
Predicate Calculus

(Alternative names: predicate logic, first order logic,
elementary logic, restricted predicate calculus, restricted
functional calculus, relational calculus, theory of
quantification, theory of quantification with equality, etc.)

In propositional logic only the logical forms of compound
propositions are analyzed. A simple proposition is an
unanalyzed whole which is either true or false.

There are certain arguments that seem to be perfectly logical,
yet they cannot be expressed by using propositional calculus.
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Example

1. All cats have tails.
2. Tom is a cat.

From these two sentences, one should be able to conclude that

3. Tom has a tail.

To show that this argument is sound, we must be able to
identify individuals, such as Tom, together with their
properties and predicates. This is the objective of predicate
calculus.
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• Generally, predicates are used to describe certain properties or
relationships between individuals or objects.

Example: In “Mary and Jane are sisters”, the phrase “are
sisters” is a predicate. The entities connected this way,
Mary and Jane, are called terms.

• Terms play a similar role in predicate calculus as nouns and
pronouns do in the English language.

• In addition to terms and predicates, one uses quantifiers.
Quantifiers indicate how frequently a certain statement is
true. Specifically, the universal quantifier is used to
indicate that a statement is always true, whereas the
existential quantifier indicates that a statement is
sometimes true.

Example: In “All cats have tails”, the word “all” indicates
that the statement “cats have tails” is universally true.

• Predicate calculus is a generalization of propositional calculus.
Hence, besides terms, predicates, and quantifiers, predicate
calculus contains propositional variables, constants and
connectives as part of the language.

• An important part is played by functions which are essential
when discussing equations.
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Predicate calculus in Computer Science

• Predicate calculus gives the underpinnings to the languages of
logic programming, such as Prolog.

• Predicate calculus is increasingly used for specifying the
requirements of computer applications.

• In the area of proving program correctness, predicate calculus
allows one to precisely state under which conditions a
program gives the correct output.
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Predicate Calculus: Syntax

1. The Domain (universe of discourse)

Example.
1. Jane is Paul’s mother.
2. Jane is Mary’s mother.
3. Any two persons having the same mother are siblings.
—————————————————–
4. Paul and Mary are siblings.

The truth of the statement “Jane is Paul’s mother” can only
be assessed within a certain context. There are many people
named Jane and Paul, and without further information the
statement in question can refer to many different people,
which makes it ambiguous.

To prevent such ambiguities we introduce the concept of a
domain or universe of discourse.
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Definition The universe of discourse or domain is the
collection of all persons, ideas, symbols, data structures, and
so on, that affect the logical argument under consideration.
The elements of the domain are called individuals.

In the argument concerning Mary and Paul, the universe of
discourse (domain) may, for instance, consist of the people
living in a particular house or a particular block.

Many arguments involve numbers and, in this case, one must
stipulate whether the domain is the set of natural numbers,
the set of integers, the set of real numbers, or the set of
complex numbers.

The truth of a statement may depend on the domain selected.
The statement “there is a smallest number” is true in the
domain of natural numbers, but false in the domain of
integers.
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• The elements of the domain are called individuals. An
individual can be a person, a number, a data structure, or
anything else one wants to reason about.

• To avoid trivial cases, one stipulates that every domain must
contain at least one individual. Hence, the set of all natural
numbers less than 0 does not constitute a domain (universe
of discourse) because there is no negative number.

• Instead of the word individual one sometimes uses the word
object, such as in “the domain must contain at least one
object”.

• To refer to a particular individual or object, identifiers must be
used. These identifiers are called individual constants.

If the universe of discourse consists of persons, the
individual constants may be their names. In the case of
natural numbers the individual constants are the digits
representing these numbers. Each individual constant must
uniquely identify a particular individual and no other one.
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2. Predicates

Generally, predicates make statements about individuals:

Mary and Paul are siblings.
Jane is the mother of Mary.
Tom is a cat.
The sum of 2 and 3 is 5.

• In each of these statements, there is a list of individuals, which
is given by the argument list, together with phrases that
describe certain relations among or properties of the
individuals mentioned in the argument list.

• These properties or relations are referred to as predicates.
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• In the statement “Mary and Paul are siblings”, the argument
list is given by Mary and Paul, in that order, whereas the
predicate is described by the phrase “are siblings”.

• Similarly, the statement “Tom is a cat” has an argument list
with the single element “Tom” in it, and its predicate is
described by “is a cat”.

• The entries of the argument list are called arguments.

• The arguments can be either variables or individual constants,
but since we have not discussed variables yet, we restrict
our attention to the case when all arguments are individual
constants.
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• In predicate calculus, each predicate is given a name, which is
followed by the list of arguments.

• The list of arguments is enclosed in parantheses.

• To express “Jane is the mother of Mary” one could choose an
identifier, say “mother” to express the predicate “is the
mother of”, and one would write mother (Jane, Mary).

• Many logicians use only single letters for predicate names and
constants. They would write, for instance M(j, m) instead
of mother(Jane, Mary); that is, they would use M as a
name for the predicate “is the mother of”, j for Jane and m
for Mary. To save space, we will often use this convention.

• Note that the order of arguments is important. Clearly, the
statements mother(Mary, Jane) and mother(Jane, Mary)
have a completely different meaning.
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The number of elements in the argument list of a predicate is
called the arity of the predicate. For instance, mother(Jane,
Mary) has arity 2. The arity of a predicate is fixed. For
example a predicate cannot have two arguments in one case
and three in another. Alternatively, one can consider two
predicates different if their arity is different. The following
statement illustrates this:

The sum of 2 and 3 is 5.
The sum of 2, 3 and 4 is 9.

To express these statements in predicate calculus, one can
either use two predicate names such as “sum2” and “sum3”
and write sum2(2, 3, 5) and sum3(2, 3, 4, 9) respectively, or
one can use the same symbol, say “sum” with the implicit
understanding that the name “sum” in sum(2, 3, 5) refers to a
different predicate than in sum(2, 3, 4, 9).

11



• A predicate with arity n is often called an n-place predicate. A
one-place predicate is called a property.

Example: The predicate “is a cat” is a one-place predicate,
or a property. The predicate “is the mother of”, as in “Jane
is the mother of Mary” is a two-place predicate; that is, its
arity is 2. The predicate in the statement “The sum of 2
and 3 is 6” (which is false) contains the three-place
predicate “is the sum of”.

• A predicate name, followed by an argument list in parantheses
is called an atomic formula . The atomic formulas can be
combined by logical connectives like propositions. For
instance, if cat(Tom) and hastail(Tom) are two atomic
formulas, expressing that Tom is a cat and that Tom has a
tail respectively, one can form

cat(Tom) → hastail(Tom).
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• If all arguments of a predicate are individual constants, then
the resulting atomic formula must be either true or false.
This is part of the definition of the predicate.

• For instance, if the domain consists of Jane, Doug, Mary and
Paul, we have to know for each ordered pair of individuals
whether or not the predicate “is the mother of” is true.
This can be done in the form of a table.

• The method that assigns truth values to all possible
combinations of individuals of a predicate is called an
assignment. For instance, the following table is an
assignment of the predicate “mother”.
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Example

Assignment for the Predicate ”mother”:

Doug Jane Mary Paul
Doug 0 0 0 0
Jane 0 0 1 1
Mary 0 0 0 0
Paul 0 0 0 0

Another example of an assignment is as follows. The domain
consists of the four numbers 1, 2, 3, 4. The predicate
“greater” is true if the first argument is greater than the
second argument. Hence, greater(4, 3) is true and greater(3,
4) is false.
Assignment for the Predicate”greater”:

1 2 3 4
1 0 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 1 1 0
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In a finite domain (universe of discourse), one can represent
the assignments of predicates with arity n by n-dimensional
arrays.

Note that the mathematical symbols >, < are predicates.
However, these predicates are normally used in infix notation.
By this, we mean that they are placed between the
arguments. For instance, to express that 2 is greater than 1,
we write 2 > 1 rather than > (2, 1).
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3. Variables and instantiation

• Often one does not want to associate the arguments of an
atomic formula with a particular individual. To avoid this,
variables are used.

• Variables are frequently chosen from the end of the alphabet;
that is x, y and z, with or without subscripts, suggest
variable names.

• Examples:

cat(x)→ hastail(x)

dog(y)∧ brown(y)

grade(x)→ (x ≥ 0) ∧ (x ≤ 100)

• Clearly, the first and third formulas contain the variable x, and
the second the variable y.
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• As in propositional calculus, formulas can be given names. For
instance, one can define A as follows:

A = cat(x)→ hastail(x).

which means that when we write A we really mean
“cat(x)→ hastail(x)”.

• Syntactically, one can use variables in any place where one is
allowed to use constants.

• The word term is therefore used to refer to either a constant or
a variable. More generally, a term is anything that can be
used in place of an individual (formal definition later).
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Instantiation

If A is a formula, one often has to replace all occurrences of a
particular variable by a term.
For example, in the expression cat(x)→ hastail(x), one may
want to replace all instances of x by the term Tom which
yields

cat(Tom) → hastail(Tom).

Generally, if A is a formula, the formula obtained by replacing
all variables x in A by the term t is denoted by Sx

t A.
Specifically, if A is defined as previously, then

Sx
TomA

stands for
cat(Tom)→ hastail(Tom).
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Definition
Let A represent a formula, x represent a variable, and t
represent a term. Then Sx

t A represents the formula obtained
by replacing all occurrences of x in A by t. Sx

t A is called an
instantiation of A, and t is said to be an instance of x.

Example:
Let a, b, c be individual constants, P , Q, be predicate
symbols, and x and y be variables. Find

Sx
a (P (a)→ Q(x))

Sy
b (P (y) ∨Q(y))

Sy
aQ(a).

Sy
a(P (x)→ Q(x)).

Sx
t is an operation that can be performed on predicates;

therefore it is not a predicate itself, and this makes Sx
t a

meta-formula.
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4. Quantifiers

Consider the following three statements:
1. All cats have tails.
2. Some people like their meat raw.
3. Everyone gets a break once in a while.

All these statements indicate how frequently certain things are
true. In predicate calculus one uses quantifiers in this context.

Definition.
Let A represent a formula, and let x represent a variable. If
we want to indicate that A is true for all possible values of x,
we write ∀xA. Here, ∀x is called universal quantifier, and A
is called the scope of the quantifier. The variable x is said to
be bound by the quantifier. The symbol ∀ is pronounced “for
all”.
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Universal quantifiers contd.

The quantifier and the bounded variable that follows have to
be treated as a unit, and this unit acts somewhat like a unary
connective. Statements containing words like “every”, “each”,
and “everyone” usually indicate universal quantification. Such
statements must typically be reworded such that they start
with “for every x”, which is then translated into ∀x.

Example: Express “Everyone gets a break once in a while” in
predicate calculus.

Solution: We define B to mean “gets a break once in a while”.
Hence, B(x) means that x gets a break once in a while. The
word everyone indicates that this is true for all x. This leads
to the following translation:

∀xB(x)

Example: Express “All cats have tails” in predicate calculus.
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Existential quantifier

Definition
Let A represent a formula, and let x represent a variable. If
we want to indicate that A is true for at least one value x, we
write ∃xA. This statement is pronounced “There exists an x
such that A.” Here, ∃x is called the existential quantifier,
and A is called the scope of the quantifier. The variable x is
said to be bound by the quantifier.

Statements containing such phrases as “some”, and “at least
one” suggest existential quantifiers. They should be rephrased
as “there is an x such that” which is translated by ∃x.
Example: Let P be the predicate “like their meat raw”. Then
∃xP (x) can be translated as “There exist people who like
their meat raw” or “Some people like their meat raw.”

Example: If the universe of discourse (domain) is a collection
of things, ∃x blue(x) should be understood as “There exists
objects that are blue” or “Some objects are blue.”
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Comments 1

• ∀x and ∃x have to be treated like unary connectives.

• The quantifiers are given a higher precedence than all binary
connectives. For instance, if P (x) and Q(x) means that x is
living and that x is dead, respectively, then one has to write

∀x(P (x) ∨Q(x))

to indicate that everything is either living or dead.
∀xP (x) ∨Q(x) means that either everything is living, or x
is dead.

• The variable x in a quantifier is just a placeholder, and it can
be replaced by any other variable name not appearing
elsewhere in the formula. For instance ∀xP (x) and ∀yP (y)
mean the same thing: they are logically equivalent.

• The expression ∀yP (y) is a variant of ∀xP (x).

Definition A formula is called a variant of ∀xA if it is of the
form ∀ySx

yA where y is any variable name and Sx
yA is the

formula obtained from A by replacing all instances of x by
y. Similarly, ∃xA and ∃ySx

yA are variants of one another.
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Comments 2

• Quantifiers may be nested, as demonstrated by the following
example.

• Example: Translate the sentence “There is somebody who
knows everyone” into the language of predicate calculus. To
do this, use K(x, y) to express the fact that x knows y.

Solution. The best way to solve this problem is to go in
steps. We write informally

∃x(x knows everybody)

Here, “x knows everybody” is still in English and means
that for all y is it true that x knows y. Hence

x knows everybody = ∀yK(x, y)

We now add the existential quantifier and obtain

∃x∀yK(x, y).

• Example: Translate “Everybody has somebody who is his or
her mother.”
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Comments 3

• The English statement “Nobody is perfect” also includes a
quantifier, “nobody” which is the absence of an individual
with a certain property.

• In predicate calculus, the fact that nobody has property P
cannot be expressed directly.

• To express the fact that there is no x for which an expression
A is true one can either use ¬∃xA or ∀x¬A.

• If P represents the property of perfection, both ¬∃xP (x) and
∀x¬P (x) indicate that nobody is perfect. They correspond
to “It is not the case that there is somebody who is
perfect”, respectively “for everyone, it is not the case that
he or she is perfect”

• The two methods to express that nobody is A must of course
be logically equivalent,

¬∃xA |=| ∀x¬A.

• There are many quantifiers in English, such as “a few”,
“most”, and “about a third”, that are useful in daily
language, but are not precise and cannot be used in logic.
We do not consider them further.
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Bound and free variables

• The variable appearing in the quantifier is said to be bound.

For instance, in the expression ∀x(P (x)→ Q(x)), the
variable x appears three times and each time x is a bound
variable.

• Any variable that is not bound is said to be free. Later we will
see that the same variable can occur both bound and free in
a formula. For this reason it is also important to indicate
the position of the variable in question.

• Example: Find the free variables in

∀z(P (z) ∧Q(x)) ∨ ∃yQ(y).

Solution: Only one variable x is free. All occurrences of z
are bound, and so are all occurrences of the variable y.

• Note that the status of a variable changes as formulas are
divided into subformulas. For instance, in ∀xP (x), x occurs
twice and it is bound both times. This formula contains
P (x) as subformula. Nevertheless, in P (x) the variable x is
free.
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• Instantiation only affects free variables. Specifically, if A is a
formula, Sx

t A only affects the free occurrences of the
variable x in A.

For instance, Sx
y∀xP (x) is still ∀xP (x); that is, the variable

x is not instantiated.

However, Sx
y (Q(x) ∧ ∀xP (x)) yields Q(y) ∧ ∀xP (x).

• Hence, instantiation treats the variable x differently, depending
on whether it is free or bound, even if this variable appears
twice in the same expression.

• Obviously, two things are only identical if they are treated
identically. This implies that, if a variable appears both free
and bound within the same formula, we have in fact two
different variables that happen to have the same name.
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Comments

•We can consider the bound variables to be local to the scope of
the quantifier just as parameters and locally declared
variables in PASCAL procedures are local to the procedure
in which they are declared.

• The analogy to PASCAL can be extended further if we
consider the variable name in the quantifier as a declaration.
This analogy also suggests that, if several quantifiers use the
same bound variable for quantification, then all these
variables are local to their scope and they are therefore
distinct.

•When forming variants, one must be careful not to interfere
with local definitions. To illustrate this, consider the
statement “y has a mother”. If M is a predicate name for
“is mother of” then this statement translates into
∃xM(x, y). One obviously must not form the statement
∃yM(y, y), which means that y is her own mother.

28



• For similar reasons there are restrictions to instantiation. For
example, the instantiation Sy

x(∃xM(x, y)) is illegal because
it results in ∃xM(x, x). In such cases, one tampers with the
way in which a variable is defined, and this has undesired
side effects.

•We will refer to instances in which a variable becomes bound,
or otherwise changes scope, as variable clashes.

• All variable chashes must be avoided.
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Restrictions of quantifiers

• Sometimes, quantification is over a subset of the universe of
discourse. Suppose, for instance, that animals form the
universe of discourse. How can one express sentences such
as “All dogs are mammals” and “Some dogs are brown”?

• Consider the first statement “All dogs are mammals”. Since
the quantifier should be restricted to dogs, one rephrases the
statement as “If x is a dog, then x is a mammal” which
immediately leads to

∀x(dog(x)→ mammal(x)).

• Generally, the sentence

∀x(P (x)→ Q(x))

can be translated as “All individuals with property P also
have property Q.”.
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• Consider now the statement “Some dogs are brown”. This
means that there are some animals that are dogs and that
are brown. Of course, the statement “x is a dog and x is
brown” can be translated as

dog(x) ∧ brown(x).

“There are some brown dogs” can be now translated as

∃x(dog(x) ∧ brown(x)).

• The statement
∃x(P (x) ∧Q(x))

can in general be interpreted as “Some individuals with
property P have also property Q.”
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• Note that if the universal quantifier is to apply only to
individuals with a given property, we use the conditional to
restrict the domain.

• If we similarly want to restrict application of the existential
quantifier, we use the conjunction.

• Consider statements containing the word “only” such as “only
dogs bark”. To convert this into predicate calculus, this
must be reworded as “It barks only if it is a dog” or,
equivalently “If it barks, then is is a dog”. One has therefore

∀x( barks(x)→ dog(x)).
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