
Empir Software Eng (2017) 22:1717–1762
DOI 10.1007/s10664-016-9459-z

Case study on which relations to use for clustering-based
software architecture recovery

Ioanna Stavropoulou1 ·Marios Grigoriou1 ·
Kostas Kontogiannis2

Published online: 27 January 2017
© Springer Science+Business Media New York 2017

Abstract Clustering-based software architecture recovery is an area that has received sig-
nificant attention in the software engineering community over the years. Its key concept is
the compilation and clustering of a system-wide graph that consists of source code entities as
nodes, and source code relations as edges. However, the related research has mostly focused
on investigating different clustering methods and techniques, and consequently there is lim-
ited work on addressing the question of what is a minimal set of relations that can be easily
extracted from the system’s source code, and yet can be accurately used for extracting its
architecture. In this paper, we report on results obtained from an architecture recovery case
study we have conducted, by considering all possible combinations which can be gener-
ated from thirteen commonly used source code relations. We have examined the similarity
of the extracted architectures obtained by using each different relation combination for dif-
ferent systems, against the corresponding architecture which is obtained by applying all
thirteen relations and whch we consider as the ground truth architecture. For this purpose,
we have also examined whether the use of all these thirteen relations is indeed adequate to
yield a ground truth architecture, by applying this architecture extraction process on five
large sofware systems for which their ground truth architecture has been independently
established. The overall results of our study indicate that there is small set of relations for

Communicated by: Paolo Tonella

� Kostas Kontogiannis
kostas@csd.uwo.ca

Ioanna Stavropoulou
ioanna@cs.toronto.edu

Marios Grigoriou
msgrig@softlab.ntua.gr

1 Department of Electrical and Computer Engineering, National Technical University of Athens,
Athens 15780, Greece

2 Department of Computer Science, Western University, London ON N6A 5B7, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9459-z&domain=pdf
mailto:kostas@csd.uwo.ca
mailto:ioanna@cs.toronto.edu
mailto:msgrig@softlab.ntua.gr

1718 Empir Software Eng (2017) 22:1717–1762

procedural systems, and another similar set for object oriented systems, that can be eas-
ily extracted from the source code and yet used to yield an architecture that is close to the
ground truth architecture.

Keywords Reverse engineering · Architecture recovery · Clustering · Source code
relations · Case study

1 Introduction

Software architecture relates to descriptions that depict high level system design deci-
sions. In a nutshell, software architecture is concerned with the gross organization and
global control structure of a system, and aims to bridge the gap between the requirements
specifications and the implementation of the system1 (Bass et al. 2013).

However, as a software system is maintained, its source code evolves, and so does its
architecture. In this context, a major challenge software engineers have to deal with, is
the problem of ensuring that a software system’s architecture is kept up to date with its
implementation, as the system evolves. In software engineering, the process of extracting
the as-is current concrete architecture of an evolving system, by analyzing its source code, is
known as software architecture recovery. The motivation for software architecture recovery
includes the understanding of the system’s structure, the ability to compare the evolved
system’s architecture, against the initially specified one, the discovery of possible violations
of invariants and architectural constraints due to prolonged maintenance, and the design of
migration plans so that the system can be ported, or integrated to new platforms, or operating
environments.

Software architecture recovery has been a focal point in the software reverse engineer-
ing community, and there is a significant volume of related research literature in the subject
(Maqbool and Babri 2007; Corazza et al. 2011; Garcia et al. 2011). The approaches pro-
posed in the research literature for software architecture recovery are generally classified
as clustering-based (Lung 1998a), domain-based (DeBaud et al. 1994), and structure-based
(Koschke et al. 2006).

Even though there is significant volume of work published in clustering-based architec-
ture recovery, there is still limited work on identifying relation combinations that are both
easy to extract (i.e. do require a full parser and a linker), and at the same time are the
most important ones to use for obtaining in a tractable way an accurate snapshot of the sys-
tem’s architecture. The accuracy of the automatically extracted architecture is defined by its
similarity to the actual architecture of the system being analyzed.

1.1 Architecture Recovery Scoping

In the related literature we can identify several definitions for software architecture, most
of which consider software architecture as a collection of components and connectors
(Bass et al. 2012). However, as suggested by (Kruchten 1995) software architecture can be
approached from different viewpoints. More specifically, Kruchten proposed the 4+1 is a

1A list of software architecture definitions can be found on http://www.sei.cmu.edu/architecture/start/
glossary/classicdefs.cfm.

http://www.sei.cmu.edu/archi tecture/start/glossary/classicdefs.cfm
http://www.sei.cmu.edu/archi tecture/start/glossary/classicdefs.cfm

Empir Software Eng (2017) 22:1717–1762 1719

architectrure model which allows for the system to be represented by different concurrent
views that depict and denote the concerns of different stakeholders. The four main views
are defined as the logical, development, process and physical view. These views are bound
by a fifth view that corresponds to a set of use cases that can be used to illustrate, explain,
and validate the overall system architecture.

As it is expected, the recovery of the different software architecture views requires the
use of different extraction techniques. For example, the extraction of the logical view of
the system’s architecture depends on the analysis of requirements models, use cases, and
activity models. Similarly, the extraction of the physical and deployment views require the
analysis of dynamic information such as logs, network traffic, as well as configuration and
installation scripts.

In this paper, we are concerned with the extraction and recovery of the development view
of a software system. The development view is a model that represents system components
as collections of source code artifacts (e.g. files, functions, types), and system connectors
as relations between these system components (e.g. calls, uses, sets). In this context, clus-
tering has been proposed as a suitable method for the recovery of a system’s development
architectural view.

In a nutshell, the idea of software architecture recovery through clustering is based on a)
the analysis of the system’s source code; b) the extraction of relations between the system’s
entities; c) the compilation of a system graph where nodes are source code entities and edges
are relations between these entities, and; d) the partitioning through clustering of the system
graph into disjoint sets of source code entities, that are considered to be the components of
the extracted architecture. For this subject, the reverse engineering community has focused
on devising clustering criteria and distances to facilitate cluster formation, experimented
with different clustering algorithms, considered the incorporaton of domain knowledge,
reflection, and pattern matching as well as, the use of dynamic system information obtained
from system logs.

1.2 Motivation and Rationale of the Study

As discussed above, software architecture recovery is an important step in order to per-
form a number of reverse engineering and re-engineering tasks. These tasks include the
analysis of the architectural drift of a system due to prolonged maintenance, the identifica-
tion of possible architecture violations such as unspecified or undesired interfaces or data
exchanges between components, the identification of possible refactoring transformations,
and the exposure of legacy components as services over the Internet. Even though software
architecture recovery is not a task whis is performed at real time, and usually software engi-
neers have ample time in their disposal to recover the architecture of a legacy system, there
are two major stumbling blocks that hinder this effort.

The first stumbling block is the system’s size and complexity. Clustering-based software
architecture recovery relies on the compilation of an intermediate model of various tuples
that represent relations between source code artifacts. This intermediate model is populated
and constructed by analyzing the system’s abstract syntax tree, or some other representation
of the source code. Obtaining, storing and, analyzing an abstract syntax tree or another low
level representation of the source code, is not always an easy task. Parsers and linkers are
not always readily available, robust, or tractable when applied on large software systems.
Among other works in the literature, Akers et al. (2005); Boughanmi (2010); Fleck et al.
(2016) discuss the challenges of parsing and analysing large software systems, especially

1720 Empir Software Eng (2017) 22:1717–1762

when these systems are written in different languages, obsolete languages, or involve com-
plex scripting. Storing and analyzing in-memory such large models, may require specialized
hardware configurations and computation resources. Experience has shown that for very
large systems obtaining a fully linked abstract syntax tree, or loading it in-memory for
analysis is not always possible. Software engineering practice has shown that the size of
the Abstract Syntaxt Tree compared to the source code size can range from one order of
magnitude for small systems, to three orders of magnitude for larger systems (Zou and
Kontogiannis 2001; Overbey and Johnson 2008).

The second stumbling block is the system’s age and programming languages used. The
availability of parsers and linkers for obsolete languages is very limited. In many cases,
parsers and linkers have to be tweaked or adjusted, a process that requires significant exper-
tise, it is time consuming, and incolves many trial-and-error steps. For some languages there
are not even published EBNF specifications of the programming language grammar itself
(e.g. MicroFocus, Adabas, Natural, or variants of PL). Constructing a parser and a linker for
a re-engineering project is not an easy or economical task and involves significant risks for
the viability of the whole project. Reverse engineering or re-engineering projects are best to
be initiated when the availability of the appropriate tools and personnel have been secured
(Ducasse and Tichelaar 2003; Tilley et al. 1999).

In this context, the question that arises is whether we can perform accurate enough archi-
tecture recovery of large software systems while minimizing the data sources needed, saving
resources and speeding up the process by using less input data that are more easily obtain-
able from the system’s source code. The answer to this question can provide a valuable tool
to software engineers and practitioners, in order to proceed with architecture recovery by
depending only on a small set of easily extracted relations that require simple scanners and
matchers as opposed to parsers and linkers which are difficult to build, modify, or acquire.
Furthermore, the whole process of extracting and analyzing intermediate relation models
can become tractable for very large software systems, as the size of in-memory models that
have to be analyzed becomes smaller due to smaller number of relations that have to be
considered.

1.3 Paper Organization

The paper is organized as follows. Section 2 defines the problem forrmally and outlines
the method used. Section 3 provides an overview of different techniques for architecture
recovery through clustering. Section 4, discusses the overall evaluation process and the tools
used. Section 5 presents the relations that have been considered. Section 6 presents the
ACME-based architecture variant metamodel we have used to denote the extracted system
architecture, and presents in detail the architecture distance score that has been utilized to
assess the dissimilarity of the extracted architecture, from the reference architecture consid-
ered as the ground truth architecture. Section 7 discusses the evaluation of the ground truth
architectures. Section 8 presents and comments on the results obtained, while Section 9
concludes the paper and provides pointers for future research.

2 Definition of the Study

In this Section, we define the objectives, research questions, method and, evaluation process
of our study.

Empir Software Eng (2017) 22:1717–1762 1721

Objective The main objective of the study is to identify a minimal collection of source
code relations that can be easily extracted from the source code of the system and at the
same tine can be used to recover, within an acceptable level of accuracy, the architecture of
a software system. The acceptable level of accuracy is defined and computed by a distance
score between the extracted architecture and the ground truth architecture of a system.

Input The case study platform considers three different types of input. The first input is
a simplified architecture metamodel denoted in Eclipse Modeling Framework (EMF). The
simplified architecture metamodel (M1 level) is based on ACME, an Architecture Descrip-
tion Language developed at CMU. Using the result obtained by the clustering algorithm,
this M1 level metamodel is instantiated to yield a M0 level model, that essentially denotes
the extracted architecture of the system being analyzed. This architecture metamodel has
been drafted for our case study, as the use of other more elaborate and complete metamod-
els such as the Dagstuhl Middle Metamodel (Lethbridge et al. 2004) would add unecessary
modeling complexity given our specific case study goals and objectives.

The second input is a set of different relation combinations which will be used to perform
clustering in order to extract the architecture of the system being analyzed.

The third input is a differencer that computes a distance score between the extracted
architecture represented by a M0 level model for a given relation combination, and the
ground truth architecture which is also represented as an M0 level model.

Output The output of the system is a distance score between the extracted M0 level archi-
tecture model that has been extracted using a specific combination of relations, and the M0
level architecture model that is considered as the ground truth architecture of the system.
The distance score for each relation combination and for all systems are analyzed to answer
our specific research questions.

Research Questions In this study we aim to answer four main research questions by
examining a number of procedural and object oriented systems. A fifth question to be
answered is whether we observe any difference between the relations required to extract the
architecture of a procedural system and the relations required to extract the architecture of
an object oriented system.

The first research question is whether there are any relations that are the most important
and should be always used when available for architecture recovery. The answer to this
research question will identify collections of relations that are the most effective on recover-
ing a system’s architecture. The second research question is whether there are any relations
that do not offer any apparent value for architecture recovery. The answer to this question
will help on the identification of relations that do not offer any value (positive or negative),
and therefore can be safely omitted. In this respect, the software maintenance team does not
need to spend time and effort extracting these relations from the system’s source code. The
third research question is whether there there any relations that should not be used, or not
be used on their own. The answer to this question will help on the identification of relations
that when are used, or when are used on their own, will have as an effect the introduction of
noise in the extracted architecture. Finally, the fourth research question is to evaluate how
many relations do we need for accurate architecture recovery. The answer to this question
will identify a minimum collection or collections of relations that are best to use for archi-
tecture recovery. In this respect, we are also interested to identify those relations that are
easy to extract from the system’s source code. The ease of extraction is determined by the

1722 Empir Software Eng (2017) 22:1717–1762

method that is required to extract a given relation. If a relation can be extracted by a scan-
ner or a simple pattern matcher (e.g. grep), then it is considered an easy to extract relation.
If on the other hand, a relation can be extracted only by using an AST and requiring the use
of full parser and a linker, then the relation is considered hard to extract.

Method The method used in this study comprises two main steps.
The first step relates to the extraction of different variants of the architecture of a sub-

ject system, one variant for each possible relation combination. For this study we have
considered thirteen commonly used source code relations, which produced 8192 differ-
ent combinations. First, all combinations containing one relation are considered, then
those combinations containing two relations, then those involving three relations, and so
on. To commence clustering and extract an architecture for a given relation combina-
tion, we have kept in the RSF file only the relations which participate in this particular
combination.

The second step relates to the computation of a distance score between the extracted
architecture and the architecture we consider as ground truth. The extracted architecture
and the ground truth architecture are represented as M0 level models that are compliant
with our ACME-based M1 level metamodel. A more detailed description of the architecture
extraction and differencing process is presented in Section 4 and in Section 6. The results
obtained by all possible relation combinations are analyzed for their statistical significance
as to whether the distance scores and the relation combinations are independent, using Pear-
sons Chi-Square test. In this respect, the Null hypothesis H0 is that distance measures are
independent of the relation combinations used. Consequently, the Alternative hypothesis
H1 is that distance measures are dependent on the relation combinations used. This test wil
allow us to conclude whether there is a strong relation between the obtained distance scores
and the relations used, or these scores are obtained by pure chance.

Ground Truth Architecture Validation A key aspect of our study is the computation of
a difference score between an extracted architecture using a given relation combination, and
the architecture we consider as the ground truth architecture. The premise we take in this
paper is that the application of the thirteen commonly used relations is adequate for extract-
ing the ground truth architecture. One way of showing this is to manually examine, for each
of the fifteen systems, the architectures that have been obtained by using all thirteen rela-
tions, and verify that these match the corresponding ground truth architectures. The analysis
can be based on comparing directory structure, naming conventions, published manuals
when available, and software engineering design expertise. Even though this approach pro-
vides good evidence for deciding whether or not to consider an architecture as a ground
truth architecture, at the same time may still be prone to our subjective interpretations and
errors, as not all information can be independently available for establishing the ground
truth. Instead, we opted for an approach that aims to extract the architecture of large third
party systems using our thirteen relations, and consequently compare whether the extracted
architecture using all thirteen relations matches at an acceptable level the published and
authoritative ground truth architecture of these systems. In this respect, we have considered
five systems, the ground truth architectures of which have been reported by Lutellier et.al.
(2015). A detailed discussion on the evaluation of ground truth architectures is presented in
Section 7.

Empir Software Eng (2017) 22:1717–1762 1723

3 Related Work

3.1 Architecture Recovery Using Clustering

Software architecture recovery has been a major focus of the reverse engineering research
community for more than two decades (Mancoridis and Holt 1996; Anquetil and Lethbridge
1998). In this respect, several automated tools have been proposed, based on areas such as
artificial intelligence, programming languages and, graph theory.

Among the most investigated techniques for the recovery of a system’s development
architectural view are the ones that are based on source code static analysis and clustering.

The software engineering research literature on architecture recovery using clustering is
too rich to exhaustively refer to here, but notable approaches include the work presented
by Bauer and Trifu (2004), Canfora et al. (2000), Chiricota et al. (2003), van Deursen and
Kuipers (1999), Maqbool and Babri (2004), Sartipi and Kontogiannis (2003), Lung (1998b),
Mahdavi et al. (2003), Muller et al. (1992). These techniques group entities into clusters,
where each cluster represents a component of the software system’s architecture. One of
the first approaches proposed was by Mancoridis and Holt (1996), which utilized graphs
created during the design specification phase of a software system.

The Algorithm for Comprehension-Driven Clustering (ACDC) by Tzerpos and Holt
(2000a) was proposed as a technique that provides a decomposition of the software system
according to patterns that are commonly found on manually created decompositions of soft-
ware systems. Similarly, a dependency-based software clustering algorithm is proposed by
Kobayashi et al. (2012), and an algorithm that achieves a decomposition of a software sys-
tem using artificial intelligence algorithms such as hill climbing, or genetic algorithms, is
proposed by Mancoridis et al. (1999).

Another approach in cluster-based architectural extraction is presented by Maqbool and
Babri (2007), and by Andritsos and Tzerpos (2005). These techniques allow for the software
engineer to obtain an architecture view at different levels of abstraction. More specifically,
the scaLable InforMation BOttleneck (LIMBO) approach by Andritsos in Andritsos and
Tzerpos (2005) is based on the minimization of information loss during the clustering pro-
cess. Furthermore, (Corazza et al. 2011) propose the use of lexical information for software
architecture recovery. A detailed evaluation of the different clustering techniques for archi-
tecture recovery is presented by Tzerpos and Holt (2000b), while the impact call graphs
have on the clustering-based architecture recovery is presented by Rayside et al. (2000).

3.2 Architecture Recovery Using Other Methods

In addition to software architecture recovery using clustering, a number of other methods
have also been proposed in the related software engineering literature. These can be gener-
ally classified as methods that are based on dynamic analysis, analysis of evolution changes,
reflection models, pattern matching analysis of templates, analysis of product families, and
methods based on visualization and interactive user involvement.

More specifically, in the area of dynamic analysis (Vasconcelos and Werner 2004) pro-
pose a system that collects system traces for specific use cases. These system traces allow
for the identification of interaction patterns and ultimately the extraction of system com-
ponents. In a simlar approach, (Bojic and Velasevic 2000) utilize traces of test cases that
cover relevant use cases. The analysis of these traces using formal concept analysis allows

1724 Empir Software Eng (2017) 22:1717–1762

for the selection of parts of the system that implement similar functionality. Patel et.al.
(2009) propose a two-phase software architecture recovery technique that combines static
and dynamic analysis. In the first phase, an initial architecture is extracted using static infor-
mation obtained from the source code. In the second phase, the extracted architecture is
refined using system traces obtained from the execution of specific use cases. (Jerding and
Rugaber 2000) proposes a tool that utilizes both static and dynamic analysis to extract and
visualize the system’s architecture, while (Garcia et al. 2011) presents a technique that uses
a representation of the system’s concerns, information retrieval and machine learning to
recover the software architecture.

Another method used for architecture recovery is based on the analysis of evolution
changes and the computation of change coupling among system components. In the work
presented by Fischer et al. (2003), system features are tracked as the system evolves, and
are visualized in order to identify hidden dependencies between system components.

Reflection models have been proposed by Murphy and constitute an important method
for architecture analysis. In particular, (Murphy et al. 1995) presents a framework that
allows for the computation of a reflection model that illustrates where an engineer’s high-
level achitectural model matches or corresponds with the system’s implementation. As an
extension of reflection models, pattern matching techniques have also used for software
architecture recovery. Sartipi and Kontogiannis (2001) presents a pattern language that gen-
erates a pattern graph. A matching process then aims to optimaly instantiate the pattern
graph with information obtained by the source code of the system being analyzed. Another
approach in a similar direction is presented by Bowman and Holt (1998) who proposes that
the ownership structure of a software system can provide valuable information about its
architecture. Mendonça and Kramer (2001) discusses X-ray, a tool that combines pattern
matching, structural reachability analysis and component module classification, in order to
recover the architecture of distributed systems.

For systems that are part of product families and product lines, the analysis of common
patterns and styles in the product family constitutes an effective method for architecture
recovery. Pinzger et al. (2004) present a framework which allows the recovery of a reference
architecture from related prior systems in a product family.

Lungu et al. (2014) present an architecture recovery technique that is based on interac-
tive user involvement and the visualization of software artifacts. Tzerpos and Holt (1996)
propose a hybrid approach that uses the information acquired by system developers in order
to validate and fine tune the information that is automatically extracted from the source
code. Additionally, Garcia et al. (2013) proposes the involvement of one or more of the
system’s architects or engineers in order to enhance the results obtained by the automated
tools.

3.3 Architectural Models

In order for Software Architecture to be modeled, a number of Architecture Description
Languages (ADLs) have been proposed. Most ADLs employ both a graphical and a textual
syntax. Some of the most well known ADLs are:

Architecture Analysis and Design Language (AADL) is designed for the specifica-
tion, analysis, automated integration and code generation of real-time performance-critical
distributed computer systems (Feiler 2014).

Empir Software Eng (2017) 22:1717–1762 1725

ACME is a simple, generic software ADL developed at CMU. It can be used as a common
interchange format for architecture design tools, and as a foundation for developing new
architectural design and analysis tools (Garlan et al. 1997).

Alloy is a language developed at MIT for describing structures as a collection of constraints
(Jackson 2012).

C2 is a language developed at UCI to describe C2 styled architectures. C2 is a compo-
nent and message-based architectural style for constructing flexible and extensible software
systems (Medvidovic 1995).

Wright is an ADL developed at CMU, and formalizes a software architecture in terms of
concepts such as components, connectors, roles, and ports (Allen 1997).

3.4 Evaluation of Architectural Recovery Techniques

The architecture recovery techniques we have presented above have been evaluated for their
accuracy on several studies by Wu et al. (2005b); (2005a); Garcia et al. (2013), and by
Andritsos and Tzerpos (2005). Similarly, a very interesting process-oriented taxonomy of
software architecture reconstruction techniques is presented by Ducasse in (Ducasse and
Pollet 2009).

The two most recent studies that evaluate clustering based techniques examine the
problem from two different angles. Garcia et al. (2013) evaluate six different architec-
ture extraction techniques on various software systems. More specifically, six techniques,
ACDC, ARC, Bunch, LIMBO, WCA and ZBR were evaluated on open source systems such
as Arch-Studio, Bash, Hadoop, Linux, Mozilla and OODT, with ACDC and ARC showing
the most promising results. On the other hand, (Lutellier et al. 2015) evaluate the impact
different dependencies, namely include dependencies and structural dependencies, have
on the architectural recovery techniques mentioned above. The outcome is that structural
dependencies provide better outcomes than ”include” dependencies, and still ACDC and
ARC produced the best results, compared to the other techniques. Other studies, such as the
one presented by Tzerpos and Holt (2000b), evaluate different aspects of software archi-
tecture recovery techniques such as stability, while (Wu et al. 2005b) evaluates architecture
recovery techniques based on authoritativeness and extremity of cluster distribution.

Although extensive work has been conducted on devising and evaluating architecture
extraction techniques, there is limited work concerned with which relations are the most
appropriate to use (Lutellier et al. 2015). More specifically, (Lutellier et al. 2015) focus
on the comparison on ”include” dependencies to symbol dependencies, without taking into
account how different relations, or relation combinations, may affect architecture recovery,
which is the focal point of our paper.

4 Outline of the Analysis Process

In this section, we outline the evaluation framework process. As depicted in Fig. 1, the
process consists of four phases.

The first phase is the extraction phase. During the extraction phase, the source code of the
system is parsed using the Fetch tool (Fact Extraction Tool Chain). The Fetch tool chain has

1726 Empir Software Eng (2017) 22:1717–1762

Fig. 1 The chain of process steps comprising the implemented framework

been developed by the Re-engineering group at the University of Antwerp (Bois et al. 2007),
and we used it in order to produce CDIF, an intermediate model of the source code being
parsed (Imber 1991). A CDIF-to-RSF transformer is then used to link and resolve CDIF
entries, and produce Rigi Standard Form (RSF) tuples. Figure 2 depicts how Fetch combines
different open source tools to generate CDIF specifications. We have opted to use the Fetch
tool chain because of its robust parser, and analyzer. Furthermore, the tool chain is composed
of open source components, we could extend where required to obtain better static analysis
results, as we actually did for analyzing typedef statements in C++ systems. We have not
been able to find a Source Navigator to RSF transformer, in order to bypass CDIF and
speed up the extraction process, so we have kept the original configuration of Fetch tool
chain. Recent approaches that have successfully used though this tool chain, include the
work by Adams et al. (2009) and (Van Rompaey and Demeyer 2009; Van Rompaey et al.
2009).

The second phase is the clustering phase. During the clustering phase, a subset of all the
source code tuples that correspond to a combination (i.e. subset) of all available relations is

Fig. 2 Fact Extraction Tool Chain

Empir Software Eng (2017) 22:1717–1762 1727

selected. Consequently, only these tuples are fed to the ACDC software architecture extrac-
tion clustering tool in order to produce a set of clusters which are composed of source
code entities such as functions, variables and, types. Each such cluster, corresponds to an
extracted architectural component.

The third phase of the process is the M0 level architecture model creation phase. In this
phase, our ACME-based M1 level metamodel is instantiated so that entities, components,
connectors and bindings are created utilizing the clustering results obtained in the previous
phase. The ACME-based metamodel is discussed in more detail in Section 6 below.

The fourth phase of the process is the similarity evaluation phase. In this phase, an archi-
tecture model distance score between the instantiated architecture model extracted using a
combination (i.e. a subset) of the available relations, and the instantiated architecture model
that has been extracted using all available relations (and being considered as the reference
standard), is computed. The normalized distance score is a real number that ranges from 0
(i.e. two architecture models are completely similar) to 1 (i.e. two architecture models are
completely dissimilar).

Each relation combination is created in a specific order. First, all combinations contain-
ing one relation are considered, then those containing two relations, then those involving
three relations, and so on. For our system we considered thirteen relations, which pro-
duced 8192 different combinations. The thirteen different relations we have considered are
depicted in Table 1. We will elaborate on these relations on Section 5.2 below.

For our work, we have considered and compared two clustering algorithms, the ACDC
algorithm by (Tzerpos and Holt 2000a) the Hill Climbing clustering based algorithm
from the Bunch clustering suite by Mancoridis et al. (1999). The choice of the clustering
algorithm was made on the criteria of a) clustering time performance and; b) stability.

Both clustering frameworks presented advantages and disadvantages. As (Wu et al.
2005b) have indicated, the ACDC algorithm is more stable than Bunch a tool which incorpo-
rates a heuristic clustering process. On the other hand, Bunch produces much more uniform
clusters meaning that the sizes of the clusters do not present extremities (not too big, or too
small clusters). For small systems, less than 60 KLOC, the performance of the two cluster-
ing algorithms is comparable but still significant. However, in bigger systems, like OpenSSL
which contains almost 300 KLOC, ACDC requires about 15 minutes, which is one of the
largest clustering execution times. On the other hand, for OpenSSL Bunch requires 135
minutes and a program heap size of 6GB. As a result, we have chosen the ACDC algorithm
as it was shown to scale better for large systems.

5 Source Code Relation Extraction

5.1 Parsing

Initially, the Source Navigator tool performs lexical analysis and parsing. The SnavToFamix
tool creates an AST denoted in CDIF (Imber 1991), which consequently is used to produce
an RSF file. We present an example of the use of Fetch for a small C program 1 given in
Listing 1.

Once a CDIF file as the one presented in Listing 2 is created, it can be transformed to
RSF. The corresponding RSF file is presented in Listing 3. For our case study, we have
opted to exclude system standard libraries (e.g. stdlib.h), and include only the libraries that
are specific to the application being considered.

1728 Empir Software Eng (2017) 22:1717–1762

Table 1 Relations extracted by
the Fetch tool Type Relation

Containment – “Module Belongs to Module”

– “File Belongs to Module”

– “Class Belongs to File”

– “Invocable Entity Belongs to File”

– “Method Belongs to Class”

– “Attribute Belongs to Class”

Macros – “Macro Definition”

– “Macro Use”

Conditions – “Conditional Compilation”

Location – “Entity Location”

– “Entity Belongs to Block”

Declaration
– “Defined In”

– “Declared In”

Invocations – “Calls”

Types – “Type Definition”

– “Uses Type”

– “Has Type”

– “Has Type Definition”

Information – “Signature”

– “Visibility”

– “No of Lines”

Other – “Inherits From”

– “Includes”

– “Accesses” (Variable)

– “Sets” (Variable)

5.2 Source Code Extracted Relations

The resulting CDIF file encompasses information that can be used to extract a number of
different relations. Overall, from CDIF, we can extract 22 different relations and generate
RSF tuples for them. However, from these relations we opted to use only 13 of them.

The choice of these relations was based on the concept of omitting relations that offer
limited or, overlapping information, for extracting the architecture of a software system. For
example, the information of whether a method is abstract or not, or what is its signature, or
what is the number of source code lines for methods or structures, may not be as relevant for
the architecture extraction process or a subsumed by other relations, and are consequently
omitted. The thirteen relations that we retained for the case study, are depicted in Table 2.

Similarly, Table 3 depicts an assessment of how easy or difficult is to extract each relation
from the source code, based on whether it requires the use of scanner, parser or, a parser and
a linker.

The extraction of a relation is considered easy if the source code does not need any spe-
cial tools to extract it. An example is the Includes relation, which can be obtained with a
simple ”grep”, on #include preprocessor directives. The extraction of a relation is consid-
ered of medium difficulty, if a small preprocessing is required, such as for the Calls relation,

Empir Software Eng (2017) 22:1717–1762 1729

Listing 1 Pascal Triangle

which first requires the identification of which tokens correspond to function names, and
then extract the Calls relation between them using a scanner. For example there are lan-
guages like PL/I, where a procedure call or an array reference look identical. Note that the
Calls relation denotes the existence of a call statement in the body of a function or a method,
and does not deal with the resolution of which method is actually called in the presence
of polymorphism. Finally, relations that require the use of a parser, or require information
from an annotated AST (Abstract Syntax Tree), are considered hard to extract compared to
relations that can be extracted by a scanner or a simple matcher (e.g. grep). For example the
Has Type and Uses Type relations are hard to extract as, in many cases, we have to consider
that analysis of typedef statements, cases of polymorphism (in object oriented systems), and
possible conditional preprocessor directives.

6 Architecture Representation and Differencing

In this section, we present a simplified software architecture metamodel, which we have
designed for facilitating our case study. The simplified metamodel is depicted in Fig. 3 and
is based on the ACME (Garlan et al. 1997) Architecture Description Language.

The metamodel contains elements which can either be Components or Connectors. Fur-
thermore, an element, can have several Properties and depending on its type, the element
contains different Entities.

Components are represented by clusters (i.e. sets of source code entities) as these clus-
ters are obtained by the clustering process. Each Component has a unique name and is
composed of Entities. The Entities that are attached to a Component are organized in a
tree structure, based on the relations that connect them. For example, if there is a rela-
tion 〈class, ClassBelongsT oF ile, f ile〉, then the class entity would be a child of the
corresponding file entity.

Entities can have Properties that characterize them. The type of a class, the file where a
method or a function are declared and, the class that a class inherits from, are some of such
properties. Properties are also children elements of the Entities that they are related to.

1730 Empir Software Eng (2017) 22:1717–1762

Listing 2 CDIF for Pascal Triangle

Connectors represent links between Components, but they do not provide any informa-
tion about which specific individual Entities they connect. For this reason, each Connector
is associated with one or more Bindings. Bindings connect specific Entities that belong

Empir Software Eng (2017) 22:1717–1762 1731

Listing 3 RSF for Pascal Triangle

to the Components that the Connector links. Each Binding is characterized by its type
(i.e. Call, Access, Include, Set Variable), and the two specific Entities that the Binding
connects to.

By instantiating this metamodel, concrete architecture models are created for each dif-
ferent system and for each different relation combination. This metamodel instantiation
procedure is discussed in more detail in Section 6.1 below.

Table 2 Description of relations used

Relation Description

“Calls” Denotes that a function or a method calls another
function or method.

“Includes” Denotes that a file includes another file.

“Sets” Denotes that an attribute in a class, or a global
variable, is assigned a value in a function or a method.

“Accesses” Denotes that the value of an attribute in a class, or of
a global variable, is read in a function or a method.

“Class Belongs To File” Denotes that a class belongs (defined) in a file.

“Inherits From” Denotes inheritance between
classes in object oriented programs.

“Has Type” Denotes that a function, method, attribute, or global
variable is of a specific type.

“Defined In” Denotes that a function or a method is defined in a
specific file. This is the file where the actual body
of the function or the method is located. We should
underline that for every function and method there is
only one ”defined in” relation in the output file of the
extractor.

“Declared In” This relation is similar to the one above, with one
major difference. ”Declared In” denotes in which file
there is a declaration of the function or the method.
As a result there can be more than one such relations
for the same function or method in the output file of
the extractor.

“Attribute Belongs To Class” Denotes that an attribute belongs
(defined) in a specific class.

“Method Belongs To Class” Denotes that a method belongs
(defined) in a specific class.

“Accessible Entity Belongs To File” Denotes that a global variable
belongs (defined) in a specific file.

“Uses Type” Denotes that a method or a function uses (accesses) a
specific type (i.e. the type of a class or a struct).

1732 Empir Software Eng (2017) 22:1717–1762

Table 3 Ease of extraction of relations from source code

Relation Easy Medium Hard

“Accesses”
√

“Accessible Entity Belongs to File”
√

“Attribute Belongs to Class”
√

“Class Belongs to File”
√

“Calls”
√

“Declared In”
√

“Defined In”
√

“Has Type”
√

“Includes”
√

“Inherits From”
√

“Method Belongs to Class”
√

“Sets”
√

“Uses Type”
√

6.1 Architecture MetaModel Instantiation

Our case study is based on calculating a distance score between a) the concrete architectures
extracted via clustering using different combinations of the thirteen available relations, and
b) the concrete architecture we consider as the reference standard and is the one extracted
using all thirteen available relations. In order to create such concrete instances of the archi-
tecture metamodel, for a given subset of relations, we follow a five step process as depicted
in Fig. 4.

In the first step, the RSF file is fed to the ACDC clustering process, and clusters ci

made of source code entities scj (e.g. files, classes, methods, functions, variables, types) are
created. For each such cluster ci , a Component instance Ci , as specified in the architecture
metamodel, is created.

In the second step of the process, each source code entity scj , in a cluster ci is used
in order to create a corresponding Entity type metamodel instance ei,j . Furthermore, in
this process step, each Component Ci created in the first step, is populated with the
corresponding ei,j Entities.

In the third step of the process, Connectors between Components are created. A Connec-
tor CNk,m is created between component Ck and component Cm if there is an Entity ek,j in
component Ck and an Entity em,w in component Cm, for which there is an RSF tuple 〈 scj

a relation scw 〉 between the source code entities scj , and scw , for which the entities ek,j

and em,w correspond to.
In the fourth step of the process, bindings are created between Entities ek,j and em,w,

in each connector CNk,m and for which entities there is a corresponding RSF tuple 〈 scj

a relation scw 〉. The Binding becomes a child of its corresponding Connector.
In the fifth step of the process, Properties are added to Entities. The relations that yield

properties are Uses Type, Has Type, Inherits From and Defined In. Once this is done for the
relations being considered, an instance architecture model is completed and is ready to be
compared to the instance architecture model that corresponds to the ground truth reference
standard.

Empir Software Eng (2017) 22:1717–1762 1733

Fig. 3 M1 level architecture metamodel

Figure 5 depicts an example of such an architecture instance. The example architectrure
instance is composed of two Components, and one Connector. The first Component C1,
consists of two files F1 and F2. Similarly, the second Component C2, consists of two files
F3 and F4. The Connector CN1 connects the Component C1 and C2 and associates with
an Includes type Binding between Entities file Entities F1 and F3, via a 〈 F1 includes F3 〉
relation. Listing 4 illustrates the XML source that corresponds to the instantiated model of
the aforementioned example architecture instance.

6.2 Architecture Model Differencing

In this section, we discuss in more detail the similarity measure we have applied in order to
compute the structural distance between two software architecture instance models. More
specifically, given two instances of software architecture models, we devise a variation of
the UMLDiff algorithm presented by Xing and Stroulia (2005), in order to calculate the
structural difference of the two model instances.

1734 Empir Software Eng (2017) 22:1717–1762

Fig. 4 Steps for Population of Architectural Instances

The algorithm operates by indicating the entities that need to be moved, added, and
deleted in order for the first instance to be transformed to the second. The number of inser-
tions, deletions, and substitutions provides the basis for computing a measure of structural
difference.

UMLDiff takes as input two XML files denoting two models, and retrieves the struc-
tural changes that occurred, as these models evolved from one version to another. UMDiff
utilizes a name similarity and a structure similarity component. Name Similarity calculates
the similarity of the names of the entities by calculating the common adjacent character

:

:

:

::

: :

: :

::

::

: :::

Fig. 5 Example instance architecture 1

Empir Software Eng (2017) 22:1717–1762 1735

Listing 4 Component Matching

pairs that are contained in the two compared names. If the similarity score is lower than a
threshold provided, the entities are identified as renamed, otherwise are identified as sim-
ilar. Structure Similarity computes the similarity of two entities based on their connection
with already matched entities.

Our UMLDiff variant algorithm operates from the root level model element, moving
down the model structure on to Components, Composite Entities and finally Atomic Enti-
ties. At each level, except the top component level, based on the names of the entities which
are unique, all entities are categorized as matched, moved and deleted. Components are
matched differently, and we will discuss about it shortly in Section 6.2.1 below.

Matched entities have the same name and also belong to already matched Components.
Moved entities have the same name but they belong to Components that are not matched.
Finally deleted entities are the ones that are present on the reference model instance used as
the ground truth architecture, but not on the instance under examination. Once all entities
have been identified, their properties need also to be matched.

Listing 5 Component Matching

1736 Empir Software Eng (2017) 22:1717–1762

Properties of matched entities are evaluated on whether they are of the same type and on
whether the attributes of their properties are also the same. Consequently, these Properties
are identified as matched. Otherwise, properties of the ground truth instance are categorized
as deleted, and the ones of the instance being examined, as added.

Finally, Connectors are matched. Given two Connectors A and B, if the Components that
Connector A joins have already been matched with the Components that Connector B joins,
then A and B are identified as a match. On the other hand, if their Components are not a
match, then Connector A is a deletion and Connector B is an addition.

As far as Bindings are concerned, if two Bindings belong to matched Connectors have
the same type and refer to the same entities, they are considered to be a match. Other-
wise, Bindings that have different types, or they refer to different entities, or belong to not
matched Connectors are classified as deleted, if they belong to the ground truth instance
and, as added if they belong to the instance being examined.

6.2.1 Component Matching

Component matching is handled as a more special case than the Entity, Property, Connector
and Binding cases. The reason is that Components are top elements in the model hierarchy
and as such, once two Components (one from the reference architecture, and the other from
the extracted architecture that is to be evaluated) are identified as match, then this choice
affects all other model entities that are linked as children of the two Components, and con-
sequently affects their matching result as well. In a nutshell, the problem is to identify which
Component of the reference architecture matches the most with which component of the
extracted architecture that is to be evaluated. Once this choice has been made, matching for
the dependent model entities can commence.

In this respect, the problem of computing the structural distance between two Compo-
nents is equivalent to evaluating the structural distance between their two corresponding
instance models. This problem can be identified as a maximum weighted bipartite matching
(Wilson 1986). The two partite sets are the instance models, one representing a Component
of the architecture extracted by a subset of available relations and is under examination, and
the other representing a Component of the reference ground truth, that is the architecture
extracted by using all available relations. The weight of the edges of the graph is the count
of the same-named entities that the two Components that are connected have in common. In
this respect, we aim to maximize the number of entities that are matched between two Com-
ponents. This matching problem can be solved using the Hungarian Method (Kuhn 1955).
The time complexity of the Hungarian Method is O(n3), nevertheless there are a lot of one-
to-one matches between Components (Components that share same-named entities with
only one Component of the other set), which improves execution time by decreasing n and
actually solving a smaller problem. The outline of the component-level matching algorithm
is depicted below.

6.2.2 Entity and Property Matching

The entity-level and property-level matching process commences once the component level
matching process completes. Listing 5 outlines the algorithm that is used for identifying
whether an entity or a property in one model is classified as matched, moved or, added with
respect to the reference architecture model. More specifically, the process at line 2 aims to
retrieve an Entity e2 from the ground truth, that has the same name as e1. If such Entity,
or Property exists, and both e1 and e2 belong to the same logical level of the architecture,

Empir Software Eng (2017) 22:1717–1762 1737

Listing 6 Entity and Property Matching

then we have a match (lines 5-6). Otherwise, if they belong to different levels, then this is
identified as a move (lines 8-9), else if e2 does not exist at all, then e1 is identified as an
added Entity to the system (line 11). While this is done, every time a match, or a move
is found, it is removed from setB, which contains the Entities and Properties of the initial
system. As a result, once all Entities and Properties have been classified, setB contains all
the deleted Entities and Properties. We have analyzed our results as to whether there are
particular relations that contribute to entity insertion, deletion or move operations, while
comparing the ground truth architecture and the extracted architecture, but we were not able
to observe any significant correlation in order to conclude that one or more relations are the
ones which are most responsible for such insertion, deletion or move operations. However,
our analysis indicated that Connectors, and not Component entities, are the elements that
are mostly inserted or deleted during the matching process.

6.2.3 Connector Matching

After Components, Entities and Properties have been classified as matched, moved or,
added, the next step is to match Connectors. Listing 7 depicts the connector-level matching
process. The connector-level matching process iterates through all the Connectors of the
architecture model under evaluation and attempts to locate a matching Connector in the ref-
erence model used as the ground truth architecture. In order for two Connectors, CN1 and
CN2 to be matched, the components that CN1 connects need to have already been matched
to the Components that CN2 connects (line 8). The remaining connectors are identified as
added, if they belong to the examined instance (line 12), and as deleted if they are part of
the ground truth (line 13), but not part of the model being evaluated.

Listing 7 Connector Matching

1738 Empir Software Eng (2017) 22:1717–1762

6.2.4 Binding Matching

Listing 8 depicts the binding-level matching process. The bindings-level matching proceeds
by iterating through all the Bindings of the instance model being evaluated (line 2) and
attempting to locate a Binding within the ground truth (lines 3-4) having the same name.
If these two Bindings also have matched Connectors as parents, then they are identified as
matched Bindings (lines 5-7), otherwise they are identified as moved (lines 9-10). If there is
no such Binding in the reference model, then the Binding is identified as a deleted Binding
from the reference ground truth architecture. Whenever a move or a match is identified,
the Binding is removed from the set of Bindings of the ground truth, and as a result all
remaining Bindings in that set are identified as added Bindings.

6.2.5 Differencing Score

The output of the algorithms presented in the previous sections (Listings 5 - 8), aim to
identify all the elements that match. Once the number of elements that match is computed,
the overall structural distance between two instance architecture models for systems Si and
Sj can be computed by applying Eq. 1:

diffi,j = T otal Number of Elementsi,j − Number of Matched Elementsi,j

T otal Number of Elementsi,j
(1)

Even though other distance scoring functions could be considered (e.g. assigning weights
to different relations), we have opted for this simple, yet effective, function, that is impartial
to the type and perceived importance of the types of the elements compared. This distance
measure aims to fulfill certain criteria. The first criterion deals with stability, meaning that
small structural model changes should reflect proportionaly small score changes. The sec-
ond criterion is that once scores are normalized, same models should yield a difference
score equal to 0, while completely dissimilar models should yield a distance score equal
to 1. Score normalization for a given system Si for relation combination R, is achieved by
applying Eq. 2.

normalized diffR,i = |diffR,i − min(diffall R,i)|
max(diffall R,i) − min(diffall R,i)

(2)

Listing 8 Binding Matching

Empir Software Eng (2017) 22:1717–1762 1739

where min(diffall R,i) is the smallest distance score obtained for system Si accross all
possible relation combinations for system Si , and max(diffall R,i) is the corresponding
highest distance score.

6.2.6 Differencing Score Example

In this section, we present a simple example that depicts how the distance score is calculated
by following the process discussed in the previous sections.

For illustration purposes, let us consider two instance architectures depicted in Figs. 6
and 7 respectively. Let us further assume that the architecture instance depicted in Fig. 6
is considered the ground truth reference standard. The distance score is then calculated as
follows:

Step 1 Match Components
Each Component of the architecture under evaluation is compared with the Com-
ponents from the ground truth. In this respect, C1 (in Fig. 6) is matched with C1
(in Fig. 7) and C2 (6) is matched with C2 (7). The matching between these sets is
based on the maximum number of same name elements appearing in each Compo-
nent (i.e. corresponding cluster). The remaining Component C3 in the architecture
depicted in Fig. 7, is considered an added Component.

Step 2 Match Entities and Properties
As we discussed previously, Entities and Properties are matched based on their
name and their parent Entity, since names are unique across the system. As a result,

:

:

:

::

: :

: :

::

::

: :::

Fig. 6 Example Architecture 1

1740 Empir Software Eng (2017) 22:1717–1762

:

:
:

::

:

:::

:

:::

::::

Fig. 7 Example Architecture 2

we have 6 matched Entities (F1, F3, FNC1, FNC2, FNC5, FNC6), 5 moved Enti-
ties (F2, FNC3, F4, FNC7), 1 added Entity (FNC9) and 2 deleted Entities (FNC4,
FNC8).

Step 3 Match Connectors
The next step is to match the Connectors based on the Components that were
previously matched. In this case, the two Connectors are matched since the
corresponding Components have already been matched.

Step 4 Match Bindings
Finally, the two Bindings are matched since they are of the same type (i.e. ”Include”
Bindings), they belong to matched Connectors, and connect already matched
Entities.

Therefore, in order to calculate the similarity score, we calculate the fraction in Eq. 1.
In this case, the total number of elements is 18 and the matched elements are 12 and the
distance score is computed as 18−12

18 = 1
3 . Once the architectures for all considered (e.g.

procedural) systems S1, S2, ... S9 for a given relation combination have been calculated,
the distance value for a given system Si will be normalized and represent the distance
score between the architecture of system Si being evaluated and the reference ground truth
architecture A.

Empir Software Eng (2017) 22:1717–1762 1741

7 Ground Truth Architecture Validation Process

The ground truth validation process is based on answering the question as to whether or not
the thirteen used relations are adequate for extracting the ground truth architecture of a soft-
ware system. In order to avoid any subjective interpretations, we opted to focus and base
our validation process on the analysis of five large software systems for which the ground
truth has already been established as an authoritative one. These five systems are Bash,
ArchStudio, Itk, Hadoop, and Chromium, the architectures of which have been analyzed by
Lutellier et al. and presented in Lutellier et al. (2015). These ground truth architectures are
also available at http://asset.uwaterloo.ca/ArchRecovery. However, the ground truth archi-
tectures for these systems are reported in the form of collections of clusters which contain
source files. As our clusters may contain any source element (e.g. functions, methods, types,
classes, structures, vatriables), we had to lift the elements of our clusters to the file they are
declared in (if the entity pertains to a declaration), or to the file they are used in (if the entity
is a reference).

More specifically, the ground truth validation process is composed of four steps.

Step 1 The system’s source code is parsed, and an RSF file with all thirteen relations is
produced.

Step 2 Each source code entity that appears in the RSF file is lifted to its corresponding
file, and the RSF file now contains relations that appear between lifted files. Conse-
quently the ACDC tool is called, and a system architecture AS is extracted using all
thirteen relations. The AS architecture is represented by clusters that now contain
only source code files. Also, let the reported authoritative ground truth architecture
for system S, be denoted as ASgt (Lutellier et al. 2015).

Step 3 As the granularity of the extracted architecture AS by ACDC is much higher than
the granularity of the reported ground truth archutecture ASgt , we merge clusters
in AS by considering their overlap scores with clusters in ASgt . Clusters in AS that
have the highest overlap with cliusters in AS are merged. Once a cluster is merged
with others, it is not considered again for future merges.

Step 4 In this final step, the ground truth architecture ASgt and the extracted architec-
ture AS are compared cluster per cluster, and a similarity score using Tversky’s
index, with parameters α = 1 and β = 0 is computed. Here, the ground truth archi-
tecture ASgt is considered the prototype, and the architecture AS the variant. The
similarity score ranges from 0 to 1 and is computed based on the Eq. 3 given below:

S(gti , sj) = |gti ∩ sj |
|gti ∩ sj | + α|gti − sj | + β|sj − gti | (3)

where, gti is the ith cluster of the ground truth architecture, and sj is the j th cluster of the
extracted architecture. The results are reported in Table 4.

More specifically, in Table 4 the results indicate that in all systems and all clusters
involved, the average similarity of the clusters sj in AS that match with the clusters gti in
ASgt , is one or two orders of magnitude higher than the average similarity of the next best
match. Table 4 indicates that for ArchStudio, the average similarity of the matched clus-
ters is 0.7514 while the average similarity of the next best score drops to 0.0927. For Bash
the similarity score is low at a value of 0.2143, and the average similarity of the next best
sxore drops to 0.0690. Manual inspection revealed that the Bash system is relative small and
the ground truth architecture reported by Lutellier et al. (2015) follows exactly the source

http://asset.uwaterloo.ca/ArchRecovery

1742 Empir Software Eng (2017) 22:1717–1762

Table 4 Comparison results between extracted architecture and ground truth architecture

System # of Clusters in
Ground Truth

of Clusters in
Extracted

Avg. Max Similarity # Avg. Next Best
Match

(Lutellier et.al.) (13 relations) (On all clusters) (On all clusters)

Bash 14 10 0.2143 0.069

ArchStudio 57 52 0.7514 0.0927

ITK 11 11 0.6492 0.0400

Hadoop 67 44 0.5 0.15

Chromium 44 44 0.5981 0.058

code’s directory structure, while the clustering process takes into account more information
extracted from the source code (i.e. the thirteen different relations).

For a more detailed view of these scores, consider the values obtained for ITK, depicted
in Table 5, where Cluster #6019 in AS matches best with cluster #6 in ASgt (score 0.9161).
Looking at all other similarity scores of cluster #6019 with all other clusters in ITK’s ASgt ,
we clearly identify that when the max similarity score of #6019 is compared with any other
score in any other cluster in ASgt , it is two orders of magnitute higher. The same results
are depicted for clusters #4907, and #948 in AS . We also observe the case of cluster #3197
which best matches with cluster #1, but cluster #3197 also matches (i.e. it splits) with ASgt

cluster #6, and cluster #11. Overall, our results indicate that the thirteen relations we have
used provide significant and strong evidence that the extracted architecture AS aligns well
with the clusters of the ground truth architecture ASgt .

Similarly, Table 6 depicts the percent value of the SLOCs matched and the number of
files matched for those clusters in ASgt and in AS that exhibit max similarity. For example
in Bash 34.5 % of SLOCs were matched among all matched clusters, while in ITK 73.1 %
of files were matched, among all matched clusters, when the ground truth architecture and
the extracted ITK architecture are compared.

Table 5 Tversky’s Index similarity scores between clusters #3197, #4907, #6019, and #948 in AS and the
clusters reported in ASgt

Cluster ID in ASgt Cluster #3197 in
AS

Cluster #4907 in
AS

Cluster #6019 in
AS

Cluster #948 in
AS

#1 0.3341 0 0.0064 0

#2 0.0315 0 0 0

#3 0.1454 0 0 0

#4 0.0880 0 0 0

#5 0.0722 0 0.9161 0.0067

#6 0.3097 0 0 9.55E-04

#7 0.0510 0 0 0

#8 0.0020 0 0 0

#9 0.1096 0.7772 0 0

#10 0.0900 0 0.0034 0

#11 0.2004 0 0.0043 0.8249

Empir Software Eng (2017) 22:1717–1762 1743

Table 6 Coverage percentage of matched clusters in terms of number of matched lines, and number of
matched files

System SLOC Coverage of Matched Clusters File Coverage of Matched Clusters

Bash 34.5 % 31.8 %

ArchStudio 81.4 % 75.8 %

ITK 78.2 % 73.1 %

Hadoop 61.2 % 61.4 %

Chromium 62.7 % 62 %

8 Case Study

8.1 Case Study Infrastructure and Systems Under Analysis

An important consideration that arises is whether the underlying programming paradigm,
affects in any way the process and the technique that should be used for software
architecture recovery.

On one hand, object oriented systems are structured around classes that encapsulate
methods and promote the concept of information hiding through the use of access speci-
fiers such as public, private, or protected members. Furthermore, object oriented systems
promote the concepts of inheritance, polymorphism, and overloading. All these concepts
directly affect the organization and structure of object oriented source code as compared
to the structure and organization of systems written in imperative procedural languages.
For example, classes and methods that belong to the same inheritance hierarchy, or con-
tain overloaded methods, or are declared as friends (in the case of C++), would make sense
from a software engineering point of view to group together. On the other hand, procedu-
ral systems, tend to be structured using a top-down approach following a routine-subroutine
architectural style. In the procedural paradigm encapsulation, overloading and inheritance
are not available features to consider, while call relationships and data access relationships
are more important.

In this respect, our motivation to consider two different sets of case studies, one for proce-
dural and one for object oriented systems, stems from the question that arises as to whether
these two different programming paradigms have also an impact on the type of relations that
are most suitable for architectural extraction. We consider these two paradigms as the two
most prevalent ones in legacy systems. However, it would be also interesting to consider as
future work, the identification of relations that are most suitable for the architectural recov-
ery of systems written in functional programming languages, or programs written in 4GLs,
such as data reporting applications.

Our case study were conducted on six quad-core Intel Core i7 3,2 GHz machines
with 8GB physical memory each, running Ubuntu Linux. The ACDC parameters were set
to Body Header, Subgraph Dominator, and Orphan Adoption. The max cluster size (not
enforced though during the Orphan Adoption process) was set to 20 elements per cluster.
The case study aimed to evaluate the impact different relation combinations have on the
accuracy of the extracted architecture of a number of open source, large procedural and
object oriented systems obtained from various fields, such as Operating Systems, Databases,
Networks, and AI. More specifically, we considered 9 procedural and 6 object oriented sys-
tems. All the systems are desktop applications and do not involve any external database. A

1744 Empir Software Eng (2017) 22:1717–1762

possible future work would be to examine whether there is any difference in the obtained
results, by considering the type or the characteristics of the application involved.

The procedural systems that we examined are:

Bash: The Unix shell and command language.
Clips: The software tool for building expert systems.
OpenSSH: The suite of security-related network-level utilities based on the SSH protocol.
OpenSSL: The open source implementation of the SSL and TLS protocols.
OpenVPN: The open source software application that implements virtual private network

connections for secure point-to-point communication.
Freeglut: The open source alternative to the OpenGL Utility Toolkit (GLUT) library.
Putty: The free and open source terminal emulator, serial console and network file transfer

application.
Tcsh: The Unix shell.
Zsh The Unix shell.

Specific information about the procedural systems such as Line of Code (LOC), years
in operation, current version, number of relations included in the RSF file and, number of
nodes in the RSF file, is presented in Table 7.

The object oriented systems we have examined are:

Apache Ant: The software tool for automating software compile/build systems.
Apache Maven: The software tool for automating software compile/build processes.
Apache Ivy: The Apache Ant sub-component that is used to resolve project dependencies.
jEdit: The open source software text editor.
jHotDraw: The Java framework for producing technical and structured Graphics.
Texmaker: The free and cross-platform LaTeX editor for Linux, OS X and Windows

systems.

Specific information about the object oriented systems we have experimented with, such
as Line of Code (LOC), years in operation, current version, number of relations included in
the RSF file and, number of nodes in the RSF file, is presented in Table 8.

Table 9 presents the proportion of instances of the different relations as these appear in
the different RSF files. More frequent relations (i.e. with higher proportion values) tend to
appear in the “good” relations set, but this is not always the case. For example, the Includes
relation has low average proportion value (2 %) and has been found to be a good relation

Table 7 Procedural Systems under Examination

System LOC Years in Operation Current Version RSF Lines No of Nodes

Bash 99,871 17 7.0 22,850 7,246

Clips 91,021 21 6.3 31,217 6,752

Freeglut 22,832 17 3.0.0 9,275 4,161

OpenSSH 63,999 17 7.1 19,370 4,037

OpenSSL 298,767 18 1.0.2h 62,283 23,385

OpenVPN 61,606 15 2.3.1 18,876 4,411

Putty 85,716 17 0.67 18,439 6,111

Tcsh 52,143 23 6.19 12,995 3,138

ZSH 98,061 26 5.2 16,905 5,309

Empir Software Eng (2017) 22:1717–1762 1745

Table 8 Object Oriented Systems under Examination

System LOC Years in Operation Current Version RSF Lines No of Nodes

ApacheAnt 107,243 16 1.9.7 63,332 18,149

ApacheIvy 72,724 12 2.4.0 48,184 11,280

Apache Maven 78,442 12 3.3.9 29,827 11,506

jEdit 118,491 18 5.3.0 49,903 12,875

JHotDraw 80,160 20 7.2 33,797 10,712

TexMaker 59,434 13 4.5 18,643 3,970

to use (see results in following sections). These results indicate that the density of relations
may play a role in the clustering process, but on the other hand these high density relations,
are also the relations we have always suspected and considered as software engineers to be
the important ones (i.e. calls, accesses, sets), because they facilitate the flow of data and
control information accross the system.

8.2 Analysis Results

In this section, we present the results of our case study. This study aims to address whether
there are combinations of relations that can be easily extracted from the source code and at
the same time can be used to provide through clustering, an accurate depiction of a system’s
architecture. Another question is whether there are combinations of relations the omission
of which will hinder the obtained result. Finally, we would like to evaluate whether there is a
difference in the obtained results when procedural or object oriented systems are considered.
For each selected relation combination we provide an indication of the ease of extraction of
this combination. More specifically, by the symbol ++ we denote the easiest to extract rela-
tion combination and by – the most difficult one. The up arrows and down arrows indicate

Table 9 Relation density values for different relation entries in RSF files

Relation Average density value Standard Dev.

Calls 0.13 0.05

Includes 0.02 0.01

Sets 0.06 0.01

Accesses 0.17 0.02

Class Belongs To File 0.006 0.002

Inherits From 0.003 0.002

Has Type 0.002 0.001

Defined In 0.07 0.01

Declared In 0.1 0.02

Attribute Belongs To Class 0.04 0.01

Method Belongs To Class 0.09 0.01

Accessible Entity Belongs To File 0.05 0.06

Uses Type 0.02 0.01

1746 Empir Software Eng (2017) 22:1717–1762

intemediate levels between two adjacent classifications (e.g. between ++ and + classifica-
tion). In this respect, the +↓ would be the least possible acceptable combination, based on
ease of relation extraction.

8.2.1 Procedural Systems

The results obtained for the procedural systems examined are depicted in Figs. 8 and 9,
Tables 10, 11 and 12. Even though we report average difference scores, the obtained results
are consistent for all nine procedural systems we have considered.

Figure 8 presents the average distance score for each combination from all the 9 proce-
dural systems we have considered. The X-axis presents the relation combinations as these
are generated in order (i.e. 1-relation combination, all 2-relation combinations, all 3-relation
combinations, to 9-relation combinations). For more than 9 relations the distance drops
close to 0 and these are not depicted in X-axis of Fig. 8. Similarly, the Y-axis presents the
distance score between the system’s extracted architecture, and the ground truth’s archi-
tecture. As it can be observed, three groups of points emerge. First, points that relate to a
score above the 0.6 value are considered bad combinations because the distance between the
extracted architecture instance model and the ground truth reference model is high. Then,
there are combinations, with average distance scores between 0.3 and 0.6. Those combi-
nations represent instances that are closer to the ground truth, but still are not sufficient.
Finally, there are the combinations with distance score below 0.3. These combinations are
very close to the ground truth and are considered good combinations that can be used for
architectural extraction.

Figure 9 depicts similar information as Fig. 8, however here the distance score data in the
Y-axis are sorted in ascending order. This depiction of the results indicates two major step
points, marked with the two vertical lines. The first ”step” point separates the combinations

Fig. 8 Average distance score for Procedural Systems. X-axis relation combination generated orderly

Empir Software Eng (2017) 22:1717–1762 1747

Fig. 9 Sorted average distance score for Procedural Systems. X-axis relation combination selected for sorted
depiction of Y-axis distance result

that do not have the relation Calls (left) from those that have it (right). The second “step”
point separates the combinations that do not have the relations Accesses or Calls (left) from
those that have them both (right).

Table 10 Best combinations of relations - Procedural Systems

Combination Diff Score Z Score < −2 p Value = 0 Ease of Relation
Extraction

1 Calls 0.622 −2.72 ++
2 Calls, Accesses 0.319 −3.43 +

Calls, Defined In 0.528 −2.00 +
3 Accesses, Calls, Accessible Entity

Belongs to File
0.249 −2.76 + ↑

Accesses, Calls, Class Belongs to File 0.308 −2.42 + ↑
Accesses, Calls, Declared In 0.238 −2.82 -

Accesses, Calls, Includes 0.254 −2.73 + ↑
Accesses, Calls, Has Type 0.319 −2.35 - ↓
Accesses, Calls, Defined In 0.253 −2.73 -

Accesses, Calls, Set Variable 0.309 −2.42 + ↓
Accesses, Calls, Attribute Belongs
to Class

0.286 −2.54 + ↑

Accesses, Calls, Uses Type 0.286 −2.55 -↓
4 Accesses, Calls, Declared In, Includes 0.170 −2.46 + ↓

Accesses, Calls, Accessible Entity
Belongs to File, Declared In

0.185 −2.38 +↓

Accesses, Calls, Accessible Entity
Belongs to File, Defined In

0.189 −2.36 + ↓

5 Accesses, Calls, Accessible Entity
Belongs to File, Declared In,
Includes

0.137 −2.06 +

1748 Empir Software Eng (2017) 22:1717–1762

Table 11 Worst combinations of relations - Procedural Systems

Combination Diff Score Z Score p Value Ease of Relation
Extraction

1 Attribute Belongs to Class 0.999 0.84 0.931 ++
Uses Type 0.973 0.60 0.969 −
Declared In 0.971 0.58 0.954 -

Defined In 0.966 0.53 0.954 -

Has Type 0.955 0.42 0.969 −
2 Attribute Belongs to Class, Uses Type 0.976 1.08 0.941 -

Class Belongs to File, Declared In 0.971 1.05 0.961 +
Attribute Belongs to Class, Declared In 0.968 1.03 0.911 +
Attribute Belongs to Class, Has Type 0.966 1.01 0.941 -

Class Belongs to File, Defined In 0.966 1.01 0.961 +
3 Class Belongs to File, Declared In, Defined

In
0.951 1.26 0.922 + ↓

Attribute Belongs to Class, Declared In,
Defined In

0.951 1.26 0.828 + ↓

Attribute Belongs to Class, Class Belongs to
File, Declared In

0.947 1.23 0.922 + ↑

Attribute Belongs to Class, Class Belongs to
File, Defined In

0.942 1.21 0.922 + ↑

Attribute Belongs to Class, Has
Type, Includes

0.937 1.18 0.872 -

4 Attribute Belongs to Class, Declared In,
Defined In, Uses Type

0.925 1.41 0.774 -↓

Attribute Belongs to Class, Class Belongs to
File, Declared In, Defined In

0.923 1.40 0.847 +

Attribute Belongs to Class, Declared In,
Defined In, Has Type

0.918 1.37 0.774 -↓

Attribute Belongs to Class, Class Belongs to
File, Declared In, Has Type

0.915 1.36 0.749 -↓

Accessible Entity Belongs to File, Class
Belongs to File, Declared In, Defined In

0.910 1.33 0.676 + ↓

5 Accessible Entity Belongs to File, Attribute
Belongs to Class, Declared In, Defined In,
Includes

0.900 1.54 0.399 +

Attribute Belongs to Class, Class Belongs to
File, Declared In, Defined In, Has Type

0.899 1.53 0.721 + ↓

Accessible Entity Belongs to File,Class
Belongs to File, Declared In, Defined In,
Includes

0.899 1.53 0.663 + ↓

Attribute Belongs to Class, Class Belongs to
File, Declared In, Defined In, Uses Type

0.896 1.51 0.840 -

Accessible Entity Belongs to File, Attribute
Belongs to Class, Class Belongs to File,
Declared In, Has Type

0.894 1.51 0.840 -

Table 10 depicts the best relation combinationss. For each combination, we present the
average Distance Score for all systems, the Z score as well as the p Value of a Chi Square

Empir Software Eng (2017) 22:1717–1762 1749

Table 12 Average and Standard Deviation with and without a combination of relations - Procedural Systems

Combination Mean Diff Score
with combination

SD Mean Diff Score
without combina-
tion

SD

1 Calls 0.322 0.162 0.749 0.135

Accesses 0.445 0.276 0.625 0.208

Sets 0.502 0.238 0.568 0.277

2 Calls, Accesses 0.189 0.094 0.796 0.139

Calls, Declared In 0.299 0.160 0.759 0.133

Calls, Defined In 0.299 0.159 0.759 0.134

3 Calls, Accesses, Accessi-
ble Entity Belongs to File

0.166 0.080 0.811 0.123

Calls, Accesses, Declared In 0.166 0.093 0.806 0.136

Calls, Accesses, Defined In 0.167 0.093 0.807 0.136

4 Calls, Accesses, Accessi-
ble Entity Belongs To File,
Declared In

0.139 0.082 0.822 0.119

Calls, Accesses, Accessi-
ble Entity Belongs To File,
Defined In

0.142 0.082 0.824 0.118

Calls, Accesses, Declared
In, Include

0.147 0.083 0.816 0.130

5 Calls, Accesses, Accessi-
ble Entity Belongs to File,
Declared In, Uses Type

0.122 0.096 0.831 0.122

Calls, Accesses, Accessi-
ble Entity Belongs to File,
Declared In, Includes

0.122 0.093 0.837 0.107

Calls, Accesses, Accessi-
ble Entity Belongs to File,
Defined In, Uses Type

0.123 0.095 0.832 0.122

Test. Z Score represents how many standard deviations the value is from the mean for this
number of relations (per one, per two etc.). A Z score less than -2 represents the this value
is in the top 0.5 % of this set. As far as the p Value is concerned, we conducted a Chi Square
Test in order to reveal the significance level of our results. Our Null Hypothesis was that
each relation combjnation and the corresponding obtained outcome (good, average, bad) is
independent. As we can see, for all combinations that energe as been among the best, the
Null Hypothesis is rejected with a probability of almost 100 %, as p Values are very close
or equal to 0, and therefore, we can conclude that there is a connection between the best
combinations and the obtained outcome.

On the other hand, Table 11 depicts the worst relations that can be used for architectural
extraction as observed in our case study. These results indicate that these relations when
used on their own (i.e. not combined with other relations) do not consitute a good choice
for architectural extraction.

Finally, Table 12, presents the mean distance score and standard deviations for all the
cases that contain a specific combination, as well as for all the cases that do not contain it.
The fact that when a specific combination of relations is present, we have a low distance

1750 Empir Software Eng (2017) 22:1717–1762

score and standard deviation, while when this combination is absent the distance score
rises significantly, indicates that this combination is important for architecture recovery, and
therefore should be always considered.

8.2.2 Interpretation

In this section we interpret the results presented above, by addressing the following related
questions.

Are there any relations that are the most important and should be always used when
available?

Our case study indicated that there are two relations whose presence makes significant
difference. First of all, the Calls relation seems to be the most important relation in proce-
dural systems. As we can see from Fig. 8 there are three groups of distance scores, which
are very clearly separated. The difference between the top group and the other two groups
is the presence of the Calls relation. This means that if we choose not to include the Calls
relation in our set of relations that will be used to extract a system’s architecture, then we
cannot obtain a distance score less than 0.6, which is not a satisfactory outcome. It is there-
fore safe to assume that the Calls relation should always be used, even though it is not the
easiest relation to extract.

This is also visible in Table 12. In the first row we present the mean and the standard
deviation of the distance score of all the combinations that contain and do not contain the
Calls relation. When in the considered combinations the Calls relation is present, the mean
distance score is 0.322 with a standard deviation of 0.162, while when the relation is absent
the mean distance score rises to 0.749 with a standard deviation of 0.135. There is a big
distance between the two mean scores which is in fact the price that one has to pay if
decides not to use the Calls relation. Even if all other relations are used, except Calls, the
distance score is 0.66, which is higher than the distance score containing at least Calls.
Therefore, our proposal is to start with the Calls relation and build up with more relations
if more accuracy is required and more resources can be spend in the extraction of more
relations.

In addition to Calls, another relation that is recommended to be part of the set of rela-
tions that will be used is the Accesses relation. This relation combined with the Calls
relation makes a good choice, as depicted in Table 10. It is noted that these two relations
are present in all the best combinations and are absent from all the worst combinations (see
Table 11). Furthermore, the pair Calls, Accesses is what makes the difference between the
average and good relations in Fig. 8. All the combinations below 0.3, which are considered
good combinations for recovery, contain both Calls and Accesses relations. Furthermore,
the combinations that contain these two relations have a mean value of 0.189 and a standard
deviation of 0.094 compared to 0.796 and 0.139 respectively for those combinations that
do not contain them. As a result, our proposal is that Calls and Accesses should always be
considered for architecture recovery.

Are there any relations that do not offer any apparent value?
In our case study we have encountered a number of relations for which their absence or

presence did not significantly affect the quality of the extracted architecture as this is mea-
sured by its distance to the ground truth reference standard architecture. These relations are
Has Type, Uses Type and, Sets. As it is depicted in Table 10, when these relations are added
to the Calls-Accesses combination the distance score of 0.319 we have already obtained by
Calls-Accesses, is only slightly enhanced. The same happens if we add these relations to
any combination. Given the fact that for these relations their contribution is not significant,

Empir Software Eng (2017) 22:1717–1762 1751

it is safe to conclude that they can be omitted for the sake of faster processing, with no
significant loss of accuracy.

Are there any relations that should not be used, or not be used on their own?
Throughout our case study we did not encounter any relation that when it was added to

a combination, has negatively affected the similarity score.
Additionally, as depicted in Table 11, combinations containing information only about

structural aspects of the system, such as Attribute Belongs to Class, Has Type Class Belongs
to File and Accessible Entity Belongs to File, Includes, Defined In, Declared In without
been combined with any relation that encompasses data or control flow information, tend
to produce a non acceptable result. However, when these relations are combined with data
and control flow relations such as Calls and Accesses produce the best results. Our case
study indicated that these relations should be avoided to be used on their own without been
considered in combination with a relation that defines connections between these entities
such as Calls and Accesses.

How many relations do we need for accurate architecture recovery?
The answer to this question depends on which relations one has available to use, first

of all. For example, if for some reason the Calls relation is not available, even if the other
twelve relations are used the distance score is about 0.65 which is very high. Our case study
indicated that four well chosen relations are adequate for an accurate architecture extraction
in procedural systems. More specifically, these top relations include Calls and Accesses
followed by Declared In, Includes,Accessible Entity Belongs to File, and Defined In. In
this context, the structure distance score between the extracted architecture and the one
considered as the reference one using four relations is 0.170, which indicates a very accurate
result. When five of these relations are used the average distance drops to 0.137. For more
than 6 relations, because the amount of the information that is provided is close to the total
amount of information of the system, provided that Calls and Accesses are included, the
difference between the distance scores in the various combinations is non-significant (in the
range 0.09 - 0.15). As a result, for more than 6 relations, if Calls and Accesses are included,
the choice of the other relations does not really matter.

8.3 Object Oriented Systems

Similar to procedural systems, a case study was also conducted on object oriented systems
for the purpose of assessing whether the results obtained for procedural systems also hold or
not, and if not, what are the notable differences. The obtained results for the object oriented
systems are presented on Figs. 10 and 11, Tables 13, 14 and 15. These tables present average
difference scores, but the obtained results are consistent for all six object oriented systems
we have considered in this study.

More specifically, Fig. 10 presents the average distance score for each combination
applied on all systems examined. As it is observed, there are four groups of points, those
above 0.8 which are considered bad combinations because the similarity between the two
architecture instances is extremely low, those between 0.8 and 0.6, which are still very dif-
ferent from the ground truth, those between 0.3 and 0.5 which are considered acceptably
similar and finally, those with distance score below 0.3 which indicates architectures that
are very close to the ground truth and correspond to the best combinations to be used for
architectural extraction according to the obtained results.

Similarly, Fig. 11 depicts the same information as Fig. 10, with the difference that data in
the Y-axis are now sorted in ascending order based on their distance score. As it is depicted,
there are three steps identified in the graph, marked with the three corresponding vertical

1752 Empir Software Eng (2017) 22:1717–1762

Fig. 10 Average distance score for object oriented Systems. X-axis relation combination generated orderly

lines. The first line separates the combinations that do not have the relations Calls, Accesses
or Sets (left) from those that have at least one of them (right). The second line separates the
combinations that do not have the Calls relation (left) from those that do (right). Finally, the
third line separates the combinations that do not have the relations Accesses or Calsl (left)
from those that have them both (right).

Fig. 11 Sorted average distance score for object oriented Systems. X-axis relation combination selected for
sorted depiction of Y-axis distance result

Empir Software Eng (2017) 22:1717–1762 1753

Table 13 Best combinations of relations - object oriented systems

Combination Diff Score Z Score < −2 p Value = 0 Ease of Relation
Extraction

1 Calls 0.665 −2.43 ++
2 Accesses, Calls 0.377 −2.90 +

Calls, Defined In 0.421 −2.61 +
Calls, Declared In 0.432 −2.53 +
Calls, Method Belongs To Class 0.4741 −2.25 ++

3 Accesses, Calls, Declared In 0.209 −2.96 + ↓
Accesses, Calls, Defined In 0.214 −2.93 + ↓
Accesses, Calls, Method Belongs to
Class

0.253 −2.71 + ↑

Accesses, Calls, Attribute Belongs
to Class

0.317 −2.34 + ↑

Accesses, Calls, Includes 0.361 −2.09 + ↑
Accesses, Calls, Uses Type 0.364 −2.07 -↓
Accesses, Calls, Inherits From 0.372 −2.03 + ↑

4 Accesses, Calls, Defined In,
Method Belongs to Class

0.174 −2.54 + ↓

Accesses, Calls, Declared In, Includes 0.185 −2.48 + ↓
Accesses, Calls, Declared In,
Method Belongs to Class

0.188 −2.47 + ↓

Accesses, Calls, Defined In, Includes 0.188 −2.47 + ↓
Accesses, Calls, Declared In, Class
Belongs to File

0.192 −2.44 + ↓

Accesses, Calls, Declared In, Sets 0.196 −2.43 + ↓
Accesses, Calls, Defined In, Sets 0.200 −2.40 + ↓

5 Accesses, Calls, Declared In,
Includes, Method Belongs to Class

0.149 −2.21 +

Accesses, Calls, Declared In, Class
Belongs to File, Method Belongs to
Class

0.151 −2.20 +↓

Accesses, Calls, Declared In,
Attribute Belongs to Class, Method
Belongs to Class

0.154 −2.18 +

Accesses, Calls, Defined In,
Includes, Method Belongs to Class

0.157 −2.17 +

Accesses, Calls, Defined In, Has
Type, Method Belongs to Class

0.157 −2.17 -

Accesses, Calls, Declared In,
Attribute Belongs to Class,
Includes

0.165 −2.13 +

Accesses, Calls, Declared In, Class
Belongs to File, Includes

0.166 −2.12 +

Table 13 depicts the best relation combinations obtained for object oriented systems. For
each combination, the average Distance Score for all systems, the Z score as well as, the p
Value of a Chi Square Test, is presented. Z Score represents how many standard deviation

1754 Empir Software Eng (2017) 22:1717–1762

Table 14 Worst combinations of relations - object oriented systems

Combination Diff Score Z Score < −2 p Value > 0.5 Ease of Relation
Extraction

1 Inherits From 0.985 0.843 ++
Uses Type 0.972 0.71 –

Method Belongs to Class 0.959 0.57 ++
Attribute Belongs to Class 0.958 0.57 ++
Defined In 0.956 0.54 +

2 Has Type, Uses Type 0.982 1.13 –

Class Belongs to File, Declared In 0.969 1.04 +
Attribute Belongs to Class, Method
Belongs to Class

0.967 1.03 ++

Class Belongs to File, Defined In 0.961 0.99 +
Has Type, Method Belongs to Class 0.959 0.98 -↓

3 Class Belongs to File, Declared In,
Defined In

0.970 1.38 + ↓

Attribute Belongs to Class, Method
Belongs to Class, Has Type

0.968 1.36 -

Attribute Belongs to Class, Method
Belongs to Class, Uses Type

0.964 1.35 -

Has Type, Inherits From, Uses Type 0.958 1.31 –

Attribute Belongs to Class, Inherits
From, Method Belongs to Class

0.954 1.29 ++

4 Attribute Belongs to Class, Has
Type, Method Belongs to Class,
Uses Type

0.964 1.68 -

Class Belongs to File, Declared In,
Defined In, Includes

0.950 1.61 +↓

Attribute Belongs to Class Has
Type, Includes, Method Belongs to
Class

0.943 1.56 -

Attribute Belongs to Class,
Declared In, Defined In, Inherits
From

0.941 1.56 + ↓

Attribute Belongs to Class,
Includes, Method Belongs to Class,
Uses Type

0.941 1.55 -

5 Class Belongs to File, Declared In,
Defined In, Has Type, Uses Type

0.941 1.87 –

Attribute Belongs to Class, Has
Type, Includes, Method Belongs to
Class, Uses Type

0.941 1.87 –

Atribute Belongs to Class, Class
Belongs to File, Declared In,
Defined In, Method Belongs to
Class

0.939 1.858 + ↓

Class Belongs to File, Declared In,
Has Type, Includes, Uses Type

0.935 1.84 –

Attribute Belongs to Class,
Declared In, Defined In, Has Type,
Inherits From

0.935 1.84 -↓

Empir Software Eng (2017) 22:1717–1762 1755

Table 15 Average and Standard Deviation with and without a combination of relations - object oriented
systems

Combination Mean Diff Score
with combination

SD Mean Diff Score
without combina-
tion

SD

1 Calls 0.324 0.146 0.702 0.114

Accesses 0.421 0.229 0.605 0.192

Sets 0.482 0.194 0.543 0.258

2 Calls, Accesses 0.202 0.080 0.764 0.128

Calls, Declared In 0.284 0.131 0.710 0.111

Calls, Method Belongs to Class 0.286 0.134 0.719 0.112

Calls, Defined In 0.288 0.131 0.713 0.111

3 Calls, Accesses, Declared In 0.161 0.041 0.768 0.120

Calls, Accesses, Defined In 0.164 0.042 0.770 0.122

Calls, Accesses, Method Belongs to
Class

0.168 0.071 0.781 0.121

4 Calls, Accesses, Declared In,
Method Belong to Class

0.129 0.032 0.793 0.109

Calls, Accesses, Defined In,
Method Belongs to Class, Defined
In

0.133 0.032 0.795 0.109

Calls, Accesses, Class Belongs to
File

0.148 0.044 0.804 0.125

5 Calls, Accesses, Declared In,
Attribute Belongs to Class, Method
Belongs to Class

0.113 0.030 0.809 0.107

Calls, Accesses, Declared In, Class
Belongs to File, Method Belongs to
Class

0.114 0.033 0.825 0.115

Calls, Accesses, Declared In,
Method Belongs to Class, Includes

0.115 0.031 0.792 0.114

points the given distance value is from the mean of distance obtained from all systems being
examined, for this relation combination. A Z score less than −2 represents that the value is
in the top 0.5 % of this set. Values that are far from the mean, correspond to combinations
that are considered the best ones. As far as the p Value is concerned, we conducted a Chi
Square Test in order to reveal the significance level of our results. As with the case in pro-
cedural systems, our Null Hypothesis was that each relation combination and the obtained
outcome (good, average good, average bad, bad) is independent. As we can see, for all the
combinations that considerd the best, the Null Hypothesis is rejected and with a probability
of almost 100 % and therefore, we can conclude that there is a connection between the best
combinations and the obtained result.

On the other hand, Table 14 depicts the worst relation combinations, according to our
case study, for object oriented systems. As with Table 13, this table also provides informa-
tion on Distance Score, the Z Score as well as, the p Value for the Chi Square Test of each
combination. We can see here, that all these relations do not provide acceptable results and
therefore, their use for architectural extraction is not suggested.

1756 Empir Software Eng (2017) 22:1717–1762

Finally, Table 15, depicts the mean distance score and the standard deviation for all cases
that contain a combination, as well as for all the cases that do not contain it. The fact that
when a relation combination is present, we have a low distance score and standard deviation,
while when this combination is absent the distance score rises significantly, indicates that
this combination is important for architecture recovery and should be always considered for
architecture recovery in object oriented systems.

8.3.1 Interpretation

As with the case of procedural systems, we interpret the obtained results by answering a set
of related questions.

Are there any relations that are the most important and should be always used when
available?

As was discussed in the previous sections regarding procedural systems, the relations
that have the highest impact for architecture recovery were the Calls and Accesses relations.
Although, in object oriented systems these relations are still identified as important, these
are best to be combined with relations related to the overall organization of the source
code. As it is depicted in Table 15 relations that reveal the organization of the classes in
object oriented systems provide significant information for accurate architecture extraction
(distance from the ground truth less than 0.2), especially when combined with one or more
relations about the interaction of the system’s elements (e.g. Calls and Accesses).

Furthermore, in Fig. 11 a major difference is observed when compared to the corre-
sponding Figure for procedural systems. More specifically, a large drop is observed in the
beginning of the diagram, separating the combinations that do not contain any of the Calls,
Accesses and Sets relations, from those combinations that they do contain these relations. As
a result, we can infer that the absence of information on interactions between Components
results to noisy architecrure extraction manifested by high distance scores of the obtained
architecture, from the one considered as the reference standard. The obtained results indi-
cate that in order to acquire an architecture close to the reference standard we need at least
three relations, namely the Calls relation, Accesses relation, and a relation such as Method
Belongs to Class, Declared In or Defined In that relate to the overall organization of the
source code. With only these three relations the distance score is about 0.25, which can be
considered satisfactory. The results indicate that when these are combined with additional
code structure related relations such as Attribute Belongs to Class or Class Belongs to File
an even more accurate depiction of the architecture can be extracted with distance scores
less than 0.2 if four of these relations are combined, or 0.15 if five of these relations are
combined.

Finally, an interesting point regarding object oriented systems is that source code
structure-related relations are easy to extract, as indicated in Table 3. Such relations can
be extracted with a simple scanning of the source code, and therefore do not require extra
parsing, processing, or linking effort. If these relations are ignored, as Table 15 depicts,
the average distance score rises to values higher than 0.7, which actually indicates that the
remaining relations are not very useful for architectural extraction. Therefore, for archi-
tecture extraction in object oriented systems is best to start with the combination Calls,
Accesses and one of the following Declared In, Defined In or Method Belongs to Class, and
consider more relations, if more accuracy is required and more resources can be allocated
for the extraction of such relations from the source code.

Are there any relations that do not offer any apparent value?

Empir Software Eng (2017) 22:1717–1762 1757

Our case study revealed that there are some relation combinations that do not have a
positive or negative impact for architecture extraction. These relations are Has Type, Inherits
From and Uses Type. As it is depicted in Table 13, when these relations are added to the
Calls, Accesses combination the distance score is only slightly changed. The same happens
if we add these relations to any combination. In this respect, we can infer that these relations
can be omitted altogether, for the sake of faster processing, with no loss in the accuracy of
the extracted architecture.

Are there any relations that should not be used, or not used on their own?
As with procedural systems, throughout our case study we did not encounter any relation

that when it was considered it had negatively affected the similarity score. However, there
were a number of structure-related relations that when not combined with data or control
flow, produce a non accurate depiction of the system architecture.

Table 11 depicts relation combinations containing information about structural aspects
of the system, such as Attribute Belongs to Class, Class Belongs to File and, Method
Belongs to Class, which when combined with information related to data or control flow
(e.g. Calls, Accesses), produce very accurate results. For this reason, these relations are
better to be avoided from being used on their own for architecture recovery without consid-
ering at the same time data or control flow related relations, such as Calls, Accesses, or Sets
relation.

How many relations do we need for accurate architecture recovery in object oriented
systems?

The results indicate that for object oriented systems four relations are the minimum for
an accurate extraction (i.e. drop on a distance score below or around 0.17), with the best
combination being the use of Calls, Accesses pair with the Defined In and Method Belongs
to Class relations. For better and more sound results, five relations are best to be used.

These include the use of Calls, Accesses pair, and the addition of a relation such as
Method Belongs to Class, Includes, Attribute Belongs to Class, or Class Belongs to File
provides a distance score lower than 0.15, which indicates an accurate extraction. For more
than five relations, because the amount of the information that is included is close to the
total amount of information provided by all available relations, provided that both structural
and relation about interaction of Components are included as discussed above, the differ-
ence between the distance scores of the combinations are insignificant (in the range 0.07 -
0.15). As a result, the selection of more than the appropriate five relations does not really
contribute to the accuracy of the extracted architecture.

9 Conclusion and Future Work

In this paper, we presented the results of a case study for assessing the impact differ-
ent source code relations have on the accuracy of clustering-based architecture extraction.
Clustering-based architecture extraction is a well investigated subject in the area of reverse
engineering, and a large number of techniques have been proposed in the research litera-
ture. However, there is limited work on the identification of which relation combinations
can be easily obtained from the source code, and yet have a high impact on extracting an
accurate depiction of a system’s actual architecture. For this purpose, we have designed
and implemented a case study in order to evaluate which relations have the highest positive
impact on cluster-based architectural extraction. Furthermore, we are interested in classify-
ing these relations according to their ease of extraction from the source code, by considering

1758 Empir Software Eng (2017) 22:1717–1762

as a factor whether they require the use of simple scanners, and simple parsers, or require
specialized parsers and linkers. Our case studies were differentiated and applied first on
large open-source procedural systems, and second on large open-source object oriented
systems.

Our results indicate that the selection of the relations has a significant impact on the
accuracy of the extracted architecture, as this is compared to a reference architecture used
as a ground truth. Depending on the accuracy sought, our case study indicated that we can
extract an accurate architecture by using a small number of selected relations. More specifi-
cally, in procedural systems, relations related to data and control flow between Components,
such as the “Call” and “Access” relations, should be always used and never omitted. As
new relations are added, the extracted architecture becomes more accurate. However, a quite
accurate architecture can be extracted by a combination of four relations that utilizes Calls
and Accesses relations, followed by a combination of Declared In, Includes, Accessible
Entity Belongs to File, or Defined In.

In object oriented systems, the organization of the source code (class-subclass hierar-
chies, and interfaces) reveals much information about the architecture when combined with
data or control-flow related information. As expected, the combinations that have the greater
number of relations produce the most accurate results. However, when the relations that
are considered the most important are missing, the similarity to the ground truth architec-
ture deteriorates dramatically. For object oriented systems, a minimum of four relations can
be used (Calls, Accesses pair, combined with Method Belongs to Class, Includes), but for
more accurate and stable results five relations are best to be used. These include the Calls,
Accesses pair, combined with Method Belongs to Class, Includes Attribute Belongs to Class,
Class Belongs to File, Declared In, or Defined In relations.

Our case study indicates that there were no relations that have a negative impact on the
obtained result and should be consequently avoided. However, certain relations were found
whose use should only be considered in combination with the Calls and Accesses relations,
otherwise they do not make any significant difference if used only on their own. These
include Attribute Belongs to Class, HasType Class Belongs to File and Accessible Entity
Belongs to File, Includes, Defined In, Declared In for procedural systems, and Attribute
Belongs to Class, Class Belongs to File, Method Belongs to Class and Uses Type for object
oriented systems. It is noted though that even these relations are not valuable on their own,
they provide the best results when combined with Calls and Accesses relations.

Overall, we believe that this work covers an area that is of practical value to both
researchers and practitioners in the reverse engineering community, and sets the stage for
further experimentation on this subject. One such area is to experiment with systems written
in other popular programming languages such as Python which supports multiple pro-
gramming paradigms (object oriented, imperative, functional, procedural), and investigate
whether there is any difference on the relations that need be considered for architecture
recovery from the ones we have identified in this study.

Another area is to assess whether the application domain has an impact on the obtained
results, and whether other relation combinations are better to use than the ones identified.

Finally, it is interesting to experiment with distributed systems and consider relations
involving run-time information and message exchange patterns, by assuming that these
messages may hide valuable information about the architecture of the system.

Acknowledgments We would like to thank Stergios Ientsek for his contribution related to enhancements
of the extraction tools and the production of RSF files, and the anonymous reviewers for their constructive
comments.

Empir Software Eng (2017) 22:1717–1762 1759

References

Adams B, Tromp W, De Meuter H, Hassan A (2009) Can we refactor conditional compilation into aspects?
In: Proceedings of the 8th ACM International Conference on Aspect-oriented Software Development,
AOSD 09, pages 243–254, New York, ACM

Akers RL, Baxter ID, Mehlich M, Ellis B, Luecke K (2005) C++ component model reengineering by
automatic transformation. In: CrossTalk, The Journal of Defense Software Engineering

Allen R (1997) A formal approach to software architecture, Ph.D. thesis, Carnegie Mellon School of
Computer Science

Andritsos P, Tzerpos V (2005) Information-theoretic software clustering. IEEE Trans Softw Eng 150–165
Anquetil N, Lethbridge T (1998) Extracting concepts from file names: a new file clustering criterion. In: Pro-

ceedings of the international conference on software engineering. Association of Computing Machinery
(ACM) Press, pp 84–93

Bass L, Clements P, Kazman R (2012) Software architecture in practice. Addison-Wesley Professional, 3rd
Edn

Bass L, Clements P, Kazman R (2013) Software architecture in practice. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA

Bauer M, Trifu M (2004) Architecture-aware adaptive clustering of oo systems. In: Proceedings of the
conference on software maintenance and reengineering. IEEE Computer Society Press, pp 3–12

Bois BD et al. (2007) Supporting reengineering scenarios with FETCH: an experience report. ECEASST 8
Bojic D, Velasevic D (2000) A use-case driven method of architecture recovery for program understanding

and reuse reengineering. In: IEEE Conference on Software Maintenance and Reengineering, CSMR’00.
pp 23–33

Boughanmi F (2010) Multi-language and heterogeneously-licensed software analysis. In: Proceedings of
17th working conference on reverse engineering. pp 293–296

Bowman IT, Holt R (1998) Software architecture recovery using conway’s law. In: Proceedings of the 1998
conference of the centre for advanced studies on collaborative research. CASCON ’98, 6 IBM Press

Canfora G, Czeranski J, Koschke R (2000) Revisiting the delta-ic approach to component recovery. In:
Proceedings of the working conference on reverse engineering. IEEE Computer Society Press

Chiricota Y, Jourdan Y, Melanon F (2003) G. Software Components capture using graph clustering. In:
Proceedings of the workshop on program comprehension. IEEE Computer Society Press, pp 217–226

Corazza A et al. (2011) Investigating the use of lexical information for software system clustering, CSMR,
IEEE Computer Society 35–44

DeBaud JM, Moopen B, Rugaber S (1994) Domain analysis and reverse engineering. ICSM IEEE Comput
Soc 326–335

Ducasse S, Pollet D (2009) Software architecture reconstruction: A process-oriented taxonomy. IEEE Trans
Softw Eng 99(1)

Ducasse S, Tichelaar S (2003) Dimensions of reengineering environment infrastructures. Int J Softw Maint
Res Pract 15:345–373

Feiler PH (2014) AADL and model-based engineering. Ada Lett ACM 34(3):17–18
Fischer M, Pinzger M, Gall H (2003) Analyzing and relating bug report data for feature tracking. In: Pro-

ceedings of the 10th working conference on reverse engineering, WCRE ’03. IEEE Computer Society,
Washington, pp. 90–,

Fleck G et al. (2016) Experience report on building astm based tools for multi-language reverse engineering.
In: Proceedings of 23rd conference on software analysis, evolution, and reengineering, pp 283–687

Garcia J et al. (2011) Enhancing architectural recovery using concerns. In: Proceedings of the 2011 26th
IEEE/ACM international conference on automated software engineering, ASE ’11, IEEE, pp 552–555

Garcia J, Popescu D, Mattmann C, Medvidovic N, Cai Y (2011) Enhancing architectural recovery using
concerns, 26th IEEE/ACM International Conference on Automated Software Engineering, ASE ’11.
IEEE 552–555

Garcia J, Ivkovic I, Medvidovic N (2013) A comparative analysis of software architecture recovery
techniques, 28th International Conference on Automated Software Engineering, ASE 2013. IEEE
486–496

Garcia J, Krka I, Mattmann C, Medvidovic N (2013) Obtaining ground-truth software architectures. In:
Proceedings of the 2013 international conference on software engineering. ICSE ’13 IEEE Press, pp
901–910

Garlan D, Monroe RT, Wile D (1997) Acme: An architecture description interchange language. In:
Proceedings of CASCON’97, Toronto, Ontario, pp 169–183

Imber M (1991) The CASE data interchange format (CDIF) standards. In: Long, F (ed) Software engineering
environments, Ellis Horwood. pp 457–474

1760 Empir Software Eng (2017) 22:1717–1762

Jackson D (2012) Software Abstractions: logic, language, and analysis MIT press
Jerding D, Rugaber S (2000) Using visualization for architectural localization and extraction. Sci Comput

Program:267–284
Kobayashi K et al. (2012) Feature-gathering dependency-based software clustering using dedication and

modularity. In: Proceedings of the 28th international conference on software maintenance. IEEE
Computer Society, pp 462–471

Koschke R, Canfora G, Czeranski J (2006) Revisiting the approach to component recovery, Science
of Computer Programming, Special Issue on Software Analysis, Evolution and Re-engineering, pp
171–188

Kruchten P (1995) The 4+1 view model of architecture. IEEE Softw 12(6):42–50
Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist Q:83–97
Lethbridge T, Tichelaar S, Ldereder E (2004) The dagstuhl middle metamodel: A schema for reverse

engineering. Electr Notes Theor Comput Sci 94:7–18
Lung CH (1998) Software architecture recovery and restructuring through clustering techniques. In:

Proceedings of the third international workshop on software architecture, ISAW ’98, ACM, pp 101–104
Lung C-H (1998) Software architecture recovery and restructuring through clustering techniques. In: Pro-

ceedings of the Third International Workshop on Software Architecture. Association of Computing
Machinery (ACM) Press, pp 101–104

Lungu M, Lanza M, Nierstrasz O (2014) Evolutionary and collaborative software architecture recovery
with softwarenaut. Sci Comput Program 79:204–223. In: Proceedings of the Conference on Software
Maintenance and Reengineering, CSMR ’00, pages 23–, Washington, DC, USA, 2000 IEEE Computer
Society

Lutellier T, Chollak D, Garcia J, Tan L, Rayside D, Medvidović N, Kroeger R (2015) Comparing software
architecture recovery techniques using accurate dependencies. In: Proceedings of the 37th international
conference on software engineering - vol 2, ICSE ’15. IEEE Press, Piscataway, pp 69–78

Mancoridis S et al. (1999) Bunch: A clustering tool for the recovery and maintenance of software system
structures. In: Proceedings IEEE international conference on software maintenance. IEEE Computer
Society Press, pp 50–59

Mancoridis S, Holt RC (1996) Recovering the structure of software systems using tube graph interconnection
clustering. In: Proceedings of international conference on software maintenance 1996. IEEE, pp 23–32

Mahdavi K, Harman M, Hierons RM (2003) A multiple hill climbing approach to software module clustering.
In: Proceedings of the international conference on software maintenance, september. IEEE Computer
Society Press, pp 315–324

Maqbool O, Babri HA (2004) The weighted combined algorithm: A linkage algorithm for software clus-
tering. In: Proceedings of the conference on software maintenance and reengineering. IEEE Computer
Society Press, pp 15–24

Maqbool O, Babri H (2007) Hierarchical clustering for software architecture recovery. IEEE Trans Softw
Eng IEEE:759–780

Medvidovic N (1995) Formal definition of the chiron-2 software architectural style
Mendonça NC, Kramer J (2001) An approach for recovering distributed system architectures, Automated

Software Engg, Kluwer Academic Publishers, pp 311–354
Muller H, Wong K, Tilley S (1992) A reverse engineering environment based on spatial and visual soft-

ware interconnection models, ACM SIGSOFT Symposium on Software Development Environments.
Association of Computing Machinery (ACM) Press, pp 88–98

Murphy GC, Notkin D, models KS (1995) Software reflexion Bridging the gap between source and high-level
models. SIGSOFT Softw Eng Notes 20(4):18–28

Overbey JL, Johnson RE (2008) Generating rewritable abstract syntax trees. In: Gaševic D, Lämmel R, Wyk
EV (eds) Software language engineering: first international conference (SLE 2008), Vol. 5452 of Lecture
Notes in Computer Science. Springer, Berlin, pp 114–133

Patel C, Hamou-Lhadj A, Rilling J (2009) Software clustering using dynamic analysis and static depen-
dencies. In: 13th European conference on software maintenance and reengineering, CSMR 2009,
Architecture-Centric Maintenance of Large-SCale Software Systems, Kaiserslautern Germany, 24-27
March 2009, pp 27–36

Pinzger M et al. (2004) Architecture recovery for product families. In: van der Linden F (ed) Software
product-family engineering, Lecture notes in computer science, vol 3014. Springer, Berlin, pp 332–351

Rayside D, Reuss S, Hedges E, Kontogiannis K (2000) The effect of call graph construction algo-
rithms for object-oriented programs on automatic clustering. In: Proceedings workshop on program
comprehension, 2000. Proceedings. IWPC, pp 191–200

Empir Software Eng (2017) 22:1717–1762 1761

Sartipi K, Kontogiannis K (2001) A graph pattern matching approach to software architecture recovery. In:
Proceedings of the IEEE international conference on software maintenance (ICSM’01). IEEE Computer
Society, pp 408–419

Sartipi K, Kontogiannis K (2003) A user-assisted approach to component clustering. J Softw Maint Evol Res
Pract 15(4):265–295

Tilley S, Weiderman N, Woods S, Bergey J, Smith D (1999) Why reengineering projects fail. In:
TECHNICAL REPORT CMU SEI99TR010 ESCTR99010. Software Engineering Institute

Tzerpos V, Holt RC (1996) A hybrid process for recovering software architecture CASCON
Tzerpos V, Holt RC (2000a) ACDC: An algorithm for comprehension-driven clustering. In: Proceedings of

the seventh working conference on reverse engineering. IEEE, pp 258–267
Tzerpos V, Holt RC (2000b) On the stability of software clustering algorithms, 8th international workshop

on program comprehension (IWPC 2000). IEEE:211–218
van Deursen A, Kuipers T (1999) Identifying objects using cluster and concept analysis. In: Proceedings

of the international conference on software engineering. Association of Computing Machinery (ACM)
Press, pp 246–255

Van Rompaey B et al. (2009) SERIOUS: software evolution, refactoring, improvement of operational and
usable systems. In: CSMR. IEEE Computer Society, pp 277–280

Van Rompaey B, Demeyer S (2009) Establishing traceability links between unit test cases and units
under test. In: 13th European conference on software maintenance and reengineering, CSMR 2009,
Architecture-Centric Maintenance of Large-SCale Software Systems. Kaiserslautern Germany, pp
209–218

Vasconcelos A, Werner C (2004) Software architecture recovery based on dynamic analysis. In: XVIII
Brazilian symposium on software engineering. Workshop on Modern Software Maintenance

Wilson RJ (1986) Introduction to graph theory. Wiley
Wu J, Hassan AE, Holt RC (2005) Comparison of clustering algorithms in the context of software evolution.

ICSM IEEE Comput Soc:525–535
Wu J, Hassan AE, Holt RC (2005) Comparison of clustering algorithms in the context of software evolution.

In: Proceedings of the 21st IEEE international conference on software maintenance. ICSM ’05 IEEE
Computer Society, pp 525–535

Xing Z, Stroulia E (2005) UMLDiff: An Algorithm for Object-oriented Design Differencing. In: Proceedings
of 20th international conference on automated software engineering. ACM, pp 54–65

Zou Y, Kontogiannis K (2001) Towards a portable xml-based source code representation. In: Proceedings
of international conference on software engineering (ICSE) 2001 workshops of XML technologies and
software engineering (XSE), Toronto, Canada

Ioanna Stavropoulou received a B.Eng. in Electrical and Computer Engineering from the National Technical
University of Athens with a major in Software Engineering. Ioanna is a second year M.Sc. candidate at
Computer Science Department University of Toronto and she is currently working in the areas of model
checking, feature interaction and modular composition in the context of product lines.

1762 Empir Software Eng (2017) 22:1717–1762

Marios Grigoriou has received B.Eng, in Electrical and Computer Engineering from the National Technical
University of Athens, with a major in Software Engineering. He is currently working as a Data Analyst in the
Hellenic Army. His research interests include software evolution, bug localization, and Artificial Intelligence.

Kostas Kontogiannis, is a Professor at Computer Science Department at Western University, where he holds
a Western Research Chair in Software Engineering for Cyber-Physical Systems. Prior to joining Western,
Kostas has served as a tenured faculty at the National Technical University of Athens, and at the University
of Waterloo. Kostas has received a B.Sc. in Mathematics from the University of Patras, Greece, a M.Sc. in
Computer Science from Katholieke Universiteir Leuven, Belgium, and a Ph.D. in Computer Science from
McGill University, Canada. Kostas is working in the areas of software analysis, service computing, and model
driven engineering.

	Case study on which relations to use for clustering-based software architecture recovery
	Abstract
	Introduction
	Architecture Recovery Scoping
	Motivation and Rationale of the Study
	Paper Organization

	Definition of the Study
	Objective
	Input
	Output
	Research Questions
	Method
	Ground Truth Architecture Validation

	Related Work
	Architecture Recovery Using Clustering
	Architecture Recovery Using Other Methods
	Architectural Models
	Architecture Analysis and Design Language
	ACME
	Alloy
	C2
	Wright

	Evaluation of Architectural Recovery Techniques

	Outline of the Analysis Process
	Source Code Relation Extraction
	Parsing
	Source Code Extracted Relations

	Architecture Representation and Differencing
	Architecture MetaModel Instantiation
	Architecture Model Differencing
	Component Matching
	Entity and Property Matching
	Connector Matching
	Binding Matching
	Differencing Score
	Differencing Score Example

	Ground Truth Architecture Validation Process
	Case Study
	Case Study Infrastructure and Systems Under Analysis
	Analysis Results
	Procedural Systems
	Interpretation

	Object Oriented Systems
	Interpretation

	Conclusion and Future Work
	Acknowledgments
	References

