
A Hierarchy of Unary Primitive Recursive

String-functions

Lila Santean∗

Institute for Informatics

8-10 Miciurin blvd.

71316 Bucharest 1, Romania

Abstract

Using a recent result of G.Asser, an extention of Ackermann-Peter
hierarchy of unary primitive recursive functions to string-functions
is obtained. The resulting hierarchy classifies the string-functions
according to their lexicographical growth.

1 Introduction

Let N be the set of naturals i.e. N = {0, 1, 2, . . .}. Consider a fixed alphabet
A = {a1, a2, . . . , ar}, r ≥ 2 and denote by A∗ the free monoid generated by A

under concatenation (with e the null string). The elements of A∗ are called
strings; if reffering to strings, ” < ” denotes the lexicographical order induced
by a1 < a2 < . . . < ar. Denote by Fnc (respectively FncA) the set of all
unary number-theoretical (respectively, string) functions. By I,Succ, Cm,Pd
we denote the following number-theoretical functions:

I(x) = x,

Succ(x) = x + 1,

Cm(x) = m,

Pd(x) = x −· 1, where x −· y = max{x − y, 0},

for all x, m, y ∈ N.

By IA,SuccA
i , CA

u , σ, π, we denote the following string-functions:

IA(w) = w,

∗Present address: Department of Mathematics, University of Turku, 20500 Turku, Finland



SuccA
i (w) = wai(1 ≤ i ≤ r),

CA
u (w) = u,

σ(e) = a1, σ(wai) = wai+1 if 1 ≤ i < r and σ(war) = σ(w)a1

π(e) = e, π(σ(w)) = w,

for all w, u ∈ A∗

Furtheron one uses the primitive recursive bijections c : A∗ −→ N, c : N −→ A∗

given by

c(e) = 0, c(wai) = r · c(w) + i, 1 ≤ i ≤ r, w ∈ A∗,

c(0) = e, c(m + 1) = σ(c(m)), m ∈ N.

To each f in Fnc one associates the string-function s(f) ∈ FncA defined by
s(f)(w) = c(f(c(w))) and for each g in FncA one associates the number-
theoretical function n(g) defined by n(g)(x) = c(g(c(x))). It is easily seen
that for every string-function g, s(n(g)) = g and for every number-theoretical
function f, n(s(f)) = f . For example, s(Succ) = σ, n(IA) = I, s(Pd) = π. A
mapping from Fncn to Fnc is called an operator in Fnc, and analogously for
FncA. We consider the following operators in Fnc and FncA :

sub(f, g) = h ⇐⇒ f, g, h ∈ Fnc, f(g(x)) = h(x);

diff (f, g) = h ⇐⇒ f, g, h ∈ Fnc, h(x) = f(x) −· g(x);

itx(f) = h ⇐⇒ f, h ∈ Fnc, h(0) = x, h(y + 1) = f(h(y));

subA(f, g) = h ⇐⇒ f, g, h ∈ FncA, f(g(w)) = h(w);

σ − itA,w(f) = h ⇐⇒ f, h ∈ FncA, h(e) = w, h(σ(u)) = f(h(u)).

For every operator ϕ in Fnc, s(ϕ)(f) = s(ϕ(n(f))), for every f ∈ Fnc; analo-
gously, for every operator θ in FncA, n(θ)(g) = n(θ(s(g))), for every g ∈ Fnc.
For example, s(itx) = σ − itA,c(x), n(σ − itA,w) = itc(w).

2 Ackermann-Peter string-function

The primitive-recursive functions were introduced by Asser [1] and studied by
various authors (see [4], [6], [8]). In order to study the complexity of such func-
tions, we use as a measure of complexity the growth relatively to the lexicograph-
ical order. To this aim we use the string-version of the Ackermann-Peter unary
function defined by Weichrauch [8]. The function, denoted by A : A∗ −→ A∗,
is given by means of the following three equations :

A0(x) = σ(x) (1)

An+1(e) = An(a1) (2)

An+1(σ(x)) = An(An+1(x)). (3)

The following technical results concern the monotonicity properties of the func-
tion A; they generalize the monotonicity properties of the number-theoretical
Ackermann-Peter function (see [4]).



Lemma 1 For all naturals n and for all strings x over A∗, we have

An(x) > x.

Proof. We proceed by induction on n.
For n = 0 we have A0(x) = σ(x) > x. We assume that An(x) > x and we

prove the inequality An+1(x) > x by induction on x.
For x = e, An+1(e) = An(a1) > e. Suppose now that An+1(x) > x. We use

(3) and the first induction hypothesis to get

An+1(σ(x)) = An(An+1(x)) > An+1(x).

Finally, by the second induction hypothesis, that is An+1(x) ≥ σ(x), we obtain
An+1(σ(x)) > σ(x).

Lemma 2 For all naturals n and for all strings x over A∗, we have:

An(x) < An(σ(x)).

Proof. For n = 0,

A0(x) = σ(x) < σ(σ(x)) = A0(σ(x)).

Assume that An(x) < An(σ(x)). In view of (3) and lemma 1 we have

An+1(σ(x)) = An(An+1(x)) > An+1(x).

Corollary For all naturals n and all strings x, y from A∗, if x < y, then
An(x) < An(y).

Lemma 3 For all naturals n and for all strings x over A∗, we have

An(x) < An+1(x).

Proof. We proceed by double induction on n and x.
For n = 0 we have

A0(x) = σ(x) < σ(σ(x)) = A1(x).

Assume now that An(x) < An+1(x) and we prove that An+1(x) < An+2(x) by
induction on x.

For x = e, in view of (2) and the first induction hypothesis, we get

An+1(e) = An(a1) < An+1(a1) = An+2(e).

In view of a new induction hypothesis, An+1(x) < An+2(x), we deduce the
relations:

An+1(σ(x)) = An(An+1(x)) < An(An+2(x)) < An+1(An+2(x)) = An+2(σ(x))

(we have also used the first induction hypothesis, relation (3) and corollary 2).



Corollary For all naturals n and m, and for all strings x in A∗, if n < m,
then

An(x) < Am(x).

Lemma 4 For all strings x of A∗ we have: A2(x) = σ2c(x)+3(e).

Proof. We proceed by induction on x.
For x = e, in view of (2) we have

A2(e) = A1(a1) = σ(σ(a1)) = σ3(e) = σ2c(e)+3(e).

Assuming that A2(x) = σ2c(x)+3(e), we prove that A2(σ(x)) = σ2c(σ(x))+3(e).
Indeed, using (3) and the equality c(σ(x)) = c(x) + 1, we get:

A2(σ(x)) = A1(A2(x)) = A1(σ
2c(x)+3(e)) = σ2c(x)+5(e) = σ2c(σ(x))+3(e).

Lemma 5 For all naturals k and n ≥ 1, there exists a natural i (which depends
upon k) such that

An(σk(x)) < An+1(π
k(x)),

for every string x in A∗ with c(x) > i.

Proof. We first notice that for every string x with c(x) > 3k −· 1, we have
σk(x) < A2(π

k+1(x)).
Indeed, by lemma 4 we have

A2(π
k+1(x)) = σ2c(πk+1(x))+3(e) = σ2(c(x)−· k−· 1)+3(e) = σ2c(x)−· 2k+1(e)

> σk+c(x)(e) = σk(σc(x)(e)) = σk(x).

Consequently, using corolary 2 and corollary 2,

An(σk(x)) < An(A2(π
k+1(x))) < An(An+1(π

k+1(x))) = An+1(π
k(x)),

for all strings x with c(x) > 3k −· 1. In conclusion, we can take i = 3k −· 1.

Lemma 6 For all naturals n and strings x in A∗ we have

An+1(x) = Ac(x)+1
n (a1).

Proof. We proceed by induction on x.
For x = e, using (2) we obtain

An+1(e) = An(a1) = Ac(e)+1
n (a1).

Assuming that An+1(x) = A
c(x)+1
n (a1) we prove the equality

An+1(σ(x)) = Ac(σ(x))+1
n (a1).

Indeed, using (3) we get:

Ac(σ(x))+1
n (a1) = Ac(x)+2

n (a1) = An(Ac(x)+1
n (a1)) = An(An+1(x)) = An+1(σ(x)).

The monotonicity properties of the string Ackermann-Peter function will be
freely used in what follows.



3 A hierarchy of unary primitive recursive

string-functions

We are going to define an increasing sequence (Cn)n≥0 of string-function classes
whose union equals the class of the one-argument primitive recursive string-
functions.

Definition 1 We say that the function f : A∗ −→ A∗ is defined by limited
iteration at e (shortly, limited iteration) from the functions g : A∗ −→ A∗ and
h : A∗ −→ A∗ if it satisfies the following equations:

f(e) = e,

f(σ(x)) = g(f(x)),

f(x) ≤ h(x),

for every x in A∗.

Definition 2 For a natural n we define Cn to be the smallest class of unary
primitive recursive string-functions which contains the functions A0, An and
is closed under composition, limited iteration and s(diff ) (the string-function
operation corresponding to the arithmetical difference).

Lemma 7 For all naturals n, the class Cn contains the functions CA
e , IA, π and

the functions li(1 ≤ i ≤ r), sg and sg defined by:

li(w) = ai, 1 ≤ i ≤ r,

sg(w) =

{

e if w = e

a1 if w 6= e

sg(w) =

{

a1 if w = e

e if w 6= e,

for all w ∈ A∗.

Proof. It follows from the following equalities:

CA
e = s(diff )(A0, A0)

li = Ai
0(e), 1 ≤ i ≤ r

IA = s(diff )(A0, l1)

sg = s(diff )(l1, I
A)

sg = s(diff )(l1, sg)

π = s(diff )(IA, l1)

and from the definition 2.

Theorem 1 For all naturals n, Cn ⊆ Cn+1.



Proof. We shall prove by induction on n that for all natural numbers n and
k, An ∈ Cn+k.

If n = 0, by definition 2, A0 ∈ Cm, for every natural m. Assume that
An ∈ Cn+k, ∀k ∈ N. We shall prove that An+1 ∈ Cn+k+1, ∀k ∈ N.

Assertion: For every string x, An+1(x) = f(σ(x)), where

f(e) = e,

f(σ(x)) = An(g(f(x))), and

g(x) = s(diff )(σ(x), sg (x)).

The equalities will be proved by induction on the string x. If x = e, from the
definitions of the functions An and s(diff ) we deduce:

f(σ(e)) = An(g(f(e))) = An(g(e)) = An(s(diff )(σ(e), sg(e)))

= An(s(diff )(a1, e)) = An(a1) = An+1(e).

Supposing now that An+1(x) = f(σ(x)), we shall show that An+1(σ(x)) =
f(σ2(x)).

Indeed,

f(σ(σ(x))) = An(g(f(σ(x)))) = An(g(An+1(x)))

= An(s(diff )(σ(An+1(x)), sg(An+1(x))))

= An(s(diff )(σ(An+1(x)), a1))

= An(c(diff (c(σ(An+1(x))), c(a1))))

= An(c(diff (c(An+1(x)) + 1, 1)))

= An(c(c(An+1(x)))) = An(An+1(x))

= An+1(σ(x)).

Using now definition 2, lemma 7, the induction hypothesis and the relations

f(x) = An+1(π(x)) ≤ An+1(x) ≤ An+k+1(x), x ∈ A∗,

we deduce that An+1 is in Cn+k+1 being obtained from functions belonging to
Cn+k+1, using composition, limited iteration and s(diff ).

Lemma 8 For all naturals n and all functions f in Cn, there exists a natural
k such that f(x) < Ak

n(x), for every string x in A∗.

Proof. We shall make use of the inductive definition of Cn.
If f(x) = A0(x) then

f(x) < A0(A0(x)) ≤ An(An(x))

and we can take k = 2.
If f(x) = An(x), then

f(x) ≤ An(An(x))



and we can also take k = 2.
If f(x) < Ap

n(x) and g(x) < Aq
n(x), for all strings x in A∗ then

(f ◦ g)(x) = f(g(x)) < Ap
n(g(x)) < Ap+q

n (x)),

s(diff )(f, g)(x) ≤ f(x) < Ap
n(x).

Finally, if f is obtained by limited iteration from g and h, h(x) < Ak
n(x), then

f(x) ≤ h(x) < Ak
n(x).

Theorem 2 For every class Cn, n ≥ 1, and every f in Cn, there exists a nat-
ural i (depending upon f) such that f(x) < An+1(x) for every string x in A∗

satisfying c(x) ≥ i.

Proof. Assume that f is a function in Cn, n ≥ 1. In view of lemma 8, we
can find a natural k ≥ 2 (which depends upon f) such that, for every string
x, f(x) < Ak

n(x). We shall show that the requested inequality holds for i = 3k.
From the monotonicity properties of Ackermann-Peter string-function, one

can deduce the following relations:

Ak
n(x) = Ak−1

n (An(x)) ≤ Ak−1
n (An(σk−1(x))) < Ak−1

n (An+1(π
k−1(x))),

for every string x with c(x) > 3k −· 1.
Intermediate step: An+1(x) = Ak−1

n (An+1(π
k−1(x))), for every string x with

c(x) ≥ k.
We shall prove the equality by induction on x. If c(x) = k, then we have

Ak−1
n (An+1(π

k−1(x))) = Ak−1
n (An+1(π

k−1(σc(x)(e))))

= Ak−1
n (An+1(π

k−1(σk(e)))) = Ak−1
n (An+1(a1))

= Ak−1
n (A2

n(a1)) = Ak+1
n (a1) = Ac(x)+1

n (a1)

= An+1(x).

If the equality holds for x, we can prove that

An+1(σ(x)) = Ak−1
n (An+1(π

k−1(σ(x)))).

Indeed,

Ak−1
n (An+1(π

k−1(σ(x)))) = Ak−1
n (An+1(σ(πk−1(x))))

= Ak−1
n (An(An+1(π

k−1(x))))

= An(Ak−1
n (An+1(π

k−1(x))))

= An(An+1(x)) = An+1(σ(x)),

and the intermediate step is proved.
Returning to the proof of the theorem, we can now write

f(x) < Ak
n(x) < Ak−1

n (An+1(π
k−1(x))) = An+1(x),

for all strings x with c(x) ≥ 3k −· 1 and taking i = 3k −· 1, the proof is finished.



Theorem 3 The set
⋃∞

n=0 Cn coincides with the set of unary primitive recur-
sive string-functions.

Proof. We shall make use of the characterization of the set of unary primitive
recursive string-functions obtained in [5], namely as the smallest class of unary
string-functions which contains σ and is closed under the operations

sub, σ − itA,e, s(diff ).

It is obvious that every function in
⋃∞

n=0 Cn is primitive recursive. For the
converse inclusion, all that remains to be proved is reduced to the closure of
⋃∞

n=0 Cn to σ − itA,e.
We shall show that if f ∈

⋃∞

n=0 Cn is obtained by pure iteration from g ∈
⋃∞

n=0 Cn, there exists a function h ∈
⋃∞

n=0 Cn such that f is obtained by limited
iteration from g and h and, therefore, f is in

⋃∞

n=0 Cn.
Indeed, let f be obtained by pure iteration from g in Cm, m > 0. We shall

prove, by induction on the string x that f is majorated by An+1.
If x = e, we have f(e) = e < An+1(e).
Supposing that f(x) < An+1(x) and using the definition and the monotonic-

ity properties of Ackermann-Peter function, we get:

f(σ(x)) = g(f(x)) < An(f(x)) < An(An+1(x)) = An(σ(x)).

Theorem 4 The function A : A∗ −→ A∗ defined by A(w) = Ac(w)(w) is not
primitive recursive.

Proof. Assume, on the contrary, that A is primitive recursive. From theorem 3
we get a natural n such that A ∈ Cn. By theorem 2, there exists a natural i

such that A(x) < An+1(x) for every x with c(x) ≥ i. Let x be a string satisfying
the condition c(x) = n + i + 1. We arrive at a contradiction since

A(x) = Ac(x)(x) = An+i+1(x) < An+1(x)

(see corollary 2). This completes the proof of the theorem.

4 Acknowledgements

We are grateful to Dr. Cristian Calude for drawing our attention to these
problems and for many helpful remarks.

References

[1] G.Asser. Rekursive Wortfunktionen Z.Math. Logik Grundlag.Math. 6(1960),
258-278.



[2] G.Asser. Primitive recursive word-functions of one variable, in E.Borger
(ed.), Computation Theory and Logic, LNCS 270, Springer 1987, 14-19.

[3] G.Asser. Zur Robinson Charakterisierung der Einstelligen Primitiv Rekur-
siven Wortfunktionen, Z.Math.Logik Grundlag.Math., 34(1988), 317-322.

[4] C.Calude. Theories of Computational Complexity, North-Holland, Amster-
dam, New-York, Oxford, Tokio, 1988.

[5] C.Calude, L.Santean. On a Theorem of Gunter Asser, Z.Math.Logik Grund-
lag.Math., 1990.

[6] F.W.v.Henke, K.Indermark, G.Rose, K.Weichrauch. On Primitive Recursive
Wordfunctions, Computing 15(1975), 217-234.

[7] M.Tatarim. Darboux property and one-argument primitive recursive string-
functions,Revue Roumaine des Mathematiques Pures et Appliques, 1987, 79-
94.

[8] K.Weichrauch. Teilklassen primitiv-rekursiver Wortfunktionen, Berichte der
GMD 91(1974), 1-49.


