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Abstract As software applications become highly inter-
connected in dynamically provisioned platforms, they form
the so-called systems-of-systems. Therefore, a key issue
that arises in such environments is whether specific require-
ments are violated, when these applications interact in new
unforeseen ways as new resources or system components
are dynamically provisioned. Such environments require
the continuous use of frameworks for assessing compliance
against specific mission critical system requirements. Such
frameworks should be able to (a) handle large requirements
models, (b) assess system compliance repeatedly and fre-
quently using events from possibly high velocity and high
frequency data streams, and (c) use models that can reflect
the vagueness that inherently exists in big data event col-
lection and in modeling dependencies between components
of complex and dynamically re-configured systems. In this
paper, we introduce a framework for run time reasoning over
medium and large-scale fuzzy goal models, and we propose
a process which allows for the parallel evaluation of such
models. The approach has been evaluated for time and space
performance on large goal models, exhibiting that in a sim-
ulation environment, the parallel reasoning process offers
significant performance improvement over a sequential one.
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1 Introduction

Over the past few years, we witness a paradigm shift toward
the development, deployment, and operation of large-scale
software systems. Advances in middleware technologies
make also possible the streamlined integration of diverse
systems and applications. As such systems are integrated
and expanded in scope, they form the so-called ultra-large-
scale systems or systems-of-systems [2,39]. Such systems
utilize heterogeneous monitoring infrastructures which pro-
duce log data at high rates and from various sources [45].
Furthermore, virtualization technologies make possible the
dynamic provision of resources in order to meet varying run
time operational needs. Such dynamic adaptation may take
the form of provisioning new virtual platforms, migrating
processes to different virtual machines as well as transfer-
ring, splitting, or distributing data and computation logic to
different servers [10,15].

Consequently, the functional and non-functional require-
ments as well as the global constraints, and the invariants of
such integrated and virtualized systems, become very com-
plex and interrelated, resulting in models with more that
10000 requirements, a context that Wnuk et al. refer to
as Very Large-Scale Requirements Engineering (VLSRE)
[48,49]. Examples of such interrelated requirements and
constraints include throughput, security, privacy, energy con-
sumption, and optimal utilization of resources, to name a
few. It is therefore of no surprise that run time requirements
verification and compliance become focal points during the
deployment and operation of such systems.
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In this respect, the software engineering community has
investigated goal models [26,33] as means to represent
and denote such diverse and possibly conflicting software
requirements. In addition, a number of techniques have also
been proposed for analyzing, processing, and reasoning on
such models, in a quest to assess the impact one require-
mentmay have on other requirements, how alternative design
decisionsmayaffect systemgoals, or to evaluatewhether spe-
cific requirements can be satisfied given a set of conditions
and constraints [6,23,34]. However, many of these modeling
and reasoning techniques have been developed to be applied
off-line, during the specification, or the design phase of a
software system. On the other hand, techniques that can be
applied at run time aremostly focusingon requirements adap-
tation, or on probabilistic reasoning over goal models [9].

In this paper, we present a complementary to probabilistic
reasoning approach that aims to model by a confidence score
the strength by which an expert modeler considers that one
requirement or system configuration affects another. More
specifically, we build on previous work we have conducted
[13,14], and we introduce a fuzzy goal model reasoning
process which can be parallelized and applied at run time.
Such parallelization serves to tackle tractability issues either
when large-scalemodels are involved orwhenmodels should
be repeatedly and frequently evaluated against high velocity
and high frequency logged event streams. We propose the
concept of reasoning units and a novel framework that allows
for the formulation of reasoning sub-plans that can be evalu-
ated concurrently. In this work, we adapt and utilize a model
transformation engine introduced in [12], in order to trans-
form goal models into fuzzy rules. However, it is important
to note that the proposed framework is not bound to the use
of fuzzy logic reasoners as it also provides extension points
that enable fuzzy reasoning to be replaced by any other form
of reasoning under uncertainty.

We consider that this work contributes in two main areas.
The first area deals with the parallelization of the goal
model reasoning process. As requirements and policymodels
become more complex and interdependent, the paralleliza-
tion of the reasoning process addresses tractability issues by
providing means to distribute the reasoning load amongmul-
tiple threads so as to enable the analysis over many different
streams of logged events produced during the operation of
a system. The second area deals with the investigation of
fuzzy reasoners for the run time evaluation of goal models.
Even though a number of goal model reasoning frameworks
that apply fuzzy logic principles have been proposed in the
literature [8,13], our approach has three notable differences.
The first difference relates to the objectives and intended use
of the framework. In [8], the focus is on determining a cer-
tain set of adaptation countermeasures that can be applied
so that certain system goals can be fulfilled. Our approach
aims to evaluate whether and to what degree (fuzzy truth

value) a goal is satisfiedwhen the system is physically altered
or modified. The second difference relates to the run time
framework itself. In [8], the run time framework depends on
a temporal language which will have to execute on a spe-
cialized virtual machine or use a special purpose compiler.
Our approach utilizes standardized open source fuzzy rea-
soning engines making it thus readily available as a library
or standalone application. The third difference deals with
run time performance and scalability. In [13], the focus is
on the sequential evaluation of fuzzy rules that are generated
from fuzzy goal models, while in the approach presented
here is the design and application of a technique that allows
for the parallel evaluation of fuzzy goal models. Such paral-
lelization addresses tractability issues either when very large
models are considered, or (instance level) models have to
be repeatedly and frequently evaluated against high-velocity
and high-frequency input data.

This paper is organized as follows. Section 2 presents
the motivation for this work and outlines the proposed
framework process. Section 3 presents related work, while
Sect. 4 discusses fuzzy goal models. Section 5 discusses the
generation of the reasoning units. Subsequently, Sect. 6 dis-
cusses the identification of goal model dependencies and the
extraction of a sequential reasoning plan that respects all
dependencies that exist between the reasoning units. Section
7 describes a goal model reasoning parallelization technique.
Section 8 presents experimental results and discusses the
threats to the validity of the proposed approach. Section 9
describes the application of the proposed reasoning tech-
nique in a real-life working example. Section 10 concludes
the paper and provides pointers for future research.

2 Motivation and process outline

2.1 Motivation

Over the past few years, we have experienced a significant
growth on the deployment of large-scale highly intercon-
nected systems that operate in a number of application
domains such as banking, retail, commerce, and government.
These systems encompass complex requirements that involve
large models [33]. The continuous evaluation of such large
models becomes of key factor for ensuring overall functional
and non-functional requirements system compliance, espe-
cially when many different components, applications, and
virtual machines are added or deleted in dynamically provi-
sioned operating environments.

The problem has been recognized in the related research
literature as an important one [19,46], both from the require-
ments verification perspective and from the policy compli-
ance and security perspective. Therefore, it is important to
be able to evaluate at run time, whether changes in system
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topology, resources, or operating environments affect spe-
cific system requirements or violate system constraints.

Goal models and goal model analysis techniques have
been extensively applied in areas related to requirements
engineering, software engineering, information systems, and
enterprise modeling [26]. In the context of this paper, we
focus on reasoning techniques that can be used to perform
analysis over goal models in order to answer questions like
“To what degree does the running system satisfy certain
goals?” or “Which requirements are satisfied below a certain
threshold due to dynamic system reconfiguration?”. More
specifically, given a set of events that are collected from the
running system, and a set of goal models, we need to eval-
uate whether system requirements hold and to what degree
as the system is dynamically altered. This problem implies
a forward propagation satisfaction analysis for which both
quantitative and qualitative approaches have been proposed
in the literature [28]. Additionally, as such systems use het-
erogeneous monitoring infrastructures which produce log
data at high rates from various sources, monitoring and rea-
soning techniques used for run time analysis should be able
to cope with high-volume, high-frequency, and high-veracity
event streams.

To date, the software engineering community has pro-
posed a number of models, frameworks, and tools that allow
for the specification, analysis, and evaluation of system
requirements and goal models. However, there is still lim-
ited work performed on parallelizing the reasoning process
on large requirementsmodels using real-time streaming data,
especially when the dependencies and impact of one system
requirement to other system requirements cannot be fully
and deterministically modeled, due to the high complexity
of structural and behavioral inter-dependencies entailed in
such complex systems.

In this respect, we define a model transformation process
that allows for the generation of reasoning units from a given
goal model. As it will be discussed inmore detail in Sect. 5.2,
each such reasoning unit is annotatedwith a certain reasoning

logic. Subsequently, this allows for the use of an appropri-
ate inference engine in order to perform deductions on each
reasoning unit, by taking into account events collected from
the running system. Furthermore, we propose a technique for
analyzing the dependencies between these reasoning units,
so as to be able to identify collections of reasoning units that
can be evaluated in parallel. This parallelization of the rea-
soning process can assist toward processing large streams of
data collected from the running system in a tractable way.

Finally, we investigate the application of fuzzy con-
trollers’ principles for reasoning over goal models in which
contribution links are annotatedwith contribution confidence
values, and goals can holdwith a degree of truth, asmeans for
designing models that can reflect the vagueness that inher-
ently exists in reasoning with incomplete or uncertain data
or system dependencies.

2.2 Process outline

The proposed framework entails three phases that are associ-
ated with a design-time and a run time component. The steps
required for each phase to be completed along with the sec-
tions in which each step is described are depicted in Fig. 1.
The components given in black correspond to processes,
while gray boxes denote outputs produced by these processes
or inputs required from them.

2.2.1 Design-time component

The design-time component encompasses the first and sec-
ond phase of the framework. More specifically, in the first
phase, the reasoning framework utilizes a transformer tomap
goal models annotated with a confidence level in their con-
tribution links (i.e., fuzzy goal models), to a corresponding
graph we refer to as the reasoning model. The reasoning
model is composed of nodes which denote reasoning units,
and edges which denote dependencies between these reason-
ing units. The transformation of a goal model to a reasoning
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model entails two steps. In the first step, a reasoning unit
is created for each node of the goal model, and each such
reasoning unit is annotated with input and output ports (rea-
soning units creation step in Fig. 1). Subsequently, in the
second step for each reasoning unit, a reasoning logic in the
form of an appropriate set of rules is generated (reasoning
logic generation step in Fig. 1). By analyzing the input and
output port annotations for each reasoning unit, the depen-
dencies between the reasoning units can then be identified,
resulting thus in the production of the “Reasoning Model
Dependency Graph.”

In the second phase of the design-time component,
the framework analyzes the Reasoning Model Dependency
Graph, in order to produce a reasoning plan (reasoning plan
compilation step in Fig. 1). A reasoning plan is a collec-
tion of sub-plans. These sub-plans form a partition over all
reasoning units. The algorithm ensures that each such set of
sub-plans in the reasoning plan is compliant with the seman-
tics of the original goal model, and each set of sub-plans can
be evaluated independently and in parallel with other sets of
sub-plans.

2.2.2 Run time component

The run time component encompasses the third phase of the
frameworkwhere a reasoning control strategy is applied. The
reasoning control strategy selects sub-plans, and for each
selected sub-plan, evaluates its reasoning units, by execut-
ing the corresponding to the unit, reasoning logic. For our
prototype implementation, we use the jFuzzyLogic library
and the reasoning logic associated with each reasoning unit
is either a jFuzzyLogic compliant script or a set of Boolean
rules, which are generated according to the process discussed
in Sect. 5.2. In this respect, the result of the third phase of
the framework is the parallel evaluation of all sub-plans and
consequently of all reasoning units in these sub-plans. The
evaluation is performed by processing the stream of data col-
lected from the running system (input stream), and assigning
truth values to the leaf nodes of the goal model. We then use
the proposed mechanism to propagate the truth values to the
rest of the nodes, allowing thus the real-time evaluation of the
satisfaction degrees for all system goals at run time (output
stream).

3 Related work

In this section, we first present existing reasoning techniques
that can be applied in the problem under study. An exten-
sive analysis of reasoning techniques for goal models can be
found in [26–29]. Second,wediscuss the differences between
a fuzzy reasoning approach like the one presented in the con-

text of this paper and the probabilistic ones proposed in the
literature.

3.1 Qualitative approaches

Examples of qualitative approaches are the ones presented in
[7,22].More specifically, qualitative approaches that perform
a forward reasoning over goal models, use labels that cor-
respond to levels of satisfaction (e.g., highly denied, poorly
satisfied), and provide rules that can be used in order to propa-
gate these levels from the leafs to the roots of the goalmodels.

A common problem encountered though to every qual-
itative approach, is that label propagation becomes rapidly
inconclusive as we move up in the soft-goal refinement tree
[34]. To alleviate this problem, quantitative approaches have
been proposed in the literature, the most indicative of which
are discussed below.

3.2 Quantitative approaches

An example of a quantitative analysis over AND/OR goal
trees is the one introduced in [21], where the authors con-
junction is calculated via the product t-norm [4] as opposed
to fuzzy logic. Giorgini et al. in [21] calculate two values
for each goal node, one that expresses the probability the
node being satisfied and an additional one that corresponds
to the probability the node being denied. Those two values
are considered independently and are not combined to a sin-
gle belief value for a given goal node, as it is the case for
fuzzy reasoners.

Other examples of approaches that use quantitative rea-
soning over goal models are the ones presented in [14] and
[11]. In [14], goal trees are utilized to denote dependencies
between certain software project management metrics and
specific goals related to cost, effort, and quality of the soft-
ware system being built or maintained. Using data from past
similar projects, weights are assigned to contribution links,
and an MLN reasoner [44] is used to calculate the prob-
abilities of root goal nodes to be satisfied. A probabilistic
framework is also introduced in [11]; however, authors are
aiming at determining the probability of certain obstacles that
will result to some goals to fail. Knowing these probabilities
allows for the selection of an appropriate alternative coun-
termeasure. Probabilistic reasoning applied on these cases
is quite different from the reasoning considered in the con-
text of this paper, as here we are interested in the degree of
confidence a goal node is satisfied, as opposed to the prob-
ability the node be satisfied. Quantitative goal models have
been studied in [23] in order to evaluate alternative design
decisions expressed in the KAOS goal modeling language
which is a different problem from the one studied in the
context of this paper. A significant difference between that
approach and the one proposed here is the annotation of goal
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nodes with objective functions and quality variables, where
the objective functions are being used for the evaluation of
the satisfaction degree of each goal node according to the val-
ues of the corresponding quality variables. In that approach,
by defining specific probability distributions for the qual-
ity variables, a stochastic simulation can be used in order
to compute the values of the objective functions for each
alternative and subsequently select the one with the highest
score.

Furthermore, another example of a quantitative analysis
that is applied to Business Intelligence Models is introduced
in [25]. In that paper, the authors propose techniques that can
be used to reasonwith indicators linked to business data using
interpolation, unit conversion or specialized mathematical
formulas to combine values. At the same time, the authors in
[25] introduce a hybrid reasoning technique as means to rea-
son over incomplete indicators. In this respect, our approach
could be adapted and used to model composite dependen-
cies between such indicators and business data, bringing
thus the operationalization aspects of these two frameworks,
closer.

3.3 Fuzzy versus probabilistic approaches

While the use of fuzzy logic in goal models has been pre-
sented before in [8], our approach is rather different. The
key difference is the fact that here we apply a pure fuzzy
reasoning process in order to propagate the truth values of
the leaf nodes to the roots of the given goal models. In con-
trast, the authors in [8] utilize fuzzy temporal logic as means
to formally express adaptation capabilities for goal mod-
els. Additionally, through the proposed analysis, we bring
closer, methods and techniques from the field of fuzzy con-
trol theory, with methods and techniques for goal model
reasoning.

With respect to probabilistic approaches such as the one
presented in [21], these are not equivalent to fuzzy ones but
rather complementary. The probabilistic approaches serve
the purpose of the elicitation of the probability two model-
ing elements being dependent, while the fuzzy approaches
serve the purpose of the estimation of a degree a model-
ing element is satisfied [50]. In our opinion, there are some
key aspects to fuzzy logic, mainly related to expressiveness
and interpretation of the results [42,50], that make fuzzy
approaches more appropriate for the problem under study
as: a) we need to model vagueness in human reasoning and
observations as opposed to uncertainty; b) we should reason
over known observations (i.e., we know that an event has
occurred as opposed the probability of the event to occur);
and consequently c)we should evaluate how this impacts the
satisfaction of higher-level goals.

4 Fuzzy goal models

AND/OR goal models have been proposed as a modeling
formalism in requirements engineering. The basic concept of
goal models is a top-down, AND/OR decomposition of goals
into sub-goals, where an AND-decomposed goal is satisfied
if all of its sub-goals hold, while an OR-decomposed goal is
satisfied, if at least one of its sub-goals holds.

In this section, we introduce a domain model for the defi-
nition of goal models that can be used for run time reasoning
verification. The proposed domainmodel is depicted in Fig. 2
and consists of two main parts, namely the generic goal
model part and the fuzzy goal model part. The former is the
core part of the domain model. It supports instances that con-
tain the most commonly used goal model components and
has been defined in such a way that can be extended in order
to enable the utilization of various reasoning techniques (e.g.,
qualitative, probabilistic, fuzzy) depending on the needs of
the analysis. In contrast, the fuzzy goal model part contains
the additional components (given in light gray) required to
support the fuzzy reasoning approach proposed in the con-
text of this paper.More specifically, the fuzzy goalmodel part
provides concrete implementations of the interfaces defined
in the generic goal model part given in dark gray.

As depicted in Fig. 2 a fuzzy goal model is composed of
nodes (GraphNode class), decomposition links (Decomposi-
tion class), and contribution links (ContributionLink class).
To facilitate the description of the various components of
the domain model, we also provide an example FGM illus-
trated in Fig. 3, which is partially based on examples used in
[5,20,30] and describes a fraction of goals of a simplified,
yet realistic, data management system.

4.1 Goals and goal model nodes

Goals in goal models can be classified into two types, namely
hard goals and soft goals [40]. Hard goals denote goals for
which their Boolean truth value can be inferred utilizing first-
order logic. In contrast, soft goals are goals for which their
degree of satisfaction is determined according to a reason-
ing process that takes into account positive (supporting) and
negative (denying) evidence, allowing thus the existence of
nodes that can be satisfied to a certain degree. In this paper,
we adopt the terminology introduced in [8], where hard goals
referred to as crisp goals and soft goals as fuzzy goals.

Furthermore, each node in the goal model is represented
by an instance of GraphNode class and has a goal attribute
parameterized as IGoal type, which in the case of fuzzy goal
models is either a fuzzy goal (FuzzyGoal class) or a crisp
goal (CrispGoal class). Additionally, a goal (IGoal interface
class) is related to a validation strategy (IValidationStrategy
class), which encapsulates the reasoning logic required to
validate whether the goal is true, false, or holds with a satis-
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faction percentage within the (0,100) interval depending on
the type of analysis applied.

Depending on the factors that affect the truth value of a
goal, a node can be classified either as an EdgeTargetNode
or as a LeafNode. The EdgeTargetNode class denotes nodes,

the truth value of which depends on the truth value of other
nodes in the graph, and hence, there are edges targeting these
nodes. These nodes can represent composite goals that can be
further decomposed to simpler goal nodes (e.g., node A1 in
Fig. 3) or/and can be the target node of one or more contribu-
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tion edges (e.g., node B2 in Fig. 3). Similarly, the LeafNode
class denotes goals the truth value of which is evaluated by
analyzing run time monitored data and are neither AND/OR
decomposed nor the target node of a contribution link (e.g.,
node A5 in Fig. 3).

4.2 Decomposition

AND/OR decomposition of composite goal nodes is repre-
sented as instances of the Decomposition class. Decomposi-
tion is defined as a parameterized type, in which the parent
and the child nodes may correspond to either fuzzy or crisp
goals depending on the actual type selected for the parame-
ters P and T. The only restriction is that the parent node is of
type EdgeTargetNode, as the parent node of a decomposition
cannot be a leaf node.

More formally, the decomposition of a goal parent node
p to a set {c1, c2, . . . cn} of child goal nodes is denoted as a
rule r of the form:

r = 〈Td , p, {c1, c2, . . . , cn}〉 (1)

where Td ∈ {AND,OR}. For example, in the model given in
Fig. 3, the AND decomposition of the fuzzy goal node B1 to
nodes B2, B3 and B4 is formally written as:

〈AND, B1, {B2, B3, B4}〉

4.3 Contribution links

Two goal model nodes may be connected by a directed con-
tribution link that denotes whether a source node contributes
positively or negatively to other target nodes, and practically,
is a link that propagates the truth value of the source node
to the target node of the link. In the context of this paper,
we utilize four types of contribution links namely, S+ (Sat-
PosContribution class), S− (SatNegContribution class), D+
(DenPosContribution class), and D− (DebNegContribution

class) and adopt the semantics of [16] regarding the way val-
ues are propagated from the source to the target node. For
example, the S+ contribution link from node A6 to node A3
in the example depicted in Fig. 3 denotes the fact that when
A6 is true (i.e., the node is satisfied) then also the target node
(i.e., node A3) will be satisfied as a consequence of the sat-
isfaction of the source node.

Additionally, we consider that each contribution link is
also associated with a real number, we refer to as contri-
bution confidence (w). However, we utilize a quite different
interpretation of the one used for weights in [7,25,34] where
a probabilistic reasoning is applied. More specifically, con-
tribution confidence values in the proposed fuzzy analysis
denote the subjective degree of belief a domain expert has in
the corresponding rule. Hence, for a contribution link from a
source node (gs) to a target node (gt ), the following interpre-
tations apply assuming that these links are annotated with a
contribution confidence w:

S+/D+ : the degree of belief that gs satisfaction/denial
implies gt satisfaction/denial is w

S−/D− : the degree of belief that gs satisfaction/denial
implies gt denial/satisfaction is degree w (2)

Contribution links between the goal nodes of an FGM
are modeled as instances of the abstract parameterized type
ContributionLink. Formally, we denote a contribution link
from node s to node t with contribution confidence w as a
rule r of the form:

r = 〈Tc, s, t, w〉 (3)

where Tc ∈ {S+, D+, S−, D−}. For example, the S− contri-
bution from node A4 to node B2 is formally written as:

〈S−, A4, B2, 0.3〉
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Furthermore, as multiple contribution links of the same
type may be targeting a single goal node b, we define the
following sets for each type Tc of a contribution link:

N (Tc, b) = {s|∃r = 〈Tc, s, b, w〉} (4)

where Tc ∈ {S+, D+, S−, D−}. which includes the source
nodes s of all contribution links of type Tc for which, the
source node is s and the target node is b. For example, in
Fig. 3, N (S+, A3) = {A5, A6}.

4.4 Leaf goal model nodes

A graph node that appears neither as the target node of any
contribution link nor as the parent node of a decomposition
is called leaf node. Such a node is linked either to a measure,
as denoted by the Measure class, or to a specific observable
logged event, as denoted by the ObservableCharacteristic
class in the domain model. The measure or the logged events
can then be used to evaluate the leaf node’s truth value, or
determine the degree of satisfaction for this node, so that
reasoning can commence. More specifically, regarding the
observable characteristics, as the system operates, values are
assigned to them (ObservableCharValue class) via the sys-
tem’smonitoring infrastructure, and if the leaf node is a fuzzy
one, suitablemembership functions are used in order to trans-
form the monitored events and their values to fuzzy truth
values, for the corresponding leaf nodes. In the example,
fuzzy goal model (FGM) of Fig. 3, goal nodes A2, A5, A6,
B3, and B4 are the leaf goal nodes of the model, while B2
is not a leaf node as it is the target of two contribution links.

4.5 Constraints

There are some constraints regarding the structure of an
FGM, which are imposed by the type of analysis applied to
the model. An instance of the abstract type ModelValidator
is used to evaluate whether the given model violates any of
these constraints, which for the case of FGMs are as follows:

1. Goals can only be decomposed to goals of the same type
(i.e., the parent node and the child nodes of a decompo-
sition are all either crisp or fuzzy);

2. Only crisp nodes can contribute to crisp nodes and for
those contribution rules the contribution confidence is
always equal to 1 (i.e., if for a contribution link the target
node is crisp, then the source node should be crisp and
the contribution confidence should be 1);

3. The contribution links that exist in an FGM should not
result in circular dependencies as this will be explained
later in Sect. 6.

5 Reasoning model generation

As already discussed in the previous section, an FGM can
be fully denoted as a set of decomposition and contribution
rules, presented in the form of Eqs. (1) and (3). For example,
the following 6 rules correspond to the FGM illustrated in
Fig. 3:

〈AND, A1, {A2, A3, A4}〉 , 〈S−, A4, B2, 0.3〉 ,
〈AND, B1, {B2, B3, B4}〉 , 〈S+, A5, A3, 1.0〉 ,
〈D−, A4, B2, 0.4〉 , 〈S+, A6, A3, 1.0〉

Given this set of rules, we can group rules in such a way
that rules which define the value of the same node belong
to the same group. For example, rules 〈S−, A4, B2, 0.3〉
and 〈D−, A4, B2, 0.4〉 are the only rules that can be used
to extract some conclusions for the value of goal node B2
according to the given FGM.

Additionally, by knowing the complete set of rules that
define the value of a node p, we also know the nodes the
values of which are required in order to calculate the value
of p. In the case of node B2 of the FGM illustrated in Fig. 3,
we only need to know the value of A4 in order to calculate
the value of B2.

Furthermore, the way the value is calculated is dictated
by the corresponding rules. Hence, by grouping the rules as
described above, we can create for each node p, a unit that
combines the values of all nodes on which p depends, and
uses the rules to extract a value for p. We call such units
reasoning units and the mechanism used to extract the value
of the corresponding node reasoning logic. The set of the
generated reasoning units constitutes the reasoning model of
the FGM.

In the rest of this section, we introduce a two-step process
to systematically generate the reasoning model for a given
FGM. The first step deals with the creation of the reason-
ing units, while the second step deals with the processing of
the rules of each unit in order to generate the corresponding
reasoning logic.

5.1 Reasoning units creation

In order to generate the reasoning units, we iterate over each
goal node p in the initial FGM, and if the node is not a leaf
node, we create a reasoning unit Up for it. For example,
for the FGM in Fig. 3, four reasoning units UA1, UA3, UB1,
and UB2 will be created, one for each non-leaf goal node
A1, A3, B1, and B2, respectively. To better illustrate the
dependency that exists between p and its reasoning unitUp,
we call goal node p the output of the reasoning unit Up.
Additionally, the collection of all source goal nodes for the
contribution links targeting p, and the child nodes of p, in
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case p is a decomposition node, is referred to as the input of
the reasoning unit. In the context of this paper, we are going
to use the notations I n[Up] and Out[Up] to denote the input
and output goal nodes of a reasoning unit Up, respectively.
For example, for the reasoning units generated for the FGM
in Fig. 3, the input and output goal nodes are:

Out[UA1] = A1 , I n[UA1] = {A2, A3, A4}
Out[UA3] = A3 , I n[UA3] = {A5, A6}
Out[UB1] = B1 , I n[UB1] = {B2, B3, B4}
Out[UB2] = B2 , I n[UB2] = {A4} (5)

Practically, identifying the input goal nodes of a given
node p is a special case of taking a slice in a graph. More
specifically, we collect all nodes that are connected to node
p through a path of length 1, as opposed to paths of length
greater than 1, as this is determined by the goal model’s
topology.

The dependency that exists between the reasoning units
and the goal nodes is also depicted in the domain model of
Fig. 4. According to this domain model, the set of all rea-
soning units generated for a given FGM constitutes the FGM
reasoning configuration. Additionally, each reasoning unit is
associated with a UnitMetrics class which refers to metrics
related to the reasoning unit. The usage of these metrics will
be illustrated in Sect. 7.

At this point, we know for each node what are its depen-
dencies, i.e., which are the input nodes of the corresponding
reasoning unit. However, theway the value of the output node
will be calculated, by combining the values of all input nodes,
is defined by the set of decomposition and contribution rules
that have as target node the output of the reasoning unit. In
the following subsection, we describe in detail how this set

of rules can be used in order to generate the reasoning logic
of the unit.

5.2 Generate the reasoning logic of each unit

Once all reasoning units have been created, we collect for
each unitUp the set of rules generated from the contribution
links for which p is the target node, and also the decomposi-
tion rule of p, if one such decomposition exists (see Eq. (1)
and Eq. (3)). Subsequently, depending onwhether p is a crisp
or a fuzzy node, we create for each reasoning unit either a
CrispReasoningLogic or a FuzzyReasoningLogic, which are
implementations of the abstract type IReasoningLogic as this
is depicted in Fig. 4, and practically contain all rules required
to calculate the truth value of p. These two reasoning logic
sub-types implement the abstract method “evaluate” which
given the truth values for all input nodes of the reasoning
unit will calculate the truth value of its output goal node. To
perform this evaluation, a Reasoning Logic uses either a set
of Boolean rules (when the output goal node is a crisp one),
or a Fuzzy Control Language module [1] (when the output
goal node is a fuzzy one). More details on how this works
will be presented later on Sects. 5.2.1 and 5.2.2.

However, in addition to this evaluation, a run time valida-
tion strategy related to the output goal node should be also
invoked. The validation strategy must collect data from the
logging and monitoring infrastructure of the running system
and apply a validation logic to ensure that the goal model
node’s inferred value (e.g., “true” or 100% satisfied, “false”
or 0% satisfied, “30% satisfied”) does not conflict with any
hard evidence obtained from the running system (e.g., a “low
response time warning” event). For example, consider the
scenario inwhich the goalmodel reasoning process evaluates

ReasoningUnit

IGoalNode

FGMReasoningConfig

UnitMetrics

1 1
1 *

+evaluate()

IValidationStrategy
1

1

input

1
*

output

1

*

+evaluate(inout inputValues : Map)

IReasoningLogic

CNF

FCLModule

+evaluate(inout inputValues : Map)

CrispReasoningLogic

+evaluate(inout inputValues : Map)

FuzzyReasoningLogic

1

1

Fig. 4 Reasoning units metamodel
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Table 1 AND/OR rules
generation for a crisp goal node
p
(rd = 〈T, p, {c1, c2, . . . , cn}〉)

N pos(p) Nneg(p) Generated AND/OR rules

rd exists NO rd exists

= ∅ = ∅ p ← T(c1, c2, . . . , cn) -

= ∅ �= ∅ p ← AND(p_d,¬p_c_neg) p ← AND(True,¬p_c_neg)

�= ∅ = ∅ p ← OR(p_d,p_c_pos) p ← OR(False,p_c_pos)

�= ∅ �= ∅ p ← OR(p_d,p_c) p ← AND(p_c_pos,¬p_c_neg)

p_c ← AND(p_c_pos,¬p_c_neg)

the goal model node p:“Low Response Time” as “20% satis-
fied,” because p’s contribution links support this value but at
the same time, the performance monitor indicates that there
is a positive low response time system behavior as observed
by the warning “low response time warning,” in the emitted
system logs. Such a failed validation of the node’s inferred
value, will signify a discrepancy between what the system
administrators think shouldbehappening andwhat is actually
happening, as a result of possible violation of a requirement
(i.e., the requirement related to the root goal).

For practical applications, this introduces a validation
overhead in the run time engine, which would be required
in order to validate with hard evidence (e.g., unambiguous
data collected from system loggers) that the outcome of the
Boolean rules or FCL module is consistent with what is
observed in the running system.While the validation process
is outside the scope of this paper, in the experimentation sec-
tion, we consider a randomvalidation overhead of 10–100ms
for each node, assuming that there is a monitoring and log-
ging infrastructure in place that feeds this evaluation process
with logged events.

5.2.1 Boolean rules generation

In this section, we discuss the generation process for the
Boolean rules as these will be attached as reasoning logic
to reasoning units stemming from crisp goal model nodes.
The Boolean Rules generation process involves the compu-
tation of two sets for each non-leaf goal node p in the model.
These sets are N pos(p) and N neg(p) with the interpretation
that N pos(p) is the set of all goal nodes that positively con-
tribute to node p, while in contrast N neg(p) is the set of all
goal nodes that negatively contribute to node p. These are
formally defined as:

N (Tc, b)N
pos(p) = N (S+, p) ∪ N (D−, p)

= {e1, . . . , ek} ∪ { f1, . . . , fl} (6)

N neg(p) = N (S−, p) ∪ N (D+, p)
= {g1, . . . , gm} ∪ {h1, . . . , ho} (7)

where e1, . . . , ek are the source nodes of all S+-type con-
tributions to node p, f1, . . . , fl are the source nodes of all

D−-type contributions to node p, g1, . . . , gm are the source
nodes of all S−-type contributions to node p, and h1, . . . , ho
are the source nodes of all D+-type contributions to node p.
For example, for goal node A3 N pos(A3) = {A5, A6}.

These sets along with the decomposition rule rd =
〈Td , p, {c1, c2, . . . , cn}〉 as depicted in Eq. (1) (refers to the
case that p is a composite goal node that is decomposed to
child nodes {c1, c2, . . . , cn}), determine the set of Boolean
Rules that should be generated. The resulting set of Boolean
rules will be used to calculate the truth value of p, denoted
as V[p] from the truth values of the nodes it depends on.
In order to simplify the equations given in the rest of this
section, we are going to use the name of a node p to refer
either to the node itself or to its truth value. We only use the
notation V[p] when it is not clear from the context whether
p is referred to the node or to its truth value.

According to whether a decomposition rule exists and to
whether N pos(p) and N neg(p) are empty, a different set of
rules is generated as illustrated in Table 1. Additionally, for
the pseudo-variable p_c_pos (which becomes true when at
least one node contributes positively to node p), p_c_neg
(which becomes true when at least one node contributes neg-
atively to node p), and p_d (which becomes true when node
p is supported by its child nodes through goal node decompo-
sition) that appear in Table 1, the following formulas apply:

p_c_pos = OR(e1, . . . , ek,¬ f1, . . . ,¬ fl) (8)

p_c_neg = OR(g1, . . . , gm,¬h1, . . . ,¬ho) (9)

p_d = T(c1, c2, . . . , cn) (10)

where T is either AND or OR type of decomposition,
c1, c2, . . . , cn are the child nodes of p, and nodes ei , fi ,
gi and hi correspond to the ones defined in Eqs. (6) and
(7). For example, for the goal model in Fig. 3 and for the
crisp goal node A3 the pseudo-variable A3_c_pos is equal
to OR(A5, A6) as N pos(A3) = {A5, A6}.

It is important to note that if both indexes k and l (alt. m
and o) are equal to zero, the set N pos (alt. N neg) is empty,
and the pseudo-variable p_c_pos (alt. p_c_neg) does not
appear in the rules.

A graphical representation of the dependencies between
p, p_c_pos, p_c_neg, and pd in case N pos(p) �= ∅,
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¬ p_c_neg

p_c_pos

p_c

p_d

p OR

AND

Fig. 5 AND/OR rules graphical representation in case N pos(p) �= ∅,
Nneg(p) �= ∅, and a decomposition rule rd exists

Nneg(p) �= ∅ (see last row of Table 1), and a decomposi-
tion rule rd exists is depicted in Fig. 5. Fig. 5, depicts that
a node p can be evaluated by its decomposition logic, or by
its contribution links, or both. Furthermore, for the contri-
bution links to be used for evaluation purposes, the negative
and positive factors (in the form of pseudo nodes) have to be
considered.

The basic assumption when building the transformation
rules summarized in Table 1, is that a node p can be sat-
isfied either via its decomposition or because some node
contributes positively to it. In case some node contributes
negative to p through an S− or a D+ contribution link, then
p is denied. Thus, we consider that a negative contribution
has higher priority that a positive contribution or a decom-
position. For example, in the transformation depicted in the
second row of Table 1, there should be no negative contribu-
tion to p (i.e., p_c_neg should be false) for p to be satisfied
even if p is satisfied through its decomposition.

5.2.2 FCL module generation

In this section, we describe the process used in order to gen-
erate the reasoning logic for a unit that corresponds to a fuzzy
node. The reasoning logic in this case is implemented in the
form of a fuzzy controller. As this is also described in [43], a
fuzzy controller is composed of the four following elements:
a) a fuzzification process for the transformation of the input
in a processable form by using an appropriate set of mem-
bership functions; b) a rule-base, that consist of rules that
describe the experts’ knowledge of the domain; c) an infer-
encemechanismwhich combines the rule-basewith the input
to deduce membership degrees for a set of output variables;
and d) a defuzzification processwhich converts the inference
outcome (i.e., the membership degrees) for each output vari-
able into a quantifiable result by combining the membership
degrees.

A domain-specific programming language that can be
used to define and implement fuzzy controllers is the Fuzzy
Control Language (FCL), which has been standardized and
published by the International Electrotechnical Commission
(IEC 61131-7) [1]. In the context of this paper, we utilize
jFuzzyLogic [17], which is an open source fuzzy logic library
that implements the IEC 61131-7 standard.

FUNCTION_BLOCK ${goal_name}

VAR_INPUT
${Vin_1} : REAL;
...
${Vin_n} : REAL;

END_VAR

VAR_OUTPUT
${goal_name} : REAL;

END_VAR

FUZZIFY ${Vin_1} 
TERM low := (0,1) (10,1) (60,0); 
TERM high := (40,0) (90,1) (100,1);

END_FUZZIFY
...
FUZZIFY ${Vin_n} 

TERM low := (0,1) (10,1) (60,0); 
TERM high := (40,0) (90,1) (100,1);

END_FUZZIFY

DEFUZZIFY ${goal_name}
TERM low := (0,1) (10,1) (60,0); 
TERM high := (40,0) (90,1) (100,1);
METHOD : COG;
DEFAULT := 50;

END_DEFUZZIFY

RULEBLOCK No1
AND : PROD;
ACT : PROD;
ACCU : NSUM;

RULE 1 : ${rule_1};
...
RULE k : ${rule_k};

END_RULEBLOCK

END_FUNCTION_BLOCK

Fig. 6 FCL module template

For each reasoning unit that corresponds to a fuzzy goal,
we compile an FCLmodule, which is a function block gener-
ated by utilizing the template depicted in Fig. 6. The resulting
FCL module contains contracts that are going to be used by
the underline reasoner in order to implement the fuzzifica-
tion (FUZZIFY blocks in the template) and defuzzification
(DEFUZZIFY block in the template) processes, as well as
a set of fuzzy rules that constitute the rule-base of the mod-
ule. All terms printed in italics and starting with the special
character $ in the template of Fig. 6, are terms that must
be substituted according to the values that correspond to the
given node p. More specifically:

– goal_name is the name of the output goal which should
be unique

– Vin_1 . . . Vin_n are the names of the input goal nodes,
and
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Table 2 Transformation of FGM rules (i.e., decomposition and contri-
bution rules) to FCL rules

FGM rule FCL rules

〈AND, p, {c1, c2, . . . cn}〉 IF c1 IS high AND . . . AND cn IS high
THEN p IS high

IF c1 IS low THEN p IS low

.

.

.

IF cn IS low THEN p IS low

〈OR, p, {c1, c2, . . . cn}〉 IF c1 IS low AND . . . AND cn IS low
THEN p IS low

IF c1 IS high THEN p IS high

.

.

.

IF cn IS high THEN p IS high

〈S+, gs , gt , w〉 IF gs IS high THEN gt IS high WITH w

〈S−, gs , gt , w〉 IF gs IS high THEN gt IS low WITH w

〈D−, gs , gt , w〉 IF gs IS low THEN gt IS high WITH w

〈D+, gs , gt , w〉 IF gs IS low THEN gt IS low WITH w

– rule_1 . . . rule_k are FCL rules generated for goal node
p as this is described in Table 2.

In the rest of this section, we are going to describe (a) how
FUZZIFY blocks are used during the fuzzification process,
(b) how the required rules are generated for each reasoning
unit, and (c) how the defuzzification process is applied uti-
lizing the DEFUZZIFY block defined in the FCLmodule. To
better illustrate the various artifacts of the FCL module, we
consider the module that will be generated for the fuzzy node
B2 of the example of Fig. 3. In this case, for the template of
Fig. 6, $goal_name will be substituted by B2, and there will
be only one input variable, namely A4. Hence, there will be
only one FUZZIFY block. Furthermore, the following two
rules, one for each contribution link targeting B2 in Fig. 3,
will be generated:

RULE 1: IF A4 IS highTHEN B2 IS lowWITH 0.3

RULE 2: IF A4 IS lowTHEN B2 IS highWITH 0.4

The high and low used in the rules are fuzzy predicated
that correspond to the truth value of the statement “The goal
is highly satisfied” and “The goal is poorly satisfied,” respec-
tively.

Fuzzification: Regarding the fuzzification process, the
objective is that given values (e.g., numeric values) for the
input variable A4, to be able to define the degree in which
this input variable belongs at the same time to the fuzzy sets
“low” and the fuzzy set “high.”

This is accomplished by defining a set of membership
functions for the input variable by a FUZZIFY block as fol-
lows:

highlow

Vlow

Vhigh

Goal Node Satisfaction %
t

1
(0,1)

(10,1)

(60,0)
(40,0)

(90,1)
(100,1)

Fig. 7 Use of the membership functions in fuzzification

FUZZIFY a1

TERM low := (0, 1) (10, 1) (60, 0);
TERM high := (40, 0) (90, 1) (100, 1);

END_FUZZIFY.

The two membership functions and the fuzzification
process are depicted in Fig. 7. Please note that in the
FUZZIFY block listed above, the values (0,1) (10,1) (60,0)
refer to the coordinates defining the “low”membership func-
tion as depicted in Fig. 7 and that different values can be used
for each input variable.

According to this example, given that the value of A1 is
equal to t, the fuzzification process will return Vlow and Vhigh
as the degree in which the variable belongs to the fuzzy sets
“low” and “high,” respectively. This values in combination
with the rules will be used in order to calculate the degrees
for “low” and “high” for the output variable, namely B2.

Rules Generation: Given the reasoning unit that corre-
sponds to a fuzzy node p, we can extract a set of FCL rules
for each decomposition and/or contribution related to node p
(i.e., p is the parent node of the decomposition or the target
node of the contribution), using the transformations summa-
rized in Table 2. Hence, for the S− contribution link from
node A4 to the fuzzy node B2, which implies that A4 satis-
faction results in the denial of node B2, the following FCL
rule will be generated as this is defined by the transformation
depicted in the 4th row of Table 2:

IF A4 IS highTHEN B2 IS lowWITH 0.3

Defuzzification: Once the input variables are fuzzified,
the inference engine can extract conclusions about the output
variables, such as the variable B2, using fuzzy rules, such as
the ones presented above. For example, if A4 is determined to
hold by Vlow = 0.2 and Vhigh = 0.1, then both of the above
rules will be triggered with the appropriate values (0.2, and
0.1) for “low” and “high.” These values are then combined
by a proper defuzzification process which calculates the final
satisfaction percentage of the output variable B2.
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highlow

Vlow

Vhigh

Goal Node Satisfaction %
t

1

COG

x

Fig. 8 Use of the membership functions in defuzzification

The details of the defuzzification process are defined by a
DEFUZZIFY block given in the following form:

DEFUZZIFY c

TERM low := (0, 1) (10, 1) (60, 0);
TERM high := (40, 0) (90, 1) (100, 1);
METHOD := COG;

END_DEFUZZIFY

where except from themembership functions, we also denote
the method that should be utilized, which in this case is the
centroid, orCenterOfGravity (COG) defuzzificationmethod
[3]. The two membership functions and the defuzzification
process are depicted in Fig. 8. According to this example,
given that Vlow and Vhigh are the degrees in which variable
B2 has been inferred to belong to the fuzzy sets “low” and
“high,” respectively, the COG for the gray area is then calcu-
lated. The gray area is produced by combining the areas that
correspond below the Vlow, and Vhigh values of B2, using
the low and high membership function graph, respectively.
The x-coordinate of the COG is then the defuzzified value of
variable B2.

6 Sequential reasoning plan compilation

Each reasoning unit created through the process presented in
the previous section encompasses reasoning logic for deter-
mining the truth value of its output node. However, in order
to evaluate the truth value of the output node, the truth values
for all input nodes are required. In turn, these values should
be calculated from other reasoning units which also require
a proper input to perform their evaluation. Hence, there are
dependencies between the reasoning units generated from a
given FGM, which implies that we have to evaluate them
in a specific order that respects these dependencies. In this
section, we present the mechanics to formulate sequential
reasoning plans.

Definition 1 We say that a reasoning unit Ua directly

requires reasoning unit Ub, denoted as Ua
req−−→ Ub iff

Out[Ub] ∈ I n[Ua].

U1

U2 U3 U4 U5

U6

U7 U8

U9

1 / 8

2 / 1 3 / 2 4 / 3 5 / 5

6 / 4

7 / 9

8 / 6 9 / 7

Fig. 9 Reasoning unit dependency graph example

Definition 2 We say that a reasoning unit Ua requires rea-

soning unit Ub, denoted as Ua
req∗−−→ Ub iff Ua

req−−→ Ub or

there exists a reasoning unit Uk such that Ua
req−−→ Uk and

Uk
req∗−−→ Ub.

In this respect, the
req∗−−→ operator provides a formalism

to denote a directed graph of reasoning units in which, every
unit depends only on units that appear earlier on paths the unit
participates in. We call this directed graph Reasoning Unit
Dependency Graph and an example is depicted in Fig. 9, for
which the following dependencies apply:

U1
req−−→ U2 , U1

req−−→ U3 , U1
req−−→ U4 , U1

req−−→ U5

U6
req−−→ U7 , U6

req−−→ U8 , U5
req−−→ U9 , U7

req−−→ U9

The two numbers displayed over each reasoning unit (Fig. 9)
are the sequence numbers assigned to each unit when tra-
versing the graph utilizing a) pre-order algorithm and b) a
topological sorting algorithm. For example, for nodeU1, the
first number (1) denotes the order of the node using pre-order
traversal, while the second number (8) denotes the order of
the node using topological sorting.

These two values are going to be used by the algorithm
introduced in the next section in order to compile a proper
parallel execution plan.

Definition 3 We say that a path of reasoning units U1, U2,
. . ., Un is a proper one, if for every pair Ui , Uj of reasoning
units in the sequence, Ui appears earlier than Uj in case

Uj
req∗−−→ Ui .

If circular dependencies exist in a set of reasoning units, no
proper path of these units exists in the graph. However, in
the context of this paper, we assume that FGMs do not have
any circular dependencies, due to contribution links. Hence,
given the directed graph of all reasoning units, we can extract
a sequence, which ensures that every reasoning unit appears
in the sequence after all reasoning units on which it depends.
This sequential execution plan can be computed at definition
time through a typical topological sorting algorithm (e.g.,
Tarjan’s algorithm [47]). For example, for the graph depicted
in Fig. 9, a sequential plan could be the following:
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U2 , U3 , U4 , U9 , U5 , U7 , U8 , U1 , U6 (11)

Additionally, given a set A = {U1,U2, . . . ,Un} of reason-
ing unitswe can extract the variables that appear only as input
parameters in the reasoning units in set A. These variables
can be formally defined as a set using the following formula:

L[A] =
n⋃

i=1

I n[Ui ] −
n⋃

i=1

Out[Ui ] (12)

and for the reasoning units of Eq. (5), this set is:

L[{UA1,UA3,UB1,UB2}]
= {A2, A3, A4, A5, A6, B2, B3, B4}
− {A1, A3, B1, B2} = {A2, A4, A5, A6, B3, B4}

which correspond to the leaf nodes of the initial fuzzy goal
model, and practically are the variables the values of which
are required to initiate the sequential evaluation of the rea-
soning units.

Subsequently, by sequentially evaluating all reasoning
units, we manage to calculate the values of all the output
variables of the reasoning units which also include the root
goals of the initial fuzzy goal model.

7 Parallel reasoning plan compilation

In addition to defining a sequence of reasoning units, the
sequential execution of which guarantees the calculation of
the root goals, we propose now an algorithmwhich allows for
the compilation of a reasoning plan that enables the parallel
execution of reasoning units.

7.1 Reasoning units metrics

Here, we define a set of metrics for the reasoning units that
will be used to determine reasoning sub-plans that can be
executed in parallel. The following metrics annotate each
reasoning unit in the reasoning model:

– DFSLabel (dfs-label) is the sequence number assigned to
a reasoning unit when the dependency graph is traversed
using the pre-order algorithm, and we denote is as DFS
as we use a depth first traversal to visit the nodes of the
graphs;

– topological sorting label (to-label) is the sequence num-
ber assigned to a reasoning unit when the dependency
graph is traversed in topological order;

– total number of child nodes (child-all) is the number of
reasoning units; this reasoning unit depends on which
are connected by a path of size 1 (hereinafter denoted as
immediate dependencies);

Algorithm 1 Plan Compilation Algorithm
Input: L: leaf nodes, M sub-pal size
Output: plan: List[Set[Node]]

1: plan ← emptyList
2: f reeNodesSet ← emptySet
3: current NodesList ← emptyList[dfs-label-comparator]
4: current NodesList.add All(L)
5: current Par Level ← 0
6: while current NodesList IS NOT EMPTY do
7: current Par Level + +
8: subPlanSet ← emptySet
9: loopNodesList ← emptyList[to-label-comparator]
10: for all current Node ∈ currentNodesList do
11: loopNodesList.add(current Node)
12: processParentNodes(currentNode, freeNodesSet,

loopNodesList, M, currentParLevel)
13: if loopNodesList.size == M then
14: subPlanSet.add(loopNodesList)
15: loopNodesList.removeAll()
16: end if
17: end for
18: if loopNodesList IS NOT EMPTY then
19: subPlanSet.add(loopNodesList)
20: loopNodesList.removeAll()
21: end if
22: current NodesList.removeAll()
23: current NodesList.add All( f reeNodesSet)
24: f reeNodesSet ← emptySet
25: plan.add(subPlan)
26: end while
27: return plan

– number of processed child nodes (child-proc) is the num-
ber of immediate dependencies that have been already
visited by the algorithm, which is initially set to 0;

– first dependency node for current parallel level (level-
first-dep) is the name of the first visited node this unit
depends on which is initialized to null;

– parallel level dependency (dep-level) initially set to -1.

The above metrics are used by Algorithm 1 which will
be introduced in the next section. In particular, the values
of the last 3 metrics are updated as the reasoning units in
the graph are visited by the algorithm. As this will be also
explained in the next section, Algorithm1 utilizes both aDFS
and a topological sorting sequence number in order to ensure
that the parallel sub-plans are created in such a way that the
dependencies will not be violated when the plan is executed
at run time. The plan compilation algorithm also uses the
SubPlan length parameter M that denotes the maximum size
of each sub-plan that is to be formulated.

7.2 Parallel plan compilation algorithm

Algorithm 1 aims to create a set of independent reason-
ing sub-plans from a Reasoning Model Dependency Graph.
Each sub-plan is a sequence of maximum of M many rea-
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Fig. 10 Execution plan returned by the proposed algorithm for M = 3

soning units, where the value of M can be set by the user.
More specifically, each sub-plan consists of sequences that
do no depend on one another and hence each sub-plan can be
executed in parallel. For example, Fig. 10 illustrates the exe-
cution plan returned by the proposed algorithm for M = 3
for the dependency graph of Fig. 9. According to this plan,
the evaluation will be completed in two phases, where during
the first phase there will be 3 sub-plans that can be computed
in parallel, and in the second phase the overall evaluation
completes by computing the remaining sub-plan.

The related process is depicted inAlgorithm 1 (PlanCom-
pilation algorithm). The algorithm iterates over the nodes in
“currentNodesList” (line 10), which initially is the set of all
leaf nodes. Gradually nodes are added in, or removed from
this list, and the process completes when this list becomes
empty (line 6). Initially this list contains all leaf nodes (line
4), i.e., the units that do not depend on other reasoning units.
Each time a node is visited, the algorithm checkswhether any
of the nodes that depend on it, is now free. A node is consid-
ered to be freewhen all of its dependencies have already been
placed on a sub-plan. For example, for the dependency graph
depicted in Fig. 9, reasoning unit U6 will be free only when
both of its child units, i.e., U7 and U8, have been assigned
to a sub-plan. This is performed by calling the “processPar-
entNodes” process (line 12) as presented in Algorithm 2. It is
though worth noting that in this process all units that depend
on the current unit are checked, and if they are free they are
either added to “freeNodesSet” in order to be processed in
the next iteration, or they are added in “loopNodesList” in
order to be part of the current sub-plan set. Once the size
of “loopNodesList” is equal to the given parameter M (line
13), a new sub-plan is added to the sub-plan set (line 14)
and “loopNodesList” is re-initialized to an empty list (line
15). It is important to note that all units in “loopNodesList”
are sorted using the to-label, and hence, all dependencies
between the units in “loopNodesList” are respected.

If all nodes in “currentNodesList” have been visited, a new
sub-plan is created that contains all units in “loopNodesList”

Algorithm 2 processParentNodes
Input: cn: unit node, f reeNodesSet : set of units
loopNodeList : List of units, M : sub-plan size
current Par Level
1: parent Nodes ← cn.parent Nodes
2: for all p ∈ parentNodes do
3: if p.dev-level �= currentParLevel then
4: p.level-first-dep = cn
5: p.dev-level = currentParLevel
6: end if
7: p.child-proc++
8: if p.child-proc == p.child-all then
9: if p.level-first-dep in loopNodesList AND

loopNodesList.size <M then
10: loopNodesList.add(p)
11: processParentNodes(p, freeNodesSet,

loopNodesList, M, currentParLevel)
12: else
13: freeNodesSet.add(p)
14: end if
15: end if
16: end for
17: return

(line 18 -20) and then “currentNodesList,” that is, now empty,
is filled in with all free units in “freeNodesSet” (line 23).
The process terminates when all nodes in the reasoning units
dependency graph have been visited.

Having outlined the operation of Algorithm 1, we pro-
ceed outlining the steps of Algorithm 2, which performs the
detection of which nodes are free in each iteration of the
main Algorithm 1. Algorithm 2 proceeds by iterating over
all unit nodes that are connected with unit node cn with a
path of length 1, i.e., the parent nodes (line 1). For each one
of them, it initially updates the values for metrics “level-first-
dep” and “dev-level” (lines 3 -6), if this is the first immediate
dependency visited by the algorithm. It then increases the
number of visited immediate dependencies by one (line 7).
Subsequently, it checkswhether a) all child nodes are already
free (line 8); b) the first free child unit belongs to the current
loop list (“loopNodesList”) (line 9); and c) the sub-plan has
not exceeded the maximum given size (line 9), and if yes it
recursively calls “processParentNodes” for node p (line 11).
Otherwise, if the current parent node is free but, either the
size of the sub-plan is equal to M , or the first free child node
belongs to another sub-plan it just adds node p to the set of
already free nodes (line 13).

7.2.1 Sub-plan compilation example trace

Below,wepresent a sample trace as a sequence of steps,when
the algorithm is applied to the reasoning unit dependency
graph depicted in Fig. 9. The sequence of steps is depicted
in Figs. 11–15.
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Fig. 11 Step 1—visiting node U2
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Fig. 12 Step 2—visiting nodes U3 and U4

Step 1 Initially, when the loop at line 6 (Algorithm 1) exe-
cutes for the first time, “currentNodesList” contains nodes
U2,U3,U4,U9,U8 which are leaf nodes, and the “currentPar-
Level” variable is increased from 0 to 1 (line 7 of Algorithm
1). Then (see Fig. 11), node “U2” is visited and added in the
loopNodesList , while the values for “child-proc,” “level-
first-dep,” and “dep-level” of its parent node are set to “1,”
“U2,” and “1,” respectively.

Step 2 Subsequently (Fig. 12) and by keeping on process-
ing, the nodes in the currentNodesList, nodes U3 and U4

are visited and added to loopNodesList, increasing the value
of “child-proc” for node U1 to “2” and then to “3.” At this
point, as the size of loopNodesList is equal to max size deter-
mined by the parameter M which is 3 in our example, the
first sub-plan is created with nodes [U2,U3,U4], and the list
loopNodesList is emptied.

Step 3 The algorithm proceeds by visiting nodeU9 (Fig. 13)
and adding it to the loopNodesList , setting the values
“child-proc,” “level-first-dep,” and “dep-level” for its par-
ent node U5 to “1,” “U9” and “1,” respectively. As now
“child-proc” is equal to “child-all” for node U5, and its
“level-first-dep” is equal to U9 which is included in the
“loopNodesList,” U5 is also added in the “loopNodesList.”
Additionally, U1 which is the parent node of U5 is added in
the “freeNodesSet” as now all of its immediate dependencies
have been visited and added to a sub-plan.
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Fig. 13 Step 3—visiting nodes U9 and U5
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Fig. 14 Step 4—visiting node U7
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Fig. 15 Step 5—visiting node U8

Step 4 In a similar manner as before, the values “child-proc,”
“level-first-dep,” and “dep-level” for node U7 are set to 1,
U9 and 1, respectively (Fig. 14). However, as “child-proc”
is equal to “child-all” for node U7, the node is also added
in the “loopNodesList.” Once more, as the size of “loopN-
odesList” is equal to M which is 3 containing the nodes
U9,U5,U7, the second sub-plan [U9,U5,U7] is created, and
the loopNodesList , once more, is emptied.

Step 5 In step 5, themetrics of nodeU6 are updated (Fig. 15),
node U8 is visited and added in the loopNodesList , setting
the value of “child-proc” to “2” for node U6. Since all child
nodes ofU6 have been processed,U6 is added to “freeNodes-
Set.”

Step 6 Finally, as all nodes in “currentNodesList” have been
visited, the first execution of the loop starting at line 6 of
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Fig. 16 Architecture of the inference engine used in the proposed framework

Algorithm 1 completes, and the “currentNodesList” is emp-
tied. Nodes in “loopNodesList,” e.g., node U8, are used to
create a newsub-plan (lines 18–21ofAlgorithm1), andnodes
in “freeNodesSet” are now added in “currentNodesList”
which is empty at this point (lines 22–23 of Algorithm 1).
At this point, if the graph was larger, the algorithm could be
re-applied with “currentNodesList” be the “freeNodesSet.”
The algorithm will terminate when all nodes in the graph are
visited.

7.3 Inference engine

Having created a collection of sub-plans that can be evaluated
in parallel, we outline the inference engine architecture and
the inference control strategy.

7.3.1 Inference engine architecture

Anoverviewof the inference engine architecture is illustrated
in Fig. 16. As it is depicted in Fig. 16, the required events that
correspond to the values of the system’s observable charac-
teristics are collected at run timeby a set of “ClientDaemons”
acting as loggers and monitors, each one of which is respon-
sible to periodically collect the values of the observable
characteristics from the various components of the system
(e.g., databases, application servers). This process results in
the creation of a continuous input stream which can be fil-
tered using a technique like the one introduced in [32] which
is not in the scope of this paper.

Subsequently, the filtered stream of events should be
processed by the “Reasoner Daemon” using the parallel plan
that has been compiled off-line, in order to provide a con-
tinuous output stream of satisfaction degrees for the required
system goals. In short, it is responsible to periodically run the
reasoning process and provide the calculated results. At this
point, it is important to note that there aremultiple criteria that
can be used to periodically trigger the evaluation of the pro-
videdmodel. One possible way to trigger the reasoning could
be the number of events received. In this case, reasoning is
triggered at fix number of events, e.g., every 1000 events.
Another possibility would be to detect specific events in the

input stream that should trigger the evaluation of the model,
or even trigger reasoning at regular time intervals no matter
what the number of events received is. Finally, a composite
criterion that uses combinations of the above criteria can also
be used. However, regardless of the triggering mechanism,
the framework should be able to provide an output stream of
values that reflect in real time, the degree in which the system
complies with the predefined requirements.

7.3.2 Reasoning process strategy

As it has been alreadymentioned, the execution plan returned
by the proposed algorithm consists of a sequence of sets of
sub-plans (e.g., Fig. 10). A set of sub-plans can be executed
only after all sets preceding in the sequence of the execution
plan have been already applied. In contrast, sub-plans that
belong to the same set can be executed in any order, or in
parallel, as there are no dependencies between them. Hence,
we apply the following strategy for the reasoning engine.
First, we initialize a pool of threads (or processes) where
each thread can be used to complete the execution of one
sub-plan at a time. Subsequently, we get the first set of sub-
plans in the execution plan and assign one sub-plan to each
one of the threads in the pool. When a thread completes
the execution of a sub-plan, a new sub-plan from the set is
assigned to it, or if there is no other sub-plan in the set, it
is returned to the pool and remains there until all sub-plans
in the set are executed. Once all sub-plans in the set have
been executed, we repeat the same process for the next set
of sub-plans in the execution plan. Through this strategy, we
manage to execute the whole plan in a way that respects all
dependencies that exist between the reasoning units, and at
the same time execute in parallel the appropriate reasoning
units.

8 Evaluation

In this section, we present experimental results regarding the
performance of the proposed framework. The performance of
the framework was evaluated in randomly generated FGMs,
by adjusting a number of structural parameters as follows:
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– total goal nodes in the model: 300–4500, with an interval
of 200 nodes

– maximum number of child nodes per node: 5, 10, 20
– percentage of contribution links in the model: 0, 30%

In all generated FGMs, the probability of a decomposition to
be either and AND or an OR decomposition was set to 50%,
while in a similar manner the probability of each one of the 4
contribution types, i.e., S+, S−, D+, D− was set to 25% for
each type.We have also produced initial random assignments
of values for the leaf nodes of eachmodel, in order to provide
the initial input to the reasoner. We then used the generated
models to evaluate the truth values for their root nodes and
recorded the time and space resources as a function of the
model’s size and complexity (i.e., number of nodes and con-
tribution links). Initially, we used a reasoning plan generated
by a topological sorting of the Reasoning Units Dependency
Graph, for example, the plan given in Eq. (11) for the graph
of Fig. 9, which is used for the sequential execution of the
reasoning process. Subsequently, the reasoning is reapplied
using a parallel reasoning plan produced by the proposed
algorithm with M = 1.

We conducted two series of experiments, one to inves-
tigate how the parallel and the sequential execution scales
depending on the number of events that should be processed
in unit time, and a second one to investigate how the reason-
ing time and the required amount of memory are affected for
models of varying size and complexity.

8.1 Processing large volume of events

Initially, we investigate how the two approaches (i.e., the par-
allel and the sequential one) scale in terms of execution time
whena largevolumeof incomingevents need tobeprocessed.
More specifically, we consider the use case where for every
1000 events of logged data the reasoning process is trig-
gered by an alarm. This implies that when, for example, the
rate of incoming events is 5000/s, then the reasoning should
be applied 5 times within one second. For this experiment,
we utilized 3 randomly generated models of 200 nodes and
applied the reasoning when the incoming data rate increases
from 2000 events/sec to 50 000events/s. We then recorded
the time required for the reasoning to complete when either
a sequential or a parallel execution plan is used. The results
are depicted in Fig. 17. According to these results, while the
time required increases almost linearly to the rate of incom-
ing events for both approaches, the growth rate in the case
of the parallel plan is smaller than the one in the case of the
sequential plan.

8.2 Memory and time requirements

In this series of experiments, our aim is to investigate how
the reasoning time and the required amount of memory are

Fig. 17 Time required for reasoning for models of 200 nodes when a
reasoning session is triggered for each 1000 events received

Fig. 18 Memory required for reasoning when either no contributions
exist in the model or contribution links percentage is equal to 30%

affected, when either the complexity of the model increases
by addingmore contribution links in themodels, or a different
strategy (sequential or parallel) is used to build and evaluate
the reasoning plan.

Regarding memory requirements, the amount of memory
is almost the same no matter whether a sequential or paral-
lel execution plan is used. This is because memory depends
mainly on the size and the complexity of the model rather
than on the type of reasoning applied. As depicted in Fig. 18,
the amount of memory required increases almost linearly to
the size of the models, with a value equal to 5.5MB for mod-
els with a mean number of nodes equal to 500, and a value
equal to 66 MB for models with a mean number of nodes
equal to 4500 when no contribution links exist. Similarly,
when the contribution links-to-node ratio is equal to 30%,
the required memory also increases linearly to the size of
the models; however, the memory required in this case starts
from 6.5 MB for models with a mean number of nodes equal
to 500 and reaches a value equal to 88 MB for models with
a mean number of nodes equal to 4500.

As discussed earlier in the paper, in real-life deployments,
goal models provide the requirements specifications that are
to be verified, while the reasoner assigns truth values to the
specification, given initial truth values to the leafs. In this
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Fig. 19 Time required for reasoning when no contributions exist in the
model and a validation overhead of 10–100ms is assumed

Fig. 20 Time required for reasoning when contribution links percent-
age is equal to 30% and a validation overhead of 10–100ms is assumed

respect, every truth value evaluated by the reasoner for every
non-leaf goal model node has to be further validated for con-
sistency to ensure that there are no evidence in the system
logs that contradicts the node’s evaluated truth value, which
otherwise would signify a possible violation of the require-
ment. For our experiments, we assumed a random validation
overhead of 10–100ms for each node and performed exper-
iments to evaluate the time required to evaluate and validate
large goal models utilizing the sequential and parallel rea-
soning versions.

As depicted in Figs. 19 and 20, the time required for the
reasoning process to complete as a function of model size is
shown to be suitable for run time use. The experiments indi-
cate that the parallel version of the execution of the reasoning
plan has a significant performance increase over the sequen-
tial version. More specifically, for models with 4500 nodes,
the time required for the parallel execution is almost 85%
lower than the time required when the sequential execution
produced using topological sorting. For the parallel version,
the experimental results indicate that in order to evaluate and
validate goal models of 4500 nodes, a time of approximately
10s is required in a single computer running 8 threads, in 16
CPU cores. Additionally, as the number of contribution links
increases (Fig. 20), and thus, the complexity of the mod-
els increases too, we do not observe a significant increase

in time performance, as in our approach the number of rea-
soning units is not affected by the number of contribution
links in the model. Finally, another benefit of the parallel ver-
sion is that different sub-plans can be evaluated on servers or
processes that are physically closer towhere log data required
for a node’s post-validation, reside. In this respect, instead
of fetching log data to the reasoning engine, sub-plans are
moved to where data reside, increasing thus the potential
throughput of the reasoning system. Overall, our experimen-
tal results indicate that the proposed approach can scale up,
so that it can be used at run time for sizeable models.

8.3 Discussion and threats to validity

In this section, we are going to describe some important
details of the proposed method and also discuss the threats
to its validity.

As this has been already mentioned, for the proposed
method to be applied, the given fuzzy goal model should
not contain cycles. This is mainly because of the way the
reasoning plan is being created and from the fact that there is
no topological sorting for a directed graph with cycles, hence
if cycles exist in the Reasoning Unit Dependency Graph no
reasoning plan could be created. Given a graphwith cycles, it
is most probable that cycles have been created duo to specific
contribution link as decomposition links describe how goals
are decomposed to simpler sub-goals and most of the times
are added to themodel by applying a top-down analysis. Con-
sider now themodel of Fig. 21which contains a cycle. Taking
into account the semantics of contribution links, as these have
been described in Sect. 4, we can decompose the initialmodel
to the two acyclic sub-models depicted in Fig. 21. This can be
done because the D+ contribution link from node B2 to node
A is only “triggered” (i.e., takes part in the reasoning process)
when B2 is false. However, in this case A becomes also false,
because of the semantics of D+ contribution, which means
that the path from A to B2 will not be “triggered” as the S+
contribution links is only “triggered” when A is true. While
this strategy of decomposing a graph which contains cycles
to a set of acyclic graphs is valid when the nodes are crisp, it
cannot be applied to fuzzy goalmodels. This is because fuzzy
nodesmay have a truth value in the interval [0,1] rather than a
value in the set {0,1}, and the rules that correspond to contri-
bution links are always “triggered” no mater what the value
of the source node is.

Regarding the use of fuzzy reasoning instead of a prob-
abilistic one, probabilistic reasoning approaches have been
extensively proposed in the literature as an efficient and sound
method to reason under uncertainty over goal models. In
these cases, the analysis starts by definingwhich are the prob-
abilities of certain events to be occurred and the final result
corresponds to the probability of the requirements to hold,
enabling thus the comparison between alternatives in the
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Fig. 21 Decomposition of a goal model with cycles to two acyclic
sub-models

design phase. Fuzzy logic, on the other hand, can very well
deal with vagueness and also eases the encoding of human
expertise and reasoning through the use of linguistic variables
(e.g., is highly/poorly satisfied). In the problem under study,
we consider that we know exactly which events hold (as they
are collected from the system’s monitoring infrastructure
rather than the probabilities these events may have occurred),
and so the primary aim is calculating the degree of satisfac-
tion of a property or a requirement, given the vagueness of
how an observed event contributes toward or against it, as
opposed calculating the conditional probability, a property
or requirement holds, given the probabilities of the evidence
supporting it. In this context, the probabilistic approach could
serve as an initial step toward modeling uncertainty on col-
lecting or observing system events, followed by the fuzzy
approach which could serve toward modeling vagueness on
the impact an event has on its parent goals.

Another issue that requires attention is instance versus
class level reasoning in goal models. The problem has been
identified in [18] and relates to how a run time environ-
ment can select the way by which “generic” class level goal
model nodes can be evaluated at run time along with “spe-
cific” instance level goal model nodes. In order to address
this problem efficiently, novel run time architectures have to
be devised. Such architectures should be able to recognize
and prioritize the evaluation of different types of goal model
nodes as to maximize reasoning throughput.

Themain threats to the validity of the proposedmethod are
a) the elicitation of the contribution confidence values for the
contribution links, b) the maximum size of goal models that
can be used in practice, and c) the selection of the appropriate
set of the membership functions for the fuzzy nodes.

Regarding the contribution confidence values, while when
applying qualitative reasoning, the propagation of labels
becomes rapidly inconclusive as we move up in the goal
refinement tree [34], a common problem encountered to
almost every quantitative reasoning approach is how contri-
bution confidence values are assigned to contribution links.
This problem, and whether it is easier to comprehend quali-
tative rather than quantitative labels is the subject of [35,36],
where authors present results which verify that the use of
numerical values increases the comprehension of the mod-

els even for non-experts, and they also propose an elicitation
method for these values.

Furthermore, the existence of complex software systems
can result in models with more than 10 000 requirements, a
context thatWnuk et al. refer to asVery Large-Scale Require-
ments Engineering (VLSRE) [48,49]. Additionally, in the
context of this paper, we take the view that stakeholders can
not only define custom goal trees, but can also use prede-
fined ones from repositories, where requirements are created
from experts or extracted utilizing text mining techniques
from specifications and policy documents [41]. Using such
repositories, composite goalmodels of varying size and com-
plexity can be created.

Finally, selecting the most appropriate membership func-
tions is one of the most important problems of fuzzy
controllers development. While there are some general
guidelines proposed in the literature, and methods have been
proposed for the elicitation of membership functions using
genetic algorithms [24], membership function selection is
mainly based on domain expertise and results interpretation
needs [43]. An analysis of the impact different membership
functions have on the quality of the final results can be found
in [13], where we compare the satisfaction degrees calcu-
lated for a certain node as the parameters of the membership
functions for the two linguistic variables “low” and “high”
are modified and give some general guidelines regarding the
membership function parameters.

9 Working example

While in the previous sectionwe used random goalmodels of
varying size and complexity in order to evaluate the time and
space performance of the proposedmethod, in this sectionwe
provide a working concrete example of applying the method
to a middle sized real-life model. As there is no publicly
available set of goal models that can be used as a benchmark
for goal model reasoning techniques, we have tried to contact
fellow academic groups in order to acquire large real-life
goal models which can be utilized to run additional real-life
experiments.

The model used in this section is an i* Strategic Rational
model that has been provided to us by Dr Jennifer Horkoff.1

This model is depicted in Fig. 22. It contains almost 400
nodes that correspond to Tasks, Goals, or Softgoals and 500
links (e.g., “Break,” “Hurt”), and describes the requirements
of a counseling service for kids, as this has been modeled
during the first phases of a project aiming at capturing the
goals and the interactions within the organization.

More specifically, the model depicts the requirements of
the phone andWeb services of the organization related to kids

1 http://www.cs.toronto.edu/~jenhork/.

123

http://www.cs.toronto.edu/~jenhork/


Efficient parallel reasoning on fuzzy goal models for run time requirements verification 1359

Fig. 22 Overview of the model used in the working example

counseling. Most of the requirements are related to preserv-
ing the “Anonymity” and the “Confidentiality” of the kids or
of their parents when they use the services, which are Soft-
goals, or in terms of the analysis applied in the context of
this paper fuzzy goals. Also, depending on the type of ser-
vice, there is, for example, the requirement to “reduce prank
calls” by “implementing a proper anti-pranking message”, in
the case of phone services, or to “increase the ease of use”
in the case of web services.

9.1 Transformation process

The model was originally created using the Microsoft Visio
application and exported in vdx format, which is practically
an xml file, allowing thus the model to be programmati-
cally manipulated. We have created a transformation process
which given a vdx file creates and populates a fuzzy goal
model which is an ecore instance given in the form of an

Table 3 Transformation of i∗ links to contribution and decomposition
links

i* model link Fuzzy goal model link

Make S+ with contribution confidence 1.0

Break S− with contribution confidence 1.0

Help S+ with contribution confidence w

Hurt S− with contribution confidence w

Means-ends OR decomposition

Decomposition AND decomposition

xmi file, that can be used by the reasoner and the domain
model introduced in the context of this paper. More specifi-
cally, as the given model is an i* instance, we transform each
one of the i* links (e.g., “Help,” “Make”) to an equivalent
contribution or decomposition link in the target model. The
transformation of the i* links to contribution and decompo-
sition links of a fuzzy goal model is summarized in Table 3.
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Fig. 23 Example transformation of a vdxfile to an ecore instance given
in the form of an xmi file

Regarding the nodes of the givenmodel,Task andGoal nodes
were transformed to crisp goal nodes, while for each Softgoal
in the initial model a corresponding fuzzy goal node was cre-
ated in the generated fuzzy goal model. An overview of the
transformation process of a vdx file to an ecore instance is
depicted in Fig. 23.

9.2 Running cases

Once the transformation has been completed, we can use the
resulting fuzzy goal model in order to apply the reasoning
technique introduced in this paper. In amore descriptiveman-
ner, we initially generate the corresponding reasoning model
using the transformation process described in Sect. 5, and
we then compile a parallel reasoning plan using Algorithm
1. This allows us to compute how the satisfaction degrees of
certain root nodes are modified for given sets of initial values
of the leaf nodes of the model.

More specifically, we consider a scenario in which the
quality of the services provided by the system is poor, i.e.,
the satisfaction degree calculated for the fuzzy root node
“High Quality Services” is low, and hence, the stakehold-
ers of the system are interested in applying changes that
will result in the increase in the satisfaction degree of the
“High Quality Services” goal. Subsequently, we examine
how the satisfaction degree calculated for the “High Quality
Services” fuzzy root node is gradually increased as the sat-
isfaction degrees of certain leaf nodes which are connected
to the root node through a path of decomposition and con-
tribution links are altered. Note that nodes that do not affect
the value of the “High Quality Services” root node remain
unchanged between the various cases so as to ensure that the
alterations observed are due to the changes in these specific
leafs. The set of leaf nodes and the values assigned to these
nodes for each case are summarized in Table 4. For each one
of the three cases presented in Table 4, we run the reasoning
process and deduct the value of the root node by applying
the parallel reasoning process presented in this paper.

9.2.1 Case 1—Service quality goal denial

The first case depicts a scenario in which leaf nodes which
have overall positive contributions toward the goal node
“High Quality Services”, either are denied or have a low sat-
isfaction value ( i.e., all crisp leaf nodes in Table 4 are false,
while all fuzzy leaf nodes have low satisfaction degrees).
More specifically, considering that all the leaf nodes in
Table 4 contribute directly or indirectly to the top goal, and
by considering a fuzzy membership function like the one
depicted in Fig. 7, the first scenario assumes a 10% satis-
faction degree for leaf #05, 10% satisfaction degree for leaf

Table 4 Initial values assigned to the leaf nodes for the cases of the working example

Leaf node Crisp/fuzzy Case 1 Case 2 Case 3

01. Implement Voice Counselling Crisp false false true

02. Sufficient Counselling Resources Crisp false false false

03. Implement Phone Feedback Crisp false false false

04. Trace Calls Crisp false true true

05. Increase Emphasis on Online Feedback Form Fuzzy 10% (1.0/0.0) 60% (0.0/0.4) 90% (0.0/1.0)

06. Block Kids who Display Inappropriate Behavior Crisp false false true

07. Web Site Content Be Updated Daily Crisp false false true

08. Implement Video Counselling Crisp false false true

09. Decrease [Phone Waiting Time] Fuzzy 10% (1.0/0.0) 10% (1.0/0.0) 70% (0.0/0.6)

10. Implement Anti-Pranking Message Crisp false false true

11. Confidentiality [Services] Fuzzy 20% (0.8/0.0) 40% (0.4/0.0) 85% (0.0/0.9)

12. Inform Kids about Anonymity of Web Services Crisp false false true

13. Counsellors Be Professionally Trained Crisp false false true

For fuzzy goal nodes’ satisfaction degrees, we also provide the values extracted using the fuzzification process described in Sect. 5.2.2 in the format
(Vlow/Vhigh)
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#09, and a 20% satisfaction degree for leaf #11. These fuzzy
values correspond to a user or the system assigning a LowSat
value 1.0 and aHighSat value 0.0 that collectively yield a total
10% satisfaction degree. Similarly the LowSat and HighSat
values of 0.0 and 0.8 yield a total 20% satisfaction degree.
By evaluating the model, the satisfaction degree for the root
goal node“HighQuality Services” is then computed to 49%,
as all leaf nodes that are connected to the root trough a path
that consists of S+ contributions are false or have a very low
satisfaction degree as presented above.

9.2.2 Case 2—Service quality goal partial satisfaction

The second case depicts the impact the increase in values
of two fuzzy leaf nodes have on the satisfaction degree of
the root node. In this respect, the fuzzy leaf nodes #05 and
#11 increase to 60 and 40%, respectively. These fuzzy val-
ues correspond to a (0.0, 0.4) LowSat and HighSat pair that
yields an overall 60% satisfaction degree and the (0.4, 0.0)
LowSat and HighSat pair that yields an overall 40% satis-
faction degree.

In turn, the increase in the satisfaction degrees of the leaf
nodes results in the partial satisfaction of the fuzzy rootwhich
now has a satisfaction degree equal to 57% as opposed to
49% in the first scenario.

9.2.3 Case 3—Service quality goal satisfaction

The third case depicts the scenario in which both the crisp
nodes are satisfied and the fuzzy nodes have high satisfac-
tion scores. This situation is presented in Table 4 where the
crisp nodes are true, and the fuzzy nodes have a satisfac-
tion degree greater than 70%. By evaluating the model in
this scenario, the overall satisfaction degree of the root node
increases to 77% from 57%, which implies that the top goal
“High Quality Services” is satisfied to a greater extent than
in the previous cases.

10 Conclusion and future work

As software systems become interconnected and offered via
virtualized and dynamically provisioned platforms, forming
thus ultra-large-scale systems, a key question that emerges is
whether specific requirements still hold when systems inter-
act in new and unforeseen ways, or when new resources
are dynamically provisioned to meet varying load and stake-
holder needs. This question encompasses two main issues.
The first issue deals with being able to reason at run time,
and in the presence of vague evidence, as to whether specific
system requirements are affected as a result of dynamic alter-
ations in the system’s operating environment and resources.
The second issue deals with being able to deal with tractabil-

ity issues, so that real time, or near real time, performance
can be achieved. In this respect, it is important to be able
to parallelize the computation and distribute it to different
servers, so that performance can stay within acceptable and
tractable limits as load, systems, or logged data increase.

In this paper, we propose fuzzy goal models as a way of
dealing with modeling uncertainty and incomplete knowl-
edge about requirements inter-dependencies, and we intro-
duce a reasoning framework for fuzzy goal models that
can be used to analyze and evaluate system requirements
at run time. The system takes as input, data collected as
the system operates. Fuzzy goal models denote dependen-
cies between various requirements as well as, relationships
that exist between monitored events and the system require-
ments. As thesemodels may grow in size whenmore systems
become interconnected, we propose a technique that allows
for the analysis of goal model node dependencies, so that
independent areas (or subgraphs) can be identified, and fuzzy
reasoning can be parallelized. In this respect, given a goal
model with fuzzy and crisp goal nodes, we introduce first
a process that allows for the generation of fuzzy rules from
fuzzy goal models and second, a modeling transformation
process that allows for the generation of a dependency graph,
where each node is an abstraction (i.e., reasoning unit) of the
evaluations that should be performed in order to calculate the
degree a single goal node is satisfied or not. Subsequently,
we create a sequence of parallel evaluations, we refer to as
the reasoning plan, that ensures that all reasoning units are
executed in an order that respects the dependencies that exist
between the nodes in the original fuzzy goalmodel. Hence, as
events are collected from the running system forming a fact
base, the reasoning plan and the rules generated at design
time, can be used to infer deductions as to whether and to
what degree, specific requirements or goals may still hold
given the altered state of the system and the events been
logged.

In this context, we evaluated the performance of the pro-
posed framework by conducting a series of experiments
with randomly generated models of varying size and com-
plexity. More specifically, we evaluated the application of
the proposed method with respect to execution time and
amount of memory required for models of different sizes.
The experimental results indicate that assuming that there is
a computational overhead to validate the logged data against
individual goal nodes, the amount of time required for the
parallel reasoning to complete, is significantly lower com-
pared to sequential one.

The work presented in this paper can be extended in a
number of possible directions. One possible direction is to
investigate how reasoning can be applied to goal models with
temporal dependencies like the ones introduced in [37,38],
where pre- and post-condition dependency links are used
to denote the temporal dependencies between goal model
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nodes. These extensions may be proven useful for enhancing
the expressiveness of the modeling notation.

A second direction is to consider adapting and applying
the work presented in [12]. More specifically, the genetic
algorithm introduced in [12] for the top-down reasoning of
crisp goal models could also be adapted and applied to goal
models with fuzzy goal nodes, where the evaluation of the
possible solutions would be performed by the parallel algo-
rithm introduced in this paper.

A third direction is to apply the method on fuzzy goal
models that denote requirements at the instance level rather
than at the class level. In this case, the models in which the
reasoning should be applied at run time would have been
larger and more complex, making the utilization of the par-
allel reasoning approach even more useful.

Finally, a fourth direction is to investigate the use of a
feedback loop strategy, in order to allow self-adaptation of
the system under study. Once the satisfaction degrees for all
goal nodes are evaluated, the feedback loop could be used to
identify the actions required and to propose a plan of changes
in order to satisfy currently failed system goals. This work
can be used to devise controllers for autonomic and self-
adaptive systems, an area that attracts significant attention
from researchers and practitioners alike.
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