DNA Tile Self-Assembly

Steffen Kopecki

Western University
Department of Computer Science

Natural Computing, Winter Term 2013/2014
(I) Self-Assembly Systems with a Temperature

(II) Directed vs. Undirected Self-Assembly Systems

(III) Staged Self-Assembly

(IV) Assembly of Patterns

(V) Assembly of “Smart Tiles” and “Smart Structures”
The abstract tile self-assembly model was defined in order to capture the process of DNA self-assembly in a simplified formal model. An aTAM consists of

- finite set of *tile types* T with *glues* from Γ,
- *temperature* $\tau \in \mathbb{Z}^+$,
- glue strength function $g : \Gamma \rightarrow \mathbb{N}$, and
- *seed* tile (or structure) σ.

A tile can attach to the growing structure if its binding strength is at least the temperature τ.

Let $\tau = 2$.

An assembly is *terminal* if no further tiles can be attached.
The abstract tile self-assembly model was defined in order to capture the process of DNA self-assembly in a simplified formal model. An aTAM consists of

- a finite set of *tile types* T with *glues* from Γ,
- *temperature* $\tau \in \mathbb{Z}^+$,
- glue strength function $g : \Gamma \to \mathbb{N}$, and
- *seed* tile (or structure) σ.

A tile can attach to the growing structure if its binding strength is at least the temperature τ.
The abstract tile self-assembly model was defined in order to capture the process of DNA self-assembly in a simplified formal model. An aTAM consists of

- finite set of *tile types* T with *glues* from Γ,
- *temperature* $\tau \in \mathbb{Z}^+$,
- glue strength function $g : \Gamma \to \mathbb{N}$, and
- *seed* tile (or structure) σ.

A tile can attach to the growing structure if its binding strength is at least the temperature τ.

Let $\tau = 2$.
The abstract tile self-assembly model was defined in order to capture the process of DNA self-assembly in a simplified formal model. An aTAM consists of

- finite set of *tile types* T with *glues* from Γ,
- *temperature* $\tau \in \mathbb{Z}^+$,
- glue strength function $g : \Gamma \to \mathbb{N}$, and
- *seed* tile (or structure) σ.

A tile can attach to the growing structure if its binding strength is at least the temperature τ.

Let $\tau = 2$.

![Diagram of tile types and glue interactions]
The abstract tile self-assembly model was defined in order to capture the process of DNA self-assembly in a simplified formal model. An aTAM consists of

- finite set of *tile types* T with *glues* from Γ,
- *temperature* $\tau \in \mathbb{Z}^+$,
- glue strength function $g : \Gamma \rightarrow \mathbb{N}$, and
- *seed* tile (or structure) σ.

A tile can attach to the growing structure if its binding strength is at least the temperature τ.

Let $\tau = 2$.

```
- -
  \sigma = - = - = -
```
The abstract tile self-assembly model was defined in order to capture the process of DNA self-assembly in a simplified formal model. An aTAM consists of

- finite set of *tile types* T with *glues* from Γ,
- *temperature* $\tau \in \mathbb{Z}^+$,
- glue strength function $g : \Gamma \rightarrow \mathbb{N}$, and
- *seed* tile (or structure) σ.

A tile can attach to the growing structure if its binding strength is at least the temperature τ. Let $\tau = 2$.

Let $\tau = 2$.

![Diagram of aTAM components: a seed tile σ, tiles with glues, and connecting structures.](image-url)
Abstract Tile Self-Assembly Model (aTAM)
Winfree (1998)

The abstract tile self-assembly model was defined in order to capture the process of DNA self-assembly in a simplified formal model. An aTAM consists of

- finite set of *tile types* T with *glues* from Γ,
- *temperature* $\tau \in \mathbb{Z}^+$,
- *glue strength function* $g: \Gamma \to \mathbb{N}$, and
- *seed* tile (or structure) σ.

A tile can attach to the growing structure if its binding strength is at least the temperature τ.

Let $\tau = 2$.

![Diagram of aTAM](image)
The abstract tile self-assembly model was defined in order to capture the process of DNA self-assembly in a simplified formal model. An aTAM consists of:

- finite set of *tile types* \(T \) with *glues* from \(\Gamma \),
- *temperature* \(\tau \in \mathbb{Z}^+ \),
- glue strength function \(g : \Gamma \to \mathbb{N} \), and
- *seed* tile (or structure) \(\sigma \).

A tile can attach to the growing structure if its binding strength is at least the temperature \(\tau \).

Let \(\tau = 2 \).
The abstract tile self-assembly model was defined in order to capture the process of DNA self-assembly in a simplified formal model. An aTAM consists of

- finite set of *tile types* T with *glues* from Γ,
- *temperature* $\tau \in \mathbb{Z}^+$,
- glue strength function $g : \Gamma \to \mathbb{N}$, and
- *seed* tile (or structure) σ.

A tile can attach to the growing structure if its binding strength is at least the temperature τ.

Let $\tau = 2$.

An assembly is *terminal* if no further tiles can be attached.
Glues are implemented by complementary DNA sticky ends u and u^*. The glue strength is the energy needed to break the hydrogen bonds between the sticky ends.

- the length of the sticky ends,
- G, C-content ($G - C$ pairs 3 hydrogen bonds whereas $A - T$ pairs have 2),
- possible mismatches in u and u^*.
Modeling of Chemical Properties

Glues are implemented by complementary DNA sticky ends u and u^*. The glue strength is the energy needed to break the hydrogen bonds between the sticky ends.

- the length of the sticky ends,
- G,C-content ($G − C$ pairs 3 hydrogen bonds whereas $A − T$ pairs have 2),
- possible mismatches in u and u^*.

Depending on the temperature of the solution “weak bonds” will frequently assemble and disassemble, but will not be stable.
Glues are implemented by complementary DNA *sticky ends* u and u^*. The *glue strength* is the energy needed to break the hydrogen bonds between the sticky ends.

- the length of the sticky ends,
- G,C-content ($G - C$ pairs 3 hydrogen bonds whereas $A - T$ pairs have 2),
- possible mismatches in u and u^*.

Depending on the *temperature* of the solution “weak bonds” will frequently assemble and disassemble, but will not be stable.

Other factors can influence the glue strength, like solvents (often salts) in the solution.
Self-Assembly of a Counter at Temperature $\tau = 2$

Seed

Frame

Half-adder

$g(\uppi) = 2$
$g(0) = g(1) = 1$
Self-Assembly of a Counter at Temperature $\tau = 2$

Seed

Frame

Half-adder

$g(\|) = 2$

$g(0) = g(1) = 1$
Self-Assembly of a Counter at Temperature $\tau = 2$

Seed

Frame

Half-adder

$g(1) = 2$
$g(0) = g(1) = 1$
Self-Assembly of a Counter at Temperature $\tau = 2$

Seed

Frame

Half-adder

\[g(0) = g(1) = 1 \]

sum $a \oplus b$

input a

input b

carry $a \land b$
Self-Assembly of a Counter at Temperature $\tau = 2$

Seed

Frame

Half-adder

$g(1) = 2$

$g(0) = g(1) = 1$

sum $a \oplus b$

input a

input b

carry $a \land b$
Self-Assembly of a Counter at Temperature $\tau = 2$

Seed

Frame

Half-adder

- $g(1) = 2$
- $g(0) = g(1) = 1$

$g(n) = 2$

$g(0) = g(1) = 1$

Sum $a \oplus b$

Input a

Input b

Carry $a \land b$
Self-Assembly of a Counter at Temperature $\tau = 2$

<table>
<thead>
<tr>
<th>Seed</th>
<th>Frame</th>
<th>Half-adder</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= \sigma$</td>
<td>$= = = = = = = = $</td>
<td>sum $a \oplus b$</td>
</tr>
<tr>
<td>$= = = = = = = = $</td>
<td>$= = = = = = = = $</td>
<td>input a</td>
</tr>
<tr>
<td>$= = = = = = = = $</td>
<td>$= = = = = = = = $</td>
<td>input b</td>
</tr>
<tr>
<td>$= = = = = = = = $</td>
<td>$= = = = = = = = $</td>
<td>carry $a \land b$</td>
</tr>
</tbody>
</table>

$g(0) = g(1) = 1$
The fractal structure of the Sierpinski triangle can also be generated by the xor logic gate from a string \[\cdots 000010000 \cdots \]
The fractal structure of the Sierpinski triangle can also be generated by the XOR logic gate from a string $\cdots 000010000 \cdots$.

Rothemund, Papadakis, Winfree (2004)
The fractal structure of the Sierpinski triangle can also be generated by the xor logic gate from a string \(\cdots 000010000 \cdots \).
Self-Assembly of Sierpinski Triangles

output \(a \oplus b \)

output \(a \oplus b \)

input \(b \)

input \(a \)
Self-Assembly of Sierpinski Triangles

<table>
<thead>
<tr>
<th>Input a</th>
<th>Input b</th>
<th>Output a (\oplus) b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

(I) Self-Assembly Systems with a Temperature

(II) Directed vs. Undirected Self-Assembly Systems

(III) Staged Self-Assembly

(IV) Assembly of Patterns

(V) Assembly of “Smart Tiles” and “Smart Structures”
An aTAM is *directed* (a.k.a. deterministic) if it forms one unique terminal assembly, where an assembly is defined by which tile type is placed at each position.
Directed Self-assembly Systems

An aTAM is *directed* (a. k. a. deterministic) if it forms one unique terminal assembly, where an assembly is defined by which tile type is placed at each position.

An aTAM *strictly self-assembles* a shape if all of its terminal assemblies are guaranteed to have that shape, although some of the assemblies may have different tile types at the same position.
Theorem

For \(n \in \mathbb{N} \), there is a finite shape \(S \) that is strictly self-assembled by an aTAM with \(c \) tile types, but every directed aTAM that (strictly) self-assembles \(S \) requires at least \(c + n \) tile types.
The Power of Undirected Systems

Theorem

For $n \in \mathbb{N}$, there is a finite shape S that is strictly self-assembled by an aTAM with c tile types, but every directed aTAM that (strictly) self-assembles S requires at least $c + n$ tile types.
Theorem

For \(n \in \mathbb{N} \), there is a finite shape \(S \) that is strictly self-assembled by an aTAM with \(c \) tile types, but every directed aTAM that (strictly) self-assembles \(S \) requires at least \(c + n \) tile types.
The Power of Undirected Systems

Theorem

For \(n \in \mathbb{N} \), there is a finite shape \(S \) that is strictly self-assembled by an aTAM with \(c \) tile types, but every directed aTAM that (strictly) self-assembles \(S \) requires at least \(c + n \) tile types.
Theorem

For \(n \in \mathbb{N} \), there is a finite shape \(S \) that is strictly self-assembled by an aTAM with \(c \) tile types, but every directed aTAM that (strictly) self-assembles \(S \) requires at least \(c + n \) tile types.

\[
\begin{array}{cccc}
A_n & C_n & A_n & B_n \\
A_{n-1} & C_{n-1} & A_{n-1} & B_{n-1} \\
\vdots & \vdots & \vdots & \vdots \\
A_3 & C_3 & A_3 & B_3 \\
A_2 & C_2 & A_2 & B_2 \\
A_1 & C_1 & A_1 & B_1 \\
\end{array}
\]

Theorem

There is an \textit{infinite} shape \(S \) such that some aTAM strictly self-assembles \(S \), but no directed aTAM (strictly) self-assembles \(S \).
Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.
Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.
Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.
Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.

$$\cdots \square 001010111 \square \cdots$$

$s \quad \delta(s,0) = (p,1,R)$

$$\cdots \square 101010111 \square \cdots$$

$p \quad \delta(p,0) = (q,0,L)$

$$\cdots \square 101010111 \square \cdots$$

$q \quad \cdots$

$$\cdots \square 0011101 \square \cdots$$

$f \quad \cdots$$
Universality of Directed aTAM with $\tau = 2$

Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.

Let s be the initial state with symbols 01010111. The transition function δ is defined as follows:

- $\delta(s, 0) = (p, 1, R)$
- $\delta(p, 0) = (q, 0, L)$
- $\delta(q, 0) = (f, 1, L)$
- $\delta(f, 0) = (\star, 1, L)$

The final state is represented by the symbol \star. This demonstrates the Turing-universality of the directed aTAM at $\tau = 2$.

Open Problem

Is the directed aTAM Turing-universal at temperature $\tau = 1$?
Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.

\[
\cdots \square 010111 \square \cdots \quad \delta(s, 0) = (p, 1, R)
\]

\[
\cdots \square 10111 \square \cdots \quad \delta(p, 0) = (q, 0, L)
\]

\[
\cdots \square 10111 \square \cdots
\]

\[
\cdots \square 00111 \square \cdots
\]
Universality of Directed aTAM with $\tau = 2$

Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.
Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.
Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.
Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.
Universality of Directed aTAM with $\tau = 2$

Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.
Universality of Directed aTAM with $\tau = 2$

Theorem

The directed (zig-zag) aTAM at temperature $\tau = 2$ is Turing-universal.

Open Problem

Is the directed aTAM Turing-universal at temperature $\tau = 1$?
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I) Self-Assembly Systems with a Temperature</td>
</tr>
<tr>
<td>(II) Directed vs. Undirected Self-Assembly Systems</td>
</tr>
<tr>
<td>(III) Staged Self-Assembly</td>
</tr>
<tr>
<td>(IV) Assembly of Patterns</td>
</tr>
<tr>
<td>(V) Assembly of “Smart Tiles” and “Smart Structures”</td>
</tr>
</tbody>
</table>
More external control is added to the assembly process by using different sets of tile types in each of several stages.

Start with a seed structure σ and sets of tile types T_1, \ldots, T_n. For each stage $i = 1, \ldots, n$

1. add the tile types T_i to the solution,
2. wait for a terminal structure to assemble,
3. then, “wash away” all unbound tile types.

After the n-th stage start over with the 1-st stage again.
More external control is added to the assembly process by using different sets of tile types in each of several stages.

Start with a seed structure σ and sets of tile types T_1, \ldots, T_n. For each stage $i = 1, \ldots, n$

1. add the tile types T_i to the solution,
2. wait for a terminal structure to assemble,
3. then, “wash away” all unbound tile types.

After the n-th stage start over with the 1-st stage again.

In biochemistry wet-labs the repeated process of mixing DNA structures (in our case tile types) into a solution and then purifying the solution to obtain certain structures is a commonly used technique.
Universality of Staged aTAM with $\tau = 1$

Theorem

The directed, staged aTAM at temperature $\tau = 1$ is Turing-universal.

Staged aTAM with $\tau = 2$ can simulate zig-zag aTAM with $\tau = 2$.

East-west glues are actual glues while north-south glues are simulated by the geometry of the tile.
Universality of Staged aTAM with $\tau = 1$

Theorem

The directed, staged aTAM at temperature $\tau = 1$ is Turing-universal.

Staged aTAM with $\tau = 2$ can simulate zig-zag aTAM with $\tau = 2$.

East-west glues are actual glues while north-south glues are simulated by the geometry of the tile.
Theorem

The directed, staged aTAM at temperature \(\tau = 1 \) is Turing-universal.

Staged aTAM with \(\tau = 2 \) can simulate zig-zag aTAM with \(\tau = 2 \).

East-west glues are actual glues while north-south glues are simulated by the geometry of the tile.
Universality of Staged aTAM with $\tau = 1$

Theorem

The directed, staged aTAM at temperature $\tau = 1$ is Turing-universal.

Staged aTAM with $\tau = 2$ can simulate zig-zag aTAM with $\tau = 2$.

East-west glues are actual glues while north-south glues are simulated by the geometry of the tile.
(I) Self-Assembly Systems with a Temperature

(II) Directed vs. Undirected Self-Assembly Systems

(III) Staged Self-Assembly

(IV) Assembly of Patterns

(V) Assembly of “Smart Tiles” and “Smart Structures”
What are Nanoscopic Patterns?

“Molecular pegboards” (addressable nanoarrays), which are cheap to produce, for

a.) arranging nanoparticles (gold, silver, ...),

b.) molecular and logic circuits (*in vitro* and *in vivo*),

c.) enzyme interaction or enzyme detection,

d.) nano-factories like “artificial leafs”,

e.) quantum dot assembly.
Pattern Assembly

Pattern assembly is an aTAM where

→ the temperature is $\tau = 2$,
→ every tile type has a color,
→ every glue has strength 1, and
→ we start from an L-shaped seed.
Pattern Assembly

grid where every node has a property
Pattern Assembly

grid where every node has a property

pattern where every pixel has a color

Pattern assembly is an aTAM where
- ▶ the temperature is $\tau = 2$,
- ▶ every tile type has a color,
- ▶ every glue has strength 1, and
- ▶ we start from an L-shaped seed.
Pattern assembly is an aTAM where

- the temperature is $\tau = 2$,
- every tile type has a color,
- every glue has strength 1, and
- we start from an L-shaped seed.
Pattern assembly is an aTAM where

- the temperature is $\tau = 2$,
- every tile type has a color,
- every glue has strength 1, and
- we start from an L-shaped seed.
Pattern assembly is an aTAM where

- the temperature is $\tau = 2$,
- every tile type has a color,
- every glue has strength 1, and
- we start from an L-shaped seed.
Pattern Assembly

Pattern assembly is an aTAM where

- the temperature is $\tau = 2$,
- every tile type has a color,
- every glue has strength 1, and
- we start from an L-shaped seed.

grid where every node has a property

pattern where every pixel has a color
Pattern assembly is an aTAM where

- the temperature is $\tau = 2$,
- every tile type has a color,
- every glue has strength 1, and
- we start from an L-shaped seed.
Pattern assembly is an aTAM where

- the temperature is $\tau = 2$,
- every tile type has a color,
- every glue has strength 1, and
- we start from an L-shaped seed.
For a given pattern P, among all aTAMs which strictly self-assemble P, find an aTAM with the minimal number of tile types. Obvious bounds: $\#\text{colors} \leq \#\text{tile types} \leq \text{pattern size}$
For a given pattern P, among all aTAMs which strictly self-assemble P, find an aTAM with the minimal number of tile types.

Obvious bounds: $\#colors \leq \#tile\ types \leq pattern\ size$

Theorem
A minimal tile set which strictly self-assembles a pattern P is directed.

Theorem
It is NP-hard to find a minimal tile set that strictly self-assembles a given binary pattern P.

NP-hard: no algorithm is known which solves the problem efficiently.
For a given pattern P, among all aTAMs which strictly self-assemble P, find an aTAM with the minimal number of tile types. Obvious bounds: $\text{colors} \leq \text{tile types} \leq \text{pattern size}$
For a given pattern P, among all aTAMs which strictly self-assemble P, find an aTAM with the minimal number of tile types. Obvious bounds: $\#\text{colors} \leq \#\text{tile types} \leq \text{pattern size}$

\[
\begin{array}{cccccccc}
7 & 6 & 1 & 3 & 2 & 1 & 2 \\
6 & 1 & 6 & 5 & 7 & 3 & 2 \\
1 & 2 & 4 & 1 & 2 & 5 & 7 \\
7 & 2 & 5 & 7 & 6 & 1 & 6 \\
7 & 6 & 1 & 2 & 1 & 2 & 1
\end{array}
\]

Theorem

A minimal tile set which strictly self-assembles a pattern P is directed.
For a given pattern \(P \), among all aTAMs which strictly self-assemble \(P \), find an aTAM with the minimal number of tile types.

Obvious bounds: \(\# \text{colors} \leq \# \text{tile types} \leq \text{pattern size} \)

\[
\begin{array}{cccccccc}
7 & 6 & 1 & 3 & 2 & 1 & 2 \\
6 & 1 & 6 & 5 & 7 & 3 & 2 \\
1 & 2 & 4 & 1 & 2 & 5 & 7 \\
7 & 2 & 5 & 7 & 6 & 1 & 6 \\
7 & 6 & 1 & 2 & 1 & 2 & 1
\end{array}
\]

Theorem

A minimal tile set which strictly self-assembles a pattern \(P \) is directed.

Theorem

It is NP-hard to find a minimal tile set that strictly self-assembles a given binary pattern \(P \).

NP-hard: no algorithm is known which solves the problem efficiently.
Signals and Logic Gates on Tiles

Signal Passing

Attach *signals* on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.
Signal Passing

Attach *signals* on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.
Signal Passing

Attach *signals* on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.
Signal Passing

Attach *signals* on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.
Signal Passing

Attach *signals* on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.
Signal Passing

Attach *signals* on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.
Signal Passing

Attach *signals* on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.
Signal Passing

Attach \textit{signals} on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.
Signals and Logic Gates on Tiles

Signal Passing

Attach *signals* on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.

![Diagram of signal passing on DNA tiles](image-url)
Signal Passing

Attach *signals* on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.

Logic Gates

Several signals on one tile can be combined via *logic gates*.
Signals and Logic Gates on Tiles

Signal Passing

Attach *signals* on top of tiles which are triggered when the tile assembles. Signals can activate glues, deactivate glues, or trigger a signal on a neighbouring tile.

Logic Gates

Several signals on one tile can be combined via *logic gates*.

Signals and logic gates can be implemented using *strand displacement*.
Signal Passing for Tile Self-Assembly
Padilla, Liu, Seeman (2011)
Smart tiles which can interactively self-assemble larger structures are in turn self-assembled from smaller “DNA structures”.

Robot Pebbles a. k. a. “Smart Sand”
Gilpin, Rus et al. (2009–2012)

http://www.youtube.com/watch?v=swxTTlHjN5Q
Logic-Gated Nanorobot for Targeted Transport
Douglas, Bachelet, Church (2012)

Key (target)
Lock 1
Cargo
Hinge
Lock 2