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Abstract
Using a recent result of G.Asser, an extention of Ackermann-Peter
hierarchy of unary primitive recursive functions to string-functions
is obtained. The resulting hierarchy classifies the string-functions
according to their lexicographical growth.

1 Introduction

Let N be the set of naturals i.e. N = {0,1,2,...}. Consider a fixed alphabet
A = {a1,az,...,a.},7 > 2 and denote by A* the free monoid generated by A
under concatenation (with e the null string). The elements of A* are called
strings; if reffering to strings, ” < 7 denotes the lexicographical order induced
by a1 < as < ... < a,. Denote by Fnc (respectively Fnca) the set of all
unary number-theoretical (respectively, string) functions. By I, Succ, Cyy,, Pd
we denote the following number-theoretical functions:

I(z) z,
Succ(z) = z+1,
Cp(z) = m,
Pd(x) x = 1, where x — y = maz{x — y,0},

for all ,m,y € N.
By I4, Succf, C#4, 0, m, we denote the following string-functions:

I*(w) = w,
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Sucej (w) = wa(1<i<r),
Cit(w) = u,
ole) = a1,0(wa;) =waipq if 1 <i<rando(wa,) =o(w)ay
m(e) = e,m(o(w)) =w,

for all w,u € A*

Furtheron one uses the primitive recursive bijections ¢ : A* — N,¢: N — A*
given by

cle) = 0,c(wa;) =71 -clw)+i,1<i<rweA"
¢0) = e, e(m+1)=0c(c(m)),meN.

To each f in Fnc one associates the string-function s(f) € Fnca defined by
s(f)(w) = e(f(c(w))) and for each g in Fnca one associates the number-
theoretical function n(g) defined by n(g)(x) = ¢(g(c(x))). It is easily seen
that for every string-function g, s(n(g)) = ¢g and for every number-theoretical
function f,n(s(f)) = f. For example, s(Succ) = o,n(I*) = I,s(Pd) = . A
mapping from Fnc" to Fnc is called an operator in Fnec, and analogously for
Fncy. We consider the following operators in Fnc and Fncy :

sub(f,g) = h<= f,g.h € Fnc, f(9(z)) = h(z);

diff (f,.9) = h<= f,g,h € Fnc,h(z) = f(z) = g(x);
it (f) h < f,h € Fne,h(0) =z, h(y +1) = f(h(y));
SUbA(fv g) = h< fg,he FncAvf(g(w)) = h(w)7
)

g — Z.tA,w(f

For every operator ¢ in Fnc, s(¢)(f) = s(p(n(f))), for every f € Fnc; analo-
gously, for every operator 6 in Fnca,n(0)(g) = n(6(s(g))), for every g € Fnec.
For example, s(ity) = 0 — it 4 c(2), N(0 — it Aaw) = ila(w)-

= h<= f,h € Fnca,h(e) =w,h(c(u)) = f(h(u)).

2 Ackermann-Peter string-function

The primitive-recursive functions were introduced by Asser [1] and studied by
various authors (see [4], [6], [8]). In order to study the complexity of such func-
tions, we use as a measure of complexity the growth relatively to the lexicograph-
ical order. To this aim we use the string-version of the Ackermann-Peter unary
function defined by Weichrauch [8]. The function, denoted by A : A* — A*|
is given by means of the following three equations :

Ao(z) = o(x) (1)
An—i—l(e) - An (al) (2)
Anpr(o(z)) = An(Anya(2). (3)

The following technical results concern the monotonicity properties of the func-
tion A; they generalize the monotonicity properties of the number-theoretical
Ackermann-Peter function (see [4]).



Lemma 1 For all naturals n and for all strings x over A*, we have
An(x) > .

Proof. We proceed by induction on n.

For n = 0 we have Ao(x) = o(x) > z. We assume that A, (x) > = and we
prove the inequality A,11(z) > x by induction on z.

For x = e, Apt1(e) = Ap(a1) > e. Suppose now that A,y1(x) > . We use
(3) and the first induction hypothesis to get

Ant1(0(2)) = An(Ant1(2) > Anta(z).

Finally, by the second induction hypothesis, that is A, +1(x) > o(z), we obtain
Api1(o(z)) > o(x). 0
Lemma 2 For all naturals n and for all strings x over A*, we have:
A, (z) < Ap(o(z)).
Proof. For n =0,
Ao(z) = o(x) < o(o(x)) = Ao(o(x)).

Assume that A, (z) < A,(o(x)). In view of (3) and lemma 1 we have
n+1( ( )) n( n+1( )) >An+1(x)-

O

Corollary For all naturals n and all strings x,y from A*, if x < y, then
An(x) < An(y).

Lemma 3 For all naturals n and for all strings x over A*, we have
An(x) < An,+1($).

Proof. We proceed by double induction on n and .
For n = 0 we have

Ao(z) = o(z) < o(o(x)) = Ar(x).

Assume now that A, (z) < Ap+1(z) and we prove that A,41(z) < Apyo(x) by
induction on z.
For x = e, in view of (2) and the first induction hypothesis, we get

Anti(e) = Aplar) < Apya(ar) = Apya(e).

In view of a new induction hypothesis, A,+1(x) < Ani2(z), we deduce the
relations:

Ant1(0(2)) = An(Ant1(2) < An(Any2(7)) < Ant1(Ang2 (7)) = Anga(o(2))

(we have also used the first induction hypothesis, relation (3) and corollary 2).
o



Corollary For all naturals n and m, and for all strings x in A*, if n < m,
then
Ap(z) < Ap ().

Lemma 4 For all strings © of A* we have: As(x) = a2¢®)+3(e).

Proof. We proceed by induction on z.
For z = e, in view of (2) we have

Ag(e) = Ay(ar) = o(o(ar)) = o3 (e) = a3 (e).

Assuming that Ay(z) = 02¢(®)+3(e), we prove that Ay(o(z)) = o2(@@)+3(e),
Indeed, using (3) and the equality c(o(z)) = c¢(z) + 1, we get:

Az(0(2)) = Ai(Az(2)) = A (6*F3(e)) = 02D H0(e) = o2 ENH e).
O

Lemma 5 For all naturals k and n > 1, there exists a natural i (which depends
upon k) such that

A (0" (2)) < Apga (n*(2)),
for every string x in A* with c(x) > i.

Proof. We first notice that for every string x with ¢(x) > 3k = 1, we have
oF(z) < Ag(rF1(z)).
Indeed, by lemma 4 we have

AQ(WJCH(J;)) _ O_QC(Wk+1(m))+3(e) — g2le(@) =k 1)+3(e) _ 0_2c(m)'—2k+1(€)
> ok+c(‘”)(e) = o (0¢®)(e)) = 0" ().
Consequently, using corolary 2 and corollary 2,
An(0"(2)) < Ap(A2(7"(2))) < An(Anga (7" (2))) = Anpa (7" (2)),
for all strings x with c¢(x) > 3k = 1. In conclusion, we can take i =3k - 1.
Lemma 6 For all naturals n and strings x in A* we have
Anti(z) = AT ay).

Proof. We proceed by induction on x.
For z = e, using (2) we obtain

Appi(e) = An(ar) = AZOF (ar).
Assuming that A, 41(x) = Afl(m)ﬂ(al) we prove the equality
A1 (0(2)) = AL+ (g,),
Indeed, using (3) we get:
AT () = AZDF(a;) = A, (AL (1)) = An(Anyi () = Ansa(0(2)).
o

The monotonicity properties of the string Ackermann-Peter function will be
freely used in what follows.



3 A hierarchy of unary primitive recursive
string-functions

We are going to define an increasing sequence (Cy, )p>0 of string-function classes
whose union equals the class of the one-argument primitive recursive string-
functions.

Definition 1 We say that the function f : A* — A* is defined by limited
iteration at e (shortly, limited iteration) from the functions g : A* — A* and
h: A* — A* if it satisfies the following equations:

fle) = e
flo(@)) = g(f(2)),
fl@) < h(2),

for every = in A*.

Definition 2 For a natural n we define C,, to be the smallest class of unary
primitive recursive string-functions which contains the functions Ay, A,, and
is closed under composition, limited iteration and s(diff) (the string-function
operation corresponding to the arithmetical difference).

Lemma 7 For all naturals n, the class Cy, contains the functions CA, I, m and
the functions 1;(1 <i <), sg and 3G defined by:

l?(w) = ai71 < 1 < T,

e ifw=e
sg(w) = {a1 ifw+#e
g = { & e

for allw e A™.
Proof. Tt follows from the following equalities:

Cd = s(diff)(Ao, Ao)
l; Aé(e),l <i<r
I = s(diff)(Ag, 1n)

59 = s(diff)(l, I?)
sg = s(diff)(l1,39)
7 = s(diff )(I*, 1)
and from the definition 2. 0

Theorem 1 For all naturals n,C,, C Cpy1.



Proof. We shall prove by induction on n that for all natural numbers n and
k, A, € Cn+k~

If n = 0, by definition 2, Ag € C,,, for every natural m. Assume that
A, € Chik,Vk € N. We shall prove that A, 1 € Cpygy1,Vk € N.

Assertion: For every string x, Apy1(x) = f(o(z)), where

fle) = e
flo(z)) = An(9(f(2))), and
g(x) = s(diff)(o(z), sg(x)).

The equalities will be proved by induction on the string z. If x = e, from the
definitions of the functions A, and s(diff ) we deduce:

fla(e)) = An(g(f(e)) = Anlg(e)) = An(s(diff )(a(e), sg(€)))
= Au(s(diff ) 01,€)) = Anar) = Ansi ()
Supposing now that A,4+1(z) = f(o(x)), we shall show that A,1(c(z)) =

f(@*()).
Indeed,

flo(o(2)) =

[
D>D>§J>D>D>

I
e
3
~
Q
~—~
N
S
=+
£
—
8
S~—
~—
I
=4

= Anpai(o(z)
Using now definition 2, lemma 7, the induction hypothesis and the relations
f(@) = Ans1(7(2) < Aptr(2) < Anyriar(z),z € A%,

we deduce that A, 41 is in C, 441 being obtained from functions belonging to
Chtk+1, using composition, limited iteration and s(diff). 0

Lemma 8 For all naturals n and all functions f in C,, there exists a natural
k such that f(x) < AE(x), for every string x in A*.

Proof. We shall make use of the inductive definition of C,,.
If f(z) = Ap(z) then

f(@) < Ao(Ao(x)) < An(An())

and we can take k = 2.
If f(z) = A,(z), then
f(@) < An(An(z))



and we can also take k£ = 2.
If f(z) < AP (x) and g(z) < AY

n

(fog)x) = flg(x)) < Af(g(x)) < AT(2)),
s(diff)(f,9)(z) < flz) < A} ().
Finally, if f is obtained by limited iteration from g and h, h(x) < A¥(z), then
f(a) < h(z) < Aj (). O
Theorem 2 For every class Cp,n > 1, and every f in C,, there exists a nat-

ural i (depending upon f) such that f(x) < Anq1(x) for every string x in A*
satisfying c(x) > i.

(z), for all strings x in A* then

Proof. Assume that f is a function in C,,n > 1. In view of lemma 8, we
can find a natural & > 2 (which depends upon f) such that, for every string
z, f(z) < AF(x). We shall show that the requested inequality holds for i = 3k.

From the monotonicity properties of Ackermann-Peter string-function, one
can deduce the following relations:

A (2) = A7 H(An(2) < A7 H (AR (0" (2))) < AV (Apa (7 (),

for every string x with c¢(z) > 3k =~ 1.

Intermediate step: Apy1(x) = AR (A, 41 (7% (x))), for every string  with
c(z) > k.

We shall prove the equality by induction on z. If ¢(x) = k, then we have

A A (7N @) = AT (A (7F (0 (e)))
= Ak HAp (771 (0" () = AF (Anga(ar))
“HAL () = AFT(a1) = AT (@)
= n+1(x)

If the equality holds for x, we can prove that

Apyi(o(@)) = AR YAy (75 (o (2)))).

Indeed,
AT Awn (@0 (@) = A Awn (o (@ (@)
= ARYAL (A (7P (2)))
= Ap (AR (Apg (771 (2))))
= An(An+1($)) - An—i—l(g(x))v

and the intermediate step is proved.
Returning to the proof of the theorem, we can now write

flz) < A (2) < AL (A (777 (2))) = Anga(2),

for all strings x with c¢(z) > 3k ~ 1 and taking ¢ = 3k = 1, the proof is finished.
o



Theorem 3 The set UZO:O C,, coincides with the set of unary primitive recur-
sive string-functions.

Proof. We shall make use of the characterization of the set of unary primitive
recursive string-functions obtained in [5], namely as the smallest class of unary
string-functions which contains o and is closed under the operations

sub, o — itae, s(diff ).

It is obvious that every function in (J)2,C, is primitive recursive. For the
converse inclusion, all that remains to be proved is reduced to the closure of
Ur"gCn to o —ita.

We shall show that if f € [J;-,Cy is obtained by pure iteration from g €
U, Cn, there exists a function h € (J, -, Cy, such that f is obtained by limited
iteration from g and h and, therefore, f is in (J;2 , C\.

Indeed, let f be obtained by pure iteration from g in Cp,, m > 0. We shall
prove, by induction on the string = that f is majorated by A, 1.

If x = e, we have f(e) =e < Apyi(e).

Supposing that f(z) < A,41(x) and using the definition and the monotonic-
ity properties of Ackermann-Peter function, we get:

flo(x)) = g(f(z)) < An(f(2)) < An(Ans1(2)) = An(o(2)).

O

Theorem 4 The function A : A* — A* defined by A(w) = Acw)(w) is not
primitive recursive.

Proof. Assume, on the contrary, that A is primitive recursive. From theorem 3
we get a natural n such that A € C,,. By theorem 2, there exists a natural i
such that A(x) < Ap41(x) for every x with ¢(x) > 4. Let x be a string satisfying
the condition ¢(x) =n + i+ 1. We arrive at a contradiction since

A(x) = Aty (@) = Aurin (2) < A ()

(see corollary 2). This completes the proof of the theorem. n
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