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Abstract. Patterned self-assembly tile set synthesis (Pats) is the prob-
lem of finding a minimal tile set which uniquely self-assembles into a
given pattern. Czeizler and Popa proved the NP-completeness of Pats
and Seki showed that the Pats problem is already NP-complete for pat-
terns with 60 colors. In search for the minimal number of colors such that
Pats remains NP-complete, we introduce multiple bound Pats (mbPats)
where we allow bounds for the numbers of tile types of each color. We
show that mbPats is NP-complete for patterns with just three colors
and, as a byproduct of this result, we also obtain a novel proof for the
NP-completeness of Pats which is more concise than the previous proofs.

1 Introduction

Tile self-assembly is the autonomous formation of a structure from individual
tiles controlled by local attachment rules. One application of self-assembly is the
implementation of nanoscopic tiles by DNA strands forming double crossover
tiles with four unbounded single strands [10]. The unbounded single strands
control the assembly of the structure as two, or more, tiles can attach to each
other only if the bonding strength between these single strands is big enough.
The general concept is to have many copies of the same tile types in a solution
which then form a large crystal-like structure over time; often an initial structure,
the seed, is present in the solution from which the assembly process starts.

A mathematical model describing self-assembly systems is the abstract tile
self-assembly model (aTAM), introduced by Winfree [9]. Many variants of aTAMs
have been studied: a main distinction between the variants is whether the shape
or the pattern of a self-assembled structure is studied. In this paper we focus on
the self-assembly of patterns, where a property, modeled as color, is assigned to
each tile; see for example [6] where fluorescently labeled DNA tiles self-assemble
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into Sierpinski triangles. Formally, a pattern is a rectilinear grid where each
vertex has a color: a k-colored m×n-pattern P can be seen as a function P : [m]×
[n] → [k], where [i] = {1, 2, . . . , i}. The optimization problem of patterned self-
assembly tile set synthesis (Pats), introduced by Ma and Lombardi [4], is to
determine the minimal number of tile types needed to uniquely self-assemble a
given pattern starting from an L-shaped seed. In this paper, we consider the
decision variant of Pats, defined as follows:

Problem (k-Pats)
Given: A k-colored pattern P and an integer m;
Output: “Yes” if P can uniquely be self-assembled by using m tile types.

Czeizler and Popa proved that Pats, where the number of colors on an input
pattern is not bounded, is NP-hard [1], but the practical interest lies in k-Pats.
Seki proved 60-Pats is NP-hard [8]. By the nature of the biological implemen-
tations, the number of distinct colors in a pattern can be considered small. In
search for the minimal number k for which k-Pats remains NP-hard, we inves-
tigate a modification of Pats: multiple bound Pats (mbPats) uses individual
bounds for the number of tile types of each color.

Problem (k-mbPats)
Given: A pattern P with colors from [k] and m1, . . . ,mk ∈ N;
Output: “Yes” if P can uniquely be self-assembled by using mi tile types of

color i, for i ∈ [k].

The main contribution of this paper is a polynomial-time reduction from
Pats to 3-mbPats which proves the NP-hardness of 3-mbPats. However, our
reduction does not take every pattern as input, we only consider a restricted
subset of patterns for which Pats is known to remain NP-hard. The patterns
we use as input are exactly those patterns that are generated by a polynomial-
time reduction from 3-Sat to Pats. Using one of the reductions which were
presented in [1,8] as a foundation for our main result turned out to be unfeasible.
Therefore, we present a novel proof for the NP-hardness of Pats which serves
well as foundation for our main result. Furthermore, our reduction from 3-Sat to
Pats is more concise compared to previous reductions in the sense that in order
to self-assemble a pattern P we only allow three more tile types than colors in
P . In Czeizler and Popa’s approach the number of additional tile types is linear
in the size of the input formula and Seki uses 84 tile types with 60 colors.

Let us note first that the decision variants of Pats and mbPats can be solved
in NP by simple “guess and check” algorithms. Before we prove NP-hardness of
k-Pats, in Sect. 3, and 3-mbPats, in Sect. 4, we introduce the formal concepts
of patterned tile assembly systems, in Sect. 2. We only present some shortened
proofs for our lemmas. Full proofs for all lemmas as well as additional figures,
depicting our patter designs, can be found in the arXiv version [3].

2 Rectilinear Tile Assembly Systems

In this section we formally introduce patterns and rectilinear tile assembly sys-
tems. An excellent introduction to the fundamental model aTAM is given in [7].



Let C be a finite alphabet of colors. An m× n-pattern P , for m,n ∈ N, with
colors from C is a mapping P : [m]×[n]→ C. By C(P ) ⊆ C we denote the colors
in the pattern P , i. e., the codomain or range of the function P . The pattern
P is called k-colored if |C(P )| ≤ k. The width and height of P are denoted
by w(P ) = m and h(P ) = n, respectively. The pattern is arranged such that
position (1, 1) is on the bottom left and position (m, 1) is on the bottom right.

Let Σ be a finite alphabet of glues. A colored Wang tile, or simply tile, t ∈
C × Σ4 is a unit square with a color from C and four glues from Σ, one on
each of its edges. χ(t) ∈ C denotes the color of t and t(N), t(E), t(W ), and t(S)
denote the glues on the north, east, west, and south edges of t, respectively. We
also call the south and west glues the inputs of t while the north and east glues
are called outputs of t.

A rectilinear tile assembly system (RTAS) (T, σ) over C and Σ consists of a
set of colored Wang tiles T ⊆ C×Σ4 and an L-shaped seed σ. The seed σ covers
positions (0, 0) to (m, 0) and (0, 1) to (0, n) of a two-dimensional Cartesian grid
and it has north glues from Σ on the positions (1, 0) to (m, 0) and east glues
from Σ on positions (0, 1) to (0, n). We will frequently call T an RTAS without
explicitly mentioning the seed. The RTAS T describes the self-assembly of a
structure: starting with the seed, a tile t from T can attach to the structure
at position (x, y) ∈ [m] × [n], if its west neighbor at position (x − 1, y) and
south neighbor at position (x, y − 1) are present and the inputs of t match
the adjacent outputs of its south and west neighbors; the self-assembly stops
when no more tiles in T can be attached by this rule. Arbitrarily many copies
of a each tile type in T are considered to be present while the structure is self-
assembled, thus, one tile type can appear in multiple positions. A tile assignment
in T is a function f : [m]× [n] → T such that f(x, y)(W ) = f(x− 1, y)(E) and
f(x, y)(S) = f(x, y − 1)(N) for (x, y) ∈ [m] × [n]. The RTAS self-assembles a
pattern P if there is a tile assignment f in T such that the color of each tile in
the assignment f is the color of the corresponding position in P , i. e., χ ◦ f = P .
A terminological convention is to call the elements in T tile types while the
elements in a tile assignment are called tiles.

A directed RTAS (DRTAS) T is an RTAS where any two distinct tile types
t1, t2 ∈ T have different inputs, i. e., t1(S) 6= t2(S) or t1(W ) 6= t2(W ). A DRTAS
has at most one tile assignment and can self-assemble at most one pattern. If
T self-assembles an m× n-pattern P , it defines the function PT : [m]× [n]→ T
such that PT (x, y) is the tile in position (x, y) of the tile assignment given by
T . In this paper, we investigate minimal RTASs which uniquely self-assemble
one given pattern P . As observed in [2], if P can be uniquely self-assembled by
an RTAS with m tile types, then P can also be (uniquely) self-assembled by a
DRTAS with m tile types.

3 NP-hardness of Pats

In this section, we prove the NP-hardness of Pats. The proof we present uses
many techniques that have already been employed in [1,8]. Let us also point out



that we do not intend to minimize the number of colors used in our patterns
or the size of our patterns. Our motivation is to give a proof that is easy to
understand and serves well as a foundation for the results in Sect. 4.

A boolean formula F over variables V in conjunctive normal form with three
literals per clause, 3-CNF for short, is a boolean formula such that

F = (c1,1 ∨ c1,2 ∨ c1,3) ∧ (c2,1 ∨ c2,2 ∨ c2,3) ∧ · · · ∧ (c`,1 ∨ c`,2 ∨ c`,3)

where ci,j ∈ {v,¬v | v ∈ V } for i ∈ [`] and j = 1, 2, 3. It is well known that
the problem 3-Sat, to decide whether or not a given formula F in 3-CNF is
satisfiable, is NP-complete; see e. g., [5]. The NP-hardness of Pats follows by
the polynomial-time reduction from 3-Sat to Pats, stated in Theorem 1.

Theorem 1. For every formula F in 3-CNF there exists a pattern PF such that
F is satisfiable if and only if PF can be self-assembled by a DRTAS with at most
|C(PF )|+3 tile types. Moreover, PF can be computed from F in polynomial time.

Theorem 1 follows by Lemmas 3 and 5, which are presented in the following.
The pattern PF consists of several rectangular subpatterns which we will

describe in the following. None of the subpatterns will be adjacent to another
subpattern. The remainder of the pattern PF is filled with unique colors; a color c
is unique in a pattern P if it appears only in one position in P , i. e.,

∣∣P−1(c)
∣∣ = 1.

As a technicality that will become useful only in the proof of Theorem 2, we
require that each position adjacent to the L-shaped seed or to the north or east
border of pattern PF has a unique color. Clearly, for each unique color in PF
we require exactly one tile in any DRTAS which self-assembles PF . Since each
subpattern is surrounded by a frame of unique colors, the subpatterns can be
treated as if each of them would be adjacent to an L-shaped seed and we do not
have to care about the glues on the north border or east border of a subpattern.
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Fig. 1. The four tile types used to implement the or-gate.

As stated earlier, the number of tile types m that is required to self-assemble
PF , if F is satisfiable, is m = |C(PF )| + 3. Actually, every color in C(PF ) will
require one tile type only except for one color which is meant to implement an
or-gate; see Fig. 1. Each of the tile types with color or is supposed to have west
input w ∈ {0, 1}, south input s ∈ {0, 1}, east output w ∨ s, and an independent
north output.

Our first subpattern p, shown in Fig. 2, ensures that every DRTAS which
self-assembles the subpattern p contains at least three tile types with color or .
For the upcoming proof of Theorem 2 we need a more precise observation which
draws a connection between the number of distinct output glues and the number
of distinct tile types with color or .

Lemma 1. A DRTAS T which self-assembles a pattern including the subpattern
p contains either
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Fig. 2. The subpattern p.

i.) three distinct tile types o1, o2, o3 ∈ T with color or all having distinct north
and east glues,

ii.) four distinct tile types o1, o2, o3, o4 ∈ T with color or all having distinct
north glues and together having at least two distinct east glues,

iii.) four distinct tile types o1, o2, o3, o4 ∈ T with color or all having distinct
east glues and together having at least two north glues, or

iv.) eight distinct tile types o1, . . . , o8 ∈ T with color or all having distinct east
or north glues.

Lemma 1 follows by the fact that each of the tiles with colors Y1 to Y8 has
the or-gate as west and south neighbors, hence, the number of east glues times
the number of north glues of all tile types with color or has to be at least eight.

We aim to have statement ii.) of Lemma 1 satisfied, but so far all four
statements are possible. The subpatterns q1 to q5 in Fig. 3 will enforce the
functionality of the or-gate tile types.
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Fig. 3. The subpatterns q1 to q5.

Lemma 2. Let P be a pattern that contains the subpatterns p and q1 to q5, and
let m = |C(P )|+ 3. A DRTAS T with at most m tile types which self-assembles
pattern P contains four tile types with color or of the forms shown in Fig. 1.
For every other color in C(P ) there exists exactly one tile type in T . Moreover,
the tile type with color 0→ has east output 0 and the tile type with color +++ has
west input 1.

There are at least three or-gate tile types, thus, only the color of one tile
type in T is not determined yet. The clue of patterns q1 to q4 is that if, e. g., the
two tiles with colors c in q1 and q2 were of different types, there would be only
one tile type of the other colors, and in particular, their west neighbors would
be of the same type as well as their south neighbors. Thus, these two tile types
would have the same inputs, which is prohibited for DRTAS by definition. This
implies that the tiles with colors A and B have the same west input and can
only be placed because their south neighbors, the or-gate tiles in q1 and q2, are
of different types. By analogous arguments the four or-gate tiles in q1 to q4 are
of four different types. Subpattern q5 ensures that the east and west glues of the
or-gates match in the way shown in Fig. 1.
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Fig. 4. The subpatterns r1(v) to r3(v) for a variable v ∈ V and the subpattern s(C)
for a clause C = (c1 ∨ c2 ∨ c3) in F where ci = v or ci = ¬v for some variable v ∈ V
and i = 1, 2, 3.

The subpatterns that we defined so far did not depend on the formula F .
Now, for each variable v ∈ V we define three subpatterns r1(v), r2(v), r3(v) and
for a clause C from F we define one more subpattern s(C); these patterns are
given by Fig. 4. For a formula F in 3-CNF we let PF be the pattern that contains
all the subpatterns p, q1 to q5, r1(v) to r3(v) for each variable v ∈ V , and s(C)
for each clause C from F , where each subpattern is placed to the right of the
previous subpattern with one column of unique colors in between. Then, PF has
height 6, because the top and bottom rows contain unique colors only, and PF
has width 45 + 11 · |V |+ 6 · `. The next lemma follows from this observation.

Lemma 3. Given a formula F in 3-CNF, the pattern PF can be computed from
F in polynomial time.

The subpatterns r1(v) and r2(v) ensure that the two tile types with colors
v and ¬v have distinct north outputs. The subpattern r3(v) then implies that

one of the north glues is 0 and the other one is 1.

Lemma 4. Let PF be the pattern for a formula F over variables V in 3-CNF
and let T be a DRTAS with at most m = |C(PF )| + 3 tile types which self-
assembles pattern PF . For all variables v ∈ V , there is a unique tile type t⊕v ∈ T
with color v and a unique tile type t	v ∈ T with color ¬v such that either
t⊕v (N) = 1 and t	v (N) = 0 or t⊕v (N) = 0 and t	v (N) = 1.

Now, these glues serve as input for the or-gates in the subpatterns s(C). The
following lemma concludes the proof of Theorem 1.

Lemma 5. Let PF be the pattern for a formula F over variables V in 3-CNF
and let m = |C(PF )| + 3. The formula F is satisfiable if and only if PF can be
self-assembled by a DRTAS T with at most m tile types.

The formula F is satisfiable if and only if there is a variable assignment
f : V → {0, 1} which satisfies every clause in F . In order for s(C) with C =
(c1 ∨ c2 ∨ c3) to self-assemble, one of the north glues of the tiles for c1, c2, or c3
has to be 1. Let t⊕v and t	v for v ∈ V as before. Since t⊕v (N) and t	v (N) represent
opposite truth values, the pattern P can be self-assembled using m tile types
if and only if f(v) = t⊕v (N) satisfies every clause in F . How the remaining tile
types and glues in T can be chosen is shown in the arXiv version [3].

4 NP-hardness of 3-mbPats

The purpose of this section is to prove the NP-hardness of 3-mbPats. Let us
define a set of restricted input pairs I for Pats. The set I contains all pairs



(P,m) where P = PF is the pattern for a formula F in 3-CNF as defined in
Sect. 3 and m = |C(P )|+ 3. Consider the following restriction of Pats.

Problem (Modified Pats)
Given: A pair (P,m) from I;
Output: “Yes” if P can uniquely be self-assembled by using m tile types.

As we choose exactly those pairs (P,m) as input for the problem that are gen-
erated by the reduction, stated in Theorem 1, we obtain the following corollary
which forms the foundation for the result in this section.

Corollary 1. Modified Pats is NP-hard.

The NP-hardness of 3-mbPats follows by the polynomial-time reduction from
Modified Pats to 3-mbPats, stated in Theorem 2.

Theorem 2. For every input pair (P,m) ∈ I there exist a black/white/gray-
colored pattern Q and integers mb,mw,mg such that: P can be self-assembled
by a DRTAS with at most m tile types if and only if Q can be self-assembled
by a DRTAS with at most mb black tile types, mw white tile types, and mg

gray tile types. Moreover, the tuple (Q,mb,mw,mg) can be computed from P in
polynomial time.

Lemma 12 states the “if part” and Lemma 8 states the “only if part” of
Theorem 2. Lemma 6 states that (Q,mb,mw,mg) can be computed from P in
polynomial time.

For the remainder of this section, let (P,m) ∈ I be one fixed pair, let C =
C(P ) and k = |C|. We may assume that C = [k] is a subset of the positive
integers. The tile bounds are mb = 1 for black tile types, mw = 5k − 3(w(P ) +
h(P )) + 14 for white tile types, and mg = 2k + 3 for gray tile types. Note that,
due to the pattern design in Sect. 3, h(P ) = 6 is constant.

A B1

B2

B1

B2

B1

B2

B1

B2

B1

B2

B1

B2

B1

B2

B1

B2

B1

B2

C1

C2 D2

D1

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

c · · · 2 1

c

...

2

1

F2

F1

F2

F1

F2

F1

F2

F1

G

counter

co
u
n
ter

` tiles

`
tiles

Fig. 5. Black/white/gray supertile which portrays a color c ∈ C.

Let ` = 5k+ 8. For a color c ∈ C, we define an `× ` square pattern as shown
in Fig. 5. We refer to this pattern as well as to its underlying tile assignment as



supertile. In contrast to the previous section, the positions in the supertile are
labeled which does not mean that the colors or the tiles used to self-assemble
the pattern are labeled; the colors are black, white, or gray. The horizontal and
vertical color counters are the c gray positions in the top row, respectively right
column, which are succeeded by a white tile in position D2, respectively D1.
The color counters illustrate the color c that is portrayed by the supertile. The
patterns of two supertiles which portray two distinct colors differ only in the
place the white tile is positioned in its top row and right column.

For colors in the bottom row and left column of the pattern P we use in-
complete supertiles: a supertile portraying a color c in the bottom row of pattern
P lacks the white row with positions A, B1, and C1; a supertile representing a
color c in the left column of pattern P lacks the white column with positions A,
B2, and C2. In particular, the supertile portraying color P (1, 1) does not contain
any of the positions A, B1, B2, C1, and C2. Recall that all incomplete supertiles
portray a color c that is unique in P .

supertile
portraying
P (1, 1)

supertile
portraying
P (2, 1)

supertile
portraying
P (3, 1)

supertile
portraying
P (1, 2)
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P (w−1, h)

supertile
portraying
P (w, h)

Fig. 6. Black/white/gray pattern Q defined by the k-color pattern P with w = w(P )
and h = h(P ).

The pattern Q is shown in Fig. 6. By Q〈x, y〉 we denote the pattern of the
supertile covering the square area spanned by positions ((x − 1) · `, (y − 1) · `)
and (x · ` − 1, y · ` − 1) in Q; the incomplete supertiles cover one row and/or
column less. The pattern is designed such that supertile Q〈x, y〉 portrays the
color P (x, y) for all x ∈ [w(P )] and y ∈ [h(P )]. Additionally, Q contains three
gadget rows and three gadget columns which are explained in Fig. 7. The purpose
of these gadget rows and columns is to ensure that the color counters can only
be implemented in one way when using no more than mg gray tile types. All
together Q is of dimensions w(Q) = ` · w(P ) + 2 times h(Q) = ` · h(P ) + 2.
Obviously, the pattern Q can be computed from P in polynomial time.

Lemma 6. (Q,mb,mw,mg) can be computed from P in polynomial time.
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Fig. 7. The gadget rows on the north border of the pattern Q, the gadget columns are
symmetrical: the middle row (resp., column) contains gray tiles except for one white
tile in position k+ 1; the upper and lower rows (resp., left and right columns) contain
gray tiles in positions above the gray column (resp., right of the gray row) of a supertile,
the other tiles are black.

For a DRTAS Θ which self-assembles Q, we extend our previous notion such
that QΘ〈x, y〉 denotes the tile assignment of supertile Q〈x, y〉 given by Θ. In the
following, we will prove properties of such a DRTAS Θ. Our first observation is
about the black and gray tile types plus two of the white tile types.
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Fig. 8. The black tile type, two of the white tile types, and all gray tile types: the
labeled tile types are used in the corresponding positions of each supertile and the
gadget pattern; the unlabeled tile types, called counter tiles for i ∈ [k], implement the
vertical and horizontal color counters.

Lemma 7. Let Θ be a DRTAS which self-assembles the pattern Q using at most
mb = 1 black tile types and mg = 2k + 3 gray tile types. The black and gray tile
types in Θ are of the form shown in Fig. 8 and Θ contains two white tiles of
the form shown in the figure. In every supertile, the horizontal and vertical color
counters are implemented by a subset of the counter tile types and for a position
E, D1, D2, F1, F2, or G the correspondingly labeled tile type is used. Furthermore,
the glues •,�, 0, 1, . . . , k are all distinct.

Since there is only one black tile type which can tile the black square area
in each supertile, the black tile type has to be of the given form. In particular,
no kind of information can be passed through the black square areas in the
supertiles. The k gray tiles, followed by one white tile in the gadget rows and
columns, ensure that some kind of horizontal and vertical counter tile types are
present in Θ. The three remaining gray tile types have to be used for positions
F1, F2, and G; it is easy to see that they are of the given forms.

Remark 1. Consider a DRTAS Θ that self-assembles the pattern Q using most
mb black tile types and mg gray tile types. If we have a look at the tile assignment
of the black square plus the gray column and row in a supertile, we see that this
block has inputs • on all edges except for edges where the color counters are



initialized and it has outputs • on all edges, except for its right-most and top-
most output edges which are �. This means that all information on how to
initialize the color counters has to be carried through the white lines and rows,
that are, the tiles in positions A, B1, B2, C1, C2. Moreover, the tile in position
A is the only one with non-generic input from other supertiles. This tile fully
determines the tile assignment of the supertile and can be seen as the control
tile or seed of the supertile. Henceforth, for a supertile s = QΘ〈x, y〉 we extend
our notion of glues such that s(S) and s(W ) denote the south and west input
of the tile in position A, respectively, s(N) and s(E) denote the north and east
output of the tiles in positions C2 and C1, respectively. For incomplete supertiles
only one of s(N) or s(E) is defined.

Two supertiles in QΘ are considered distinct if their tile assignment differs
in at least one position. By the observations above, two complete supertiles are
distinct if and only if their control tiles are of distinct types; this is equivalent to
require that the inputs of the two supertiles differ. Since incomplete supertiles
portray unique colors in P , they are distinct from any supertile in QΘ but itself.

There is some flexibility in how the white tile types are implemented in a
DRTAS Θ which self-assembles Q. Let us present one possibility which proves
the “only if part” of Theorem 2.

Lemma 8. If P can be self-assembled by a DRTAS T with m tile types, then
Q can be self-assembled by a DRTAS Θ using mb black tile types, mw white tile
types, and mg gray tile types.

Proof. Let Θ contain the tile types given in Fig. 8. For a supertile portraying a
color c ∈ C\{ or } we use the five tile types given in Fig. 9. Note that we need less
tile types for incomplete supertiles which leads to 5 ·(k−1)−3 ·(h(P )+w(P ))+1
white tile types in total. Thus, we have 16 white tile types left for the or-gate.

A

(n, c)(e,c)

s

w

B1

• (e,c)

•

(e,c) C1

c

e

�

(e,c) B2

(n, c)

•

(n, c)

•

C2

n

c

(n, c)

�

Fig. 9. White tile types for the supertile portraying a color c ∈ C, except for the
or-gate, where t ∈ T with c = χ(t), n = t(N), e = t(E), s = t(S), and w = t(W ).

Since three of the or-gates have the same east output, see Fig. 1, they can
share tile types in positions B1 and C1. The 16 white tile types in Fig. 10 are
used to self-assemble the supertiles representing the or-gates. The tile types are
designed such that they can self-assemble pattern Q. ut

For the converse implication of Theorem 2, let us show how to obtain a
DRTAS that self-assembles P from the supertiles in QΘ. The following result
follows from the bijection between supertiles in QΘ and tiles in PT .

Lemma 9. Let Θ be a DRTAS which self-assembles Q using at most mb black
tile types and mg gray tile types, and let

S = {QΘ〈x, y〉 | x ∈ [w(P )], y ∈ [h(P )]}
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Fig. 10. White tile types for supertiles portraying the or-gate where o1, o2, o3, o4 ∈ T
are defined in Fig. 1.

be the set of all distinct supertiles in QΘ. There exists a DRTAS T with |S| tile
types which self-assembles P such that for each supertile s ∈ S there exists a tile
type ts ∈ T with the same glues on the respective edges and s portrays the color
of ts. For an incomplete supertile the statement holds for the defined glue.

We continue with the investigation of the white tile types that are used to
self-assemble the pattern Q. The next lemma follows by a case study of what
would go wrong if one tile type were used in two of the positions.

Lemma 10. Let Θ be a DRTAS which self-assembles the pattern Q using at
most mb black tile types and mg gray tile types. A white tile type from Θ which
is used in one of the positions A, B1, B2, C1, C2, D1, or D2 cannot be used in
another position in any supertile.

Let B∗
1 be the right-most position B1 in a supertile, adjacent to position C1,

and let B∗
2 be the top-most position B2 in a supertile, adjacent to position C2. The

following argument is about tiles in the five positions K = {A,B∗
1 ,B

∗
2 ,C1,C2}

of each supertile. Following Remark 1 it is clear that a tile in position A fully
determines the supertile, tiles in positions B∗

1 and C1 carry the color and the
east glue of a supertile, whereas tiles in positions B∗

2 and C2 carry the color and
the north glue.

Lemma 11. Let Θ be a DRTAS which self-assembles Q using at most mb black
tile types and mg gray tile types. Let s1 and s2 be supertiles in QΘ.

i.) If s1 and s2 portray different colors, they cannot share any tile types in
positions from K.

ii.) If s1(E) 6= s2(E), they cannot share any tile types in A, B∗
1, or C1.

iii.) If s1(N) 6= s2(N), they cannot share any tile types in A, B∗
2, or C2.

The three statements hold for all available positions in incomplete supertiles.

Let us conclude the proof of Theorem 2.

Lemma 12. The pattern P can be self-assembled by a DRTAS T with m tile
types if Q can be self-assembled by a DRTAS Θ with mb black tile types, mw

white tile types, and mg gray tile types.



Proof. We show that QΘ cannot contain more than m distinct supertiles, then,
the claim follows from Lemma 9. The black, gray, and two white tile types in Θ
are defined by Lemma 7. The number of distinct tile types in Θ that can be used
as control tiles, equals to the number of distinct complete supertiles of QΘ. By
Lemma 11 we need five white tile types for each complete supertile portraying
a color in C \ { or }; of these five tile types one can be used as control tile. For
incomplete supertiles we need just two white tile types, and none for the one
supertile portraying P (1, 1). There are 16 white tile types left for the or-gate
supertiles. From Lemma 1 and Lemma 9 we infer that among these 16 white tile
types we can have at most four control tiles. Therefore, the number of distinct
supertiles in QΘ is k + 3 = m — concluding the proof. ut

Conclusions

We prove that k-mbPats, a natural variant of k-Pats, is NP-complete for k = 3.
Furthermore, we present a novel proof for the NP-completeness of Pats and our
proof is more concise than previous proofs. We introduce several new techniques
for pattern design in our proofs, in particular in Sect. 4, and we anticipate that
these techniques can ultimately be used to prove that 2-mbPats and also 2-Pats
are NP-hard.
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