,

along with the F β composite measure for various values of β . For

our system, recall is more important than precision, since it is crit-

ical to ensure that the technique does not discard matching events,

especially in a streaming environment where the recovery of such

events might not be possible. However, precision still remains an

important quality, since it relates to the reduction effected upon

the size of the input, which is the final purpose of the proposed

system. Therefore, the F 2 measure is more suitable to be used for

the overall assessment, since it is a common metric that favors re-

call without underestimating the importance of precision. It is also

particularly useful for comparing the output quality of different ap-

proaches for the same input. 

F 2 = 5 · precision · recall 

4 · precision + recall 
(21)

For our evaluation with the KDD’99 data set, the prototype im-

plementation was subjected to a series of experiments, a subset of

which is presented in Table 1 . Table 1 contains results from exper-

iments performed in single-node mode over a range of 1,250,0 0 0

events for several different event types and for a variable bea-

con event set size | B | . The selected scenarios cover a significant

event frequency range, with neptune -type events comprising about

30% of the input, while the back and teardrop events correspond

to 0.15% and 0.015% respectively. In addition, the expected events

themselves present a variety of behaviors with regard to the dis-

tribution of their attribute values. 
The results indicate that varying the size of the beacon event

et, does not generally appear to have a consistently significant

ffect. In most cases, a larger number of beacon events tends to

mprove the overall behavior, essentially by allowing the system

o more reliably establish which features characterize each event

ype, as evidenced by the extremely low recall achieved for event

ypes imap and nmap with a 5-event beacon set. However, a larger

ize for B can also lead to a slightly higher amount of noise in the

utput when the target event set presents relatively limited cohe-

ion and higher diversity among its members. In any case, the sys-

em is able to produce acceptable results with as low as 5 beacon

vents, which makes it usable by human operators without the aid

f additional tools. 

With 20 beacon events, the proposed approach manages to sys-

ematically retrieve over 80% of the requested events, with an ac-

uracy of over 95%. The achieved reduction of the event stream

olume is generally better than 95%, except for cases such as the

eptune event type, where the expected output represents a signif-

cant part of the event stream and therefore cannot not be further

educed without losing useful information. For less frequent event

ypes the recall is generally better than 80% and often 90%. 

A notable exception is the nmap event type, with a maximum

chieved recall of about 43%. In the context of the KDD ’99 in-

rusion detection data set, this event type represents an attacker

hat serially attempts to connect to a number of different services.

herefore each event of this type contains a number of attribute

alues that are not only frequently encountered during normal op-

ration, but that are also highly diversified within the nmap events

hemselves. As a result, our system is not able to reliably identify

vents of this type. A series of tests with a more relaxed threshold

election, where the automatically determined threshold was low-

red by a fixed percentage, resulted in a recall in the 95% range,

ut with a significant drop in precision for most other cases. In

eneral, a trade-off between recall and precision is expected, with

he precision decreasing as the threshold is lowered. Conversely,

 threshold increase may improve the precision, although if done

ndiscriminately it may also result in no events being selected at

ll. 

The precision of the system is highly variable, since the adap-

ive threshold selection process has been designed with emphasis

n recall and volume reduction. For frequent event types, the sys-

em achieves precision metrics better than 99%, avoiding the selec-

ion of inordinate amounts of non-matching events. On the other

and, event types that are extremely rare, such as the warezmaster

ype, are significantly more difficult to isolate, although the result-

ng output volume is still significantly less than that of the orig-

nal stream. Moreover, since the expected output event count is

ery low, even a single erroneously selected event can reduce the

ecorded precision significantly. One such case is the imap event

ype, for which the prototype system was not very effective. Apart

rom the rarity of the events in imap , which numbered a total of

2 occurrences in a 1,25 million event stream, another contribut-

ng factor lies in the structure of the events in question. An in-

estigation of the specifics of this event type revealed that each

f its member events had a significant number of attribute val-

es in common with numerous events from other types, while at

he same time several other attributes displayed extreme varia-

ions within the imap type. 

In order to assess the feasibility and the side-effects of using

he proposed approach in a distributed manner, we repeated the

xact same set of experiments on a Storm cluster composed of five

dentical computers, each with two physical CPU cores. Due to the

nherent unpredictability of the distributed operation mode, which

as mentioned in Section 8.2 , successive repetitions of the exper-

ment set resulted in slightly different outputs, although macro-

copically there was little variation. The achieved results, which
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Table 2 

KDD’99: Distributed operation, Beacon set size ( | B | ) effect. 

Test | B | Positives True Precision Recall Reduction Accuracy F 2 
positives (%) (%) (%) (%) 

back 5 2209 1980 89.633 98.901 99.823 99.980 0.968 

back 10 3802 1980 52.078 98.901 99.695 99.852 0.838 

back 20 2149 1953 90.879 97.552 99.828 99.980 0.961 

imap 5 204,730 0 0.0 0 0 0.0 0 0 83.621 83.621 - 

imap 10 218,206 9 0.004 75.0 0 0 82.543 82.544 0.0 0 02 

imap 20 686 10 1.458 83.333 99.945 99.946 0.068 

ipsweep 5 7715 6296 81.607 83.072 99.382 99.784 0.827 

ipsweep 10 7856 6653 84.687 87.782 99.371 99.830 0.871 

ipsweep 20 7458 6650 89.166 87.742 99.403 99.861 0.880 

neptune 5 311,031 310,511 99.833 78.648 75.117 93.214 0.821 

neptune 10 395,079 394,661 99.894 99.962 68.393 99.954 0.999 

neptune 20 395,315 394,812 99.873 10 0.0 0 0 68.374 99.960 0.999 

nmap 5 416 10 2.404 0.432 99.966 99.783 0.005 

nmap 10 8739 1019 11.660 43.998 99.300 99.279 0.283 

nmap 20 8499 1014 11.931 43.782 99.320 99.297 0.285 

portsweep 5 22,380 2547 11.381 91.553 98.209 98.395 0.380 

portsweep 10 17,948 2583 14.392 92.847 98.564 98.755 0.4 4 4 

portsweep 20 18,056 2522 13.968 90.654 98.555 98.736 0.432 

satan 5 15,348 4763 31.033 88.318 98.772 99.103 0.645 

satan 10 8588 4909 57.161 91.025 99.312 99.667 0.813 

satan 20 8055 4888 60.683 90.636 99.355 99.706 0.824 

teardrop 5 1169 199 17.023 10 0.0 0 0 99.906 99.922 0.506 

teardrop 10 1400 199 14.214 10 0.0 0 0 99.888 99.904 0.453 

teardrop 20 1400 199 14.214 10 0.0 0 0 99.888 99.904 0.453 

warezmaster 5 300 16 5.333 80.0 0 0 99.976 99.977 0.210 

warezmaster 10 278 16 5.755 80.0 0 0 99.977 99.979 0.223 

warezmaster 20 194 16 8.247 80.0 0 0 99.984 99.985 0.291 
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re presented in Table 2 , were generally very similar to those

chieved on the single-node version of the prototype system, as

onfirmed by a comparison of the corresponding F 2 metrics. This

an be mostly attributed to the size of the input stream, which en-

bles the assumptions mentioned in Section 8.2 . Several tests with

 reduced input volume of 50,0 0 0 events, however, demonstrated a

isible reduction in the quality of results when compared with the

ingle-node version for the same input, with the average precision

ropping by almost 25%. 

1.3. Quality of results (CTU-13) 

To further validate the proposed algorithm, a more extensive

eries of experiments was conducted with the CTU-13 data set.

his series of tests was specifically intended to evaluate our ap-

roach in an environment involving concurrent streams from mul-

iple source and with disjoint label sets. Therefore, the NetFlow

les from all 13 scenarios of the data set were merged into a single

ata stream, with all entries ordered using their time-stamp. For

ach flow category with 100 or more entries, 20 entries were ran-

omly selected as the beacon event set. This resulted in 217 beacon

vent sets, each corresponding to a distinct category, which were

hen compared to the entirety of the merged data stream, consist-

ng of 19,976,700 events. While the events of the other 1283 cat-

gories still remained in the data stream, they were not used as

est targets in order to avoid artifacts related to their extremely

ow numbers. Table 4 provides statistics about the resulting qual-

ty metrics over all 217 cases, while some representative results of

his test series are presented in Table 3 . 

For the CTU-13 data set, the proposed algorithm was able to

rovide a significant reduction in the volume of the input, with a

ecall better than 80% in 90% of the cases. However, merging the

vents from all CTU-13 scenarios into a single stream has caused

 reduction in the measured precision in certain cases. While this

pproach creates a more realistic testing environment, careful in-
pection revealed that the labeling in the CTU-13 data set has not

een fully normalized across different scenarios, causing certain

vent types to bear multiple labels in the aggregate stream. For

xample, the From-Botnet-V50-2-UDP-DNS and From-Botnet-V50-4- 

DP-DNS network flow types, which are mentioned in Table 3 with

elatively low precision, are essentially subsets of the same cate-

ory, with no tangible difference between the events they encom-

ass, except for their source scenario. To validate this rationale, we

epeated the same testing methodology for the event stream gen-

rated by each CTU-13 scenario separately. The result was a signif-

cantly improved mean precision of about 68%, with a mean recall

nd reduction of 89% and 97% respectively. 

1.4. Stability assessment 

To assess the stability of the system we considered its behavior

ith respect to the presence of random noise in the beacon event

et. This part of the evaluation is particularly important, since in

eal-life cases it is not always possible to define a beacon event set

ith absolute precision. 

Table 5 presents experimental result metrics from the operation

f the single-node version of the system for different ratios of ran-

omly selected noisy events in a beacon event set of 20 events in

otal, for an input stream of 1,250,0 0 0 events from the KDD’99 data

et. In general, low to moderate Beacon Noise Ratio ( BNR ) values,

.g. in the 10 − 30% range, do not have a significant impact on re-

all, although the precision of the system tends to worsen. Higher

mounts of noise can have a more visible impact, with the recall

ropping to zero in some cases, while others remain unaffected.

onceptually, event types with limited cohesion, such as the nmap

ype, are far more susceptible to the negative effects of noise, since

he beacon events feature a certain amount of noise themselves.

or example, the imap event type, which was demonstrated to be

roblematic even for clean beacon event sets of a lesser size, be-

omes unretrievable even with very low amounts of noise in B . 

The same series of experiments were repeated on the afore-

entioned Storm cluster, with the results presented in Table 6 .

nce again the overall metrics are comparable to those retrieved

rom the single-node prototype system. However, there are cases,

uch as those of the back and neptune event types, where the qual-

ty degradation at high error rates is slightly more pronounced

hen operating in distributed mode. 

It should be noted that these observations are only valid in the

ase of random noise. The effects of cohesive erroneous events in

he beacon set are more severe, since this case is equivalent to

earching for a composition of two or more different event types.

n these circumstances the system will generally select events that

atch either the requested or the erroneous event set. While this

ehavior could be intentionally utilized to retrieve events from

ultiple types, in the general case it causes a measurable loss in

recision. 

1.5. Runtime performance 

The runtime performance of the prototype implementation was

valuated from several aspects, in order to assess the feasibility

f its deployment in production environments. On a mid-range

ersonal computer with four physical and eight virtual processor

ores, the throughput of the single-node system was macroscopi-

ally stable and typically well in excess of 20,0 0 0 events/second,

ith 30,0 0 0 events/second being attainable for smaller beacon

vent sets. The typical latency for a single beacon event set was

n the range of 300 −350 μs . The use of multiple worker threads

rovides a notable performance increase, as seen in Fig. 11 . The

ncrease is generally linear with the number of worker threads,

lthough contention with the I/O threads and other processes on
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Table 3 

CTU-13: Single-node operation, Representative results. 

Test Positives True False False Precision Recall Reduction Accuracy F 2 
positives positives negatives (%) (%) (%) (%) 

To-Background-Jist 337 337 0 0 10 0.0 0 0% 10 0.0 0 0% 99.998% 10 0.0 0 0% 1.0 0 0 

From-Botnet-V42-UDP-Attempt-DNS 3951 3057 894 0 77.373% 10 0.0 0 0% 99.980% 99.996% 0.945 

Background-google-analytics10 7254 4241 3013 22 58.464% 99.484% 99.964% 99.985% 0.872 

Background-google-analytics8 7313 4122 3191 43 56.365% 98.968% 99.963% 99.984% 0.860 

Background-google-analytics14 7069 3895 3174 109 55.100% 97.278% 99.965% 99.984% 0.844 

From-Botnet-V50-8-TCP-Attempt-SPAM 6433 3435 2998 430 53.397% 88.875% 99.968% 99.983% 0.784 

From-Botnet-V43-TCP-Established-HTTP-Ad-34 379 132 247 3 34.828% 97.778% 99.998% 99.999% 0.718 

From-Botnet-V54-TCP-Attempt-SPAM 26,154 6581 19,573 36 25.162% 99.456% 99.869% 99.902% 0.625 

From-Botnet-V50-6-TCP-WEB-Established 2300 437 1863 0 19.0 0 0% 10 0.0 0 0% 99.988% 99.991% 0.540 

From-Botnet-V50-1-TCP-Attempt-SPAM 28,004 4729 23,275 222 16.887% 95.516% 99.860% 99.882% 0.495 

To-Normal-V49-UDP-NTP-server 1178 178 10 0 0 4 15.110% 97.802% 99.994% 99.995% 0.467 

From-Botnet-V51-3-ICMP 72,021 10,0 0 0 62,021 363 13.885% 96.497% 99.639% 99.688% 0.441 

From-Normal-V42-Grill 48,171 6687 41,484 967 13.882% 87.366% 99.759% 99.787% 0.424 

From-Botnet-V42-TCP-CC16-HTTP-Not-Encrypted 1884 221 1663 0 11.730% 10 0.0 0 0% 99.991% 99.992% 0.399 

From-Botnet-V43-TCP-Established-HTTP-Ad-41 3002 297 2705 0 9.893% 10 0.0 0 0% 99.985% 99.986% 0.354 

From-Botnet-V50-2-TCP-CC16-HTTP-Not-Encrypted 854 81 773 55 9.485% 59.559% 99.996% 99.996% 0.290 

From-Botnet-V43-TCP-CC16-HTTP-Not-Encrypted 1884 114 1770 0 6.051% 10 0.0 0 0% 99.991% 99.991% 0.244 

From-Normal-V45-Grill 47,308 2474 44,834 0 5.230% 10 0.0 0 0% 99.763% 99.776% 0.216 

From-Normal-V42-CVUT-WebServer 5309 241 5068 28 4.539% 89.591% 99.973% 99.974% 0.189 

From-Normal-V54-Jist 29,728 948 28,780 0 3.189% 10 0.0 0 0% 99.851% 99.856% 0.141 

From-Botnet-V51-2-UDP-Established 11,405 277 11,128 0 2.429% 10 0.0 0 0% 99.943% 99.944% 0.111 

From-Botnet-V50-2-UDP-DNS 1,123,495 10,961 1,112,534 0 0.976% 10 0.0 0 0% 94.376% 94.431% 0.047 

From-Botnet-V50-4-UDP-DNS 1,577,430 10,707 1,566,723 0 0.679% 10 0.0 0 0% 92.104% 92.157% 0.033 

From-Botnet-V51-3-UDP-Attempt 58,245 181 58,064 15 0.311% 92.347% 99.708% 99.709% 0.015 

From-Botnet-V50-5-TCP-WEB-Established-SSL 104,743 148 104,595 6 0.141% 96.104% 99.476% 99.476% 0.007 
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Fig. 11. Single-node event processing throughput for a single beacon event set and a variable number of worker threads. 
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the host computer results in a slight throughput decrease when all

eight cores are involved in the event-processing itself. In addition,

processing multiple beacon event sets simultaneously allows for a

throughput increase to an aggregated total of 42,0 0 0 events/second

for all sets on the same mid-range computer. 

It is reasonable to expect that replacing code that has been

optimized for parallel processing on a single node with a com-

plex distributed computing framework like Storm would have an

adverse effect of performance. The main cause lies in the com-
unication costs associated with such a framework; objects that

ere originally moved around using in-process queues now have

o be serialized, transmitted over a network socket and then de-

erialized. To estimate the overhead imposed by the use of the

torm framework, a one-node cluster was formed using the afore-

entioned personal computer system and a series of experiments

as conducted. For a single beacon event set the throughput was

bout 4,400 events/second, which is about 4 times lower than the

ingle-node version of the system. However, the ability to process
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Table 4 

CTU-13: Single-node operation, Result metrics. 

Metric Mean 5th 10th 25th Median 75th 90th 95th 

(%) percentile (%) (%) percentile (%) 

Precision 25.69 0.38 0.83 4.77 13.88 43.07 70.79 93.97 

Recall 93.89 66.23 81.55 95.06 99.58 100 100 100 

Reduction 99.23 94.65 98.75 99.75 99.94 99.99 99.99 99.99 

Accuracy 99.34 94.78 98.83 99.77 99.97 99.99 99.99 99.99 

Table 5 

KDD’99: Single-node operation, Beacon set Noise Ratio (BNR) effect. 

Test BNR Positives True Precision Recall Reduction Accuracy F 2 
(%) positives (%) (%) (%) (%) 

back 10 2725 1980 72.661 98.901 99.782 99.939 0.922 

back 30 6414 1986 30.964 99.201 99.486 99.644 0.688 

back 50 3734 1503 40.252 75.075 99.701 99.782 0.640 

imap 10 14,408 0 0.0 0 0 0.0 0 0 98.847 98.846 - 

imap 30 204,874 0 0.0 0 0 0.0 0 0 83.610 83.609 - 

imap 50 269,378 1 0.0 0 0 8.333 78.449 78.449 2.0E-5 

ipsweep 10 7074 6653 94.049 87.782 99.434 99.892 0.889 

ipsweep 30 8270 6654 80.459 87.795 99.338 99.797 0.862 

ipsweep 50 50,236 6156 12.254 81.224 95.981 96.360 0.382 

neptune 10 399,027 393,813 98.693 99.747 68.077 99.503 0.995 

neptune 30 209,391 203,606 97.237 51.570 83.248 84.241 0.569 

neptune 50 397,564 394,135 99.137 99.829 68.194 99.672 0.996 

nmap 10 7751 1026 13.237 44.301 99.379 99.359 0.301 

nmap 30 7873 1024 13.006 44.214 99.370 99.349 0.298 

nmap 50 40,247 65 0.162 2.807 96.780 96.605 0.006 

portsweep 10 27,341 2502 9.151 89.935 97.812 97.990 0.325 

portsweep 30 12,738 2317 18.190 83.285 98.980 99.129 0.485 

portsweep 50 42,654 2350 5.509 84.472 96.587 96.741 0.218 

satan 10 44,592 3685 8.264 68.329 96.432 96.591 0.278 

satan 30 149,228 4632 3.104 85.889 88.061 88.371 0.135 

satan 50 269,537 0 0.0 0 0 0.0 0 0 78.437 78.006 - 

teardrop 10 38,133 199 0.522 10 0.0 0 0 96.949 96.965 0.025 

teardrop 30 42,793 198 0.463 99.497 96.576 96.592 0.022 

teardrop 50 229,793 198 0.086 99.497 81.616 81.632 0.004 

warezmaster 10 415 16 3.855 80.0 0 0 99.966 99.968 0.161 

warezmaster 30 2811 19 0.676 95.0 0 0 99.775 99.777 0.032 

warezmaster 50 2158 16 0.741 80.0 0 0 99.827 99.828 0.035 
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Table 6 

KDD’99: Distributed operation, Beacon set Noise Ratio (BNR) effect. 

Test BNR Positives True Precision Recall Reduction Accuracy F 2 
(%) positives (%) (%) (%) (%) 

back 10 2517 1980 78.665 98.901 99.798 99.955 0.940 

back 30 5671 1823 32.146 91.059 99.546 99.678 0.666 

back 50 8289 1503 18.132 75.075 99.336 99.417 0.461 

imap 10 12,826 0 0.0 0 0 0.0 0 0 98.973 98.973 - 

imap 30 194,684 0 0.0 0 0 0.0 0 0 84.425 84.424 - 

imap 50 246,654 1 0.0 0 0 8.333 80.267 80.267 2.0E-5 

ipsweep 10 7284 6653 91.337 87.782 99.417 99.875 0.884 

ipsweep 30 8228 6654 80.870 87.795 99.341 99.800 0.863 

ipsweep 50 49,752 6156 12.373 81.224 96.019 96.398 0.384 

neptune 10 339,076 333,732 98.424 84.529 72.873 94.686 0.869 

neptune 30 210,418 204,488 97.182 51.794 83.166 84.300 0.571 

neptune 50 335,280 333,661 99.517 84.511 73.177 94.978 0.871 

nmap 10 7751 1026 13.237 44.301 99.379 99.359 0.301 

nmap 30 7890 1019 12.915 43.998 99.368 99.347 0.297 

nmap 50 39,432 65 0.165 2.807 96.845 96.671 0.006 

portsweep 10 26,127 1304 4.991 46.873 97.909 97.896 0.175 

portsweep 30 13,068 2491 19.062 89.540 98.954 99.131 0.514 

portsweep 50 50,069 2503 4.999 89.971 95.994 96.172 0.204 

satan 10 44,316 3833 8.649 71.074 96.454 96.637 0.290 

satan 30 156,521 4633 2.960 85.908 87.478 87.788 0.130 

satan 50 306,403 1 0.0 0 0 0.019 75.487 75.056 1.5E-5 

teardrop 10 38,209 199 0.521 10 0.0 0 0 96.943 96.959 0.025 

teardrop 30 37,744 198 0.525 99.497 96.980 96.996 0.025 

teardrop 50 232,214 198 0.085 99.497 81.422 81.439 0.004 

warezmaster 10 440 16 3.636 80.0 0 0 99.964 99.966 0.153 

warezmaster 30 1977 19 0.961 95.0 0 0 99.841 99.843 0.046 

warezmaster 50 1483 16 1.079 80.0 0 0 99.881 99.882 0.051 
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ultiple beacon event sets simultaneously allows for the overhead

o be amortized to a degree, allowing the testing system to reach

 maximum of about 23,0 0 0 events, versus approximately 42,0 0 0

vents/second for the single-node version. The introduction of ad-

itional inter-process communication queues, as well as the com-

utational cost of serializing and deserializing objects, also has a

ignificant impact on the achieved processing latency, which was

n the range of 19 − 21 ms . 

To evaluate the scalability of the proposed approach in a dis-

ributed environment, we performed a series of experiments on

he Storm cluster described in Section 11.2 . Fig. 12 illustrates the

esulting performance for a variable number of nodes in the clus-

er. Due to the significantly lower computational power of the clus-

er nodes when compared to the previously described personal

omputer, a disparity in performance is expected. However, from a

calability point of view, it is very important to note the fact that

he increase in event processing throughput is linear with respect

o the number of nodes. The throughput of the system rose from

50 events/second for one node to 2,800 events/second for all five

odes participating, with 16,800 events/second being attainable on

his cluster when processing multiple beacon event sets simulta-

eously. Therefore, the capability of the system may be increased

ell beyond what a single node could handle, simply with the ad-

ition of more computers to the cluster. On the other hand, due

o the involvement of multiple networked computers and the in-
reased message-passing delays encountered within a cluster, the

rocessing latency was typically in the 30 − 35 ms range. 

Finally, the overall memory requirements of the proposed ap-

roach are quite reasonable, with the single-node system being

ble to process the KDD’99 data set for a single beacon event

et with less than 96 MiB of heap memory available to the Java

M, while the distributed system was able to operate on 128 MiB.

n both cases, however, the restricted resources led to a mea-

urable performance impact due to the increased frequency of

arbage collection by the Java VM, with the throughput of the dis-

ributed system dropping from 5,800 events/second to about 3,900

vents/second. 

2. Discussion 

The proposed approach aims to be an efficient, schema-

ndependent event analysis and filtering tool. As such, several

ssumptions were made which can potentially create situations

here the system will misbehave. 

The first assumption is that each attribute is considered to be a

ompletely independent time series. Consequently, any redundant

nformation among attributes will skew the similarity results. This

s a common problem also encountered in machine learning sys-

ems, where any redundancy in the training data set may nega-

ively affect the output. A typical solution involves the use of fea-

ure selection - otherwise mentioned as feature reduction - tech-

iques to reduce the level of redundancy in the input by elimi-

ating superfluous attributes. The selective removal of attributes

mproves the quality of the results, as well as the runtime perfor-

ance of the system. It is orthogonal to the operation of the pro-

osed system and can be implemented as a pre-processing filter

n the input with no modifications to the existing system. Several

ethods for feature selection have been proposed including, but

ot limited to, algorithms based on information theory ( Sebban

nd Nock (2002) , Last et al. (2001) , Fleuret (2004) ), correlation
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Fig. 12. Distributed event processing throughput for a single beacon event set and a variable number of nodes. 
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metrics ( Yu and Liu, 2003 ) and machine learning ( Zaman and Kar-

ray, 2009 ). 

Another point of note is that each attribute is examined in iso-

lation. Currently, the system does not examine the potential useful-

ness of combinations of attribute values as a similarity determinant.

For example, it may be that a specific combination of feature val-

ues is important, as opposed to individual values, when computing

a similarity value between two events. To consider such combina-

tions two issues need to be resolved: (a) a vector similarity met-

ric needs to be defined, although an equality check may be suffi-

cient in most cases; (b) even for input streams with a moderate

attribute set, the number of potential attribute combinations can

be staggering, especially as the combination size increases, with a

corresponding impact on performance. A potential solution could

involve statistical analysis of the beacon event set and the use of

feature selection methods to significantly reduce the number of

combinations at an early stage of operation, thus making attribute

combinations more tractable. 

In the same vein, the system examines each event indepen-

dently; no temporal relationships are determined between events

or attribute values. In general the explicit detection of systematic

or schema transitions is considered to be beyond the scope of this

system. This simplifies the implementation and increases the po-

tential for parallelism, but does not allow for temporally sensitive

sequences of events to be effectively used as a beacon event set. In

fact, if the beacon events themselves are dissimilar, the expected

result is a decrease in the output precision and recall due to the

introduction of additional noise. The fact that the proposed ap-

proach is essentially stateless, however, can be a significant advan-

tage in certain environments where the monitored infrastructure

is partially stateless as well, as is the case with REST-based service

providers. 

Another important point is that the information content deter-

mination algorithm does not take value proximity into account. In

some cases it makes sense to conceptually merge certain attribute

values which happen to be equivalent or in close proximity. For
his to be possible, however, three prerequisites must be satisfied:

a) a proximity metric for the type of the attribute in question

ust be defined; (b) a suitable decision threshold should be deter-

ined and; (c) the concept of proximity must make sense within

he current event domain for this specific attribute and specific

erging rules may need to be defined. The prototype implementa-

ion system assumes that any such application-specific normaliza-

ion happens in a separate pre-processing step and handles each

iscrete value independently. 

In general, the proposed approach is best suited for high vol-

me and frequency event streams that feature independent at-

ributes with significant value variability, as a reasonable amount

f total entropy must exist for specific features to be distinguish-

ble. In addition, in order to retrieve the events of the requested

vent type with a reasonable degree of precision a cohesive beacon

vent set B is required, while the actual number of targeted events

hould exceed a minimum count that is generally in the same or-

er of magnitude as B itself, so that the system will be better able

o identify them as a group. While these are not hard requirements,

he output quality of the system may degrade when they are not

et. 

With regard to the distributed-mode operation of the proposed

pproach, it should be noted that there is a significant amount of

otential optimizations that could improve its performance and,

ossibly, the quality of its results. For example, improvements in

he node allocation and scheduling engine could reduce the re-

uired bandwidth for intra-cluster communication. In addition, in-

erred metrics about the number of attributes and the distribution

f their values could be used to improve the overall load balancing,

hile also reducing the degree of segmentation of each attribute

ime series to different processing nodes. 

A final concern relates to the difficulty of monitoring an infras-

ructure that is slowly evolving. More specifically, gradual changes

n the input stream are incorporated in the sketch that the sys-

em maintains for the value distribution of each attribute, without

ny distinction between slowly-evolving failures and benign oper-
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tional trend changes. In general, the identification of such large-

cale deviations requires domain-specific system-wide evaluation

etrics, as well as expert knowledge for defining the desirable

ehavior and the determination of appropriate thresholds for the

forementioned metrics. 

3. Conclusion 

In order to perform on-line analysis of the massive amounts

f events generated by modern information systems, it is neces-

ary to devise techniques for the selective reduction of the volume

f logged data that needs to be finally processed. Moreover, such

ystems tend to operate in environments where new components

nd resources are provisioned on-demand, aiming to meet a multi-

ude of requirements, as business processes and operational needs

hange. As an effect, log data streams have to be added or removed

ynamically, as new components and monitors are provisioned. 

In this paper, we have described an event stream reduction

ethod that allows for a small number of interesting beacon

vents that correspond to a specific system behavior to act as a

attern for the selection of other similar events, leading thus to a

educed data set. The proposed approach uses an information the-

retic metric, that is based on the information content carried by

ttributes and attribute values in the event stream and the bea-

on event set B , in order to compute a similarity measure between

ncoming events and the beacon set as a whole. The approach is

chema- and domain- independent and it is able to cope with infi-

ite data streams, without utilizing windowing, by employing ob-

ect replacement algorithms to discard outdated information from

ts internal state. For dealing with the load of increasing event

tream rates, the approach can be also applied in distributed mode,

here the processing of events can be parallelized on computer

lusters . 

The end result of the filtering process, is a highly reduced col-

ection of incoming events that are highly related to a specific sys-

em behavior. Results obtained using the KDD’99 and CTU-13 la-

eled data sets indicate that the approach can generally reduce

he input stream to a subset of relevant events, while maintain-

ng high recall and precision levels. Moreover, extensive testing in

istributed mode, indicated a linear performance increase with the

mount of available nodes, while maintaining moderate to low la-

ency levels. This suggests that the system is capable of handling

ignificantly higher input event rates, as long as more nodes are

dded to match the growth of the volume of the emitted events. 

Possible future work includes the extension of the approach to

andle combinations of attributes for computing the similarity be-

ween events, and the incorporation of a pre-processing phase to

xclude highly correlated attributes from the event streams so that

erformance and quality can be further increased. Moreover, the

bility of the prototype system to compute the similarity of an in-

ut event with multiple beacon event sets simultaneously allows

or the development of a more expressive event query language

nvolving aggregated results. Another area of interest is to consider

ptimizations in the distributed version of the prototype system

hat could potentially yield significant performance gains, as well

s better result quality guarantees. Such optimizations can include

he design of a node allocation and scheduling engine in order

o enhance intra-cluster communication, location-aware scheduling

or globally distributed operation, and the design of attribute and

ttribute value related metrics in order to reduce the segmentation

f each attribute time series to different processing nodes. Finally,

he incorporation of generic domain transform functions would al-

ow the proposed method to be applicable to input streams that

o not map directly to the time-series model. An example can be

 beacon set consisting of exception stack traces logged on error

onditions, which could then be used to reduce a stream of thread
tack dumps sampled periodically over all instances of a service,

hus helping to identify error-prone code paths. 

This research did not receive any specific grant from funding

gencies in the public, commercial, or not-for-profit sectors. 
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