
CHAPTER 2

PARALLEL COMMUNICATING
GRAMMAR SYSTEMS

Bringing PC Grammar Systems

Closer to Hoare’s CSP’s1

Lila KARI, Hanan LUTFIYYA

Department of Computer Science, University of Western Ontario
N6A 5B7 London, Ontario, Canada

lkari/hanan@csd.uwo.ca

Carlos MARTÍN-VIDE

Research Group on Mathematical Linguistics and Language Engineering
(GRLMC)

Rovira i Virgili University
Pl. Imperial Tárraco 1, 43005 Tarragona, Spain

cmv@astor.urv.es

Gheorghe PĂUN

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 70700 Bucureşti, Romania

gpaun@imar.ro

Abstract. We consider here Parallel Communicating (PC) gram-
mar systems with features inspired from Hoare’s model of Commu-
nicating Sequential Processes (CSP). Specifically, we consider (1) non-
deterministic queries (in two variants: using sets of query symbols,
such that one symbol from each set has to be answered, and query-
ing by nonterminals, such that the queried grammars are those having
as axioms the specified symbol), (2) flags indicating the fact that a
component of the system is ready to communicate, and (3) patterns
of the communicated strings. The generative power of the obtained
PC grammar systems is investigated, in comparison with the power of
usual classes of PC grammar systems and with classes of grammars in
the Chomsky hierarchy.

1Research supported by Grants OGP0007877 and S365A2 of the Natural Sciences and Engi-
neering Research Council of Canada, and University of Western Ontario start-up grant

1

2 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

1 Introduction

The PC grammar systems were introduced in [13] as a grammatical model of
parallel computing. In short, such a system consists of a set of usual (context-
free) Chomsky grammars, which start from separate axioms, work synchronously
(each component grammar uses one rewriting rule in each time unit, rewriting
its own sentential form), and communicate by request. That is, special query
symbols are provided; when they appear in a sentential form of a grammar, a
communication step is done: the sentential form of the component identified by
a query symbol replaces the occurrence(s) of that query symbol in the sentential
form of the component which has introduced it. The communication has priority
over rewriting.

There are several features of the communication in PC grammar systems which
are significantly different from the way the communication takes place in CSP’s of
[6]. Three of them will be considered here:

First, the communication in a PC grammar system is deterministic, in the
following sense: a query symbol is of the form Qj , it precisely identifies the com-
ponent from which a message is required.

Second, the communication has priority over rewriting, when a query symbol
is introduced, it has to be immediately satisfied, irrespective of the “state” of the
queried component.

Third, any sentential form may be communicated, there is no filtering condition
in the receiving component.

Ready-to-communicate and filtering features are necessary when modelling dis-
tributed applications like natural language syntax, see [7].

All these three “drawbacks” (from the point of view of CSP’s) can be easily
“corrected”. We shall do it in this paper, after briefly introducing the PC grammar
systems and the CSP’s frameworks. This again shows the great versatility of the
grammar system paradigm, in its various instances (see also [1]).

For instance, instead of introducing only one query symbol Qi, we can introduce
a set {Qi1 , . . . , Qik

}, with the meaning: “(any) one of the components i1, . . . , ik
has to communicate”. A natural variant is not to use query symbols, but to
use nonterminals for starting a communication step: if a nonterminal A cannot be
rewritten by a component i, but A is the start symbol (axiom) of other components
i1, . . . , ik, then any one of these latter components has to send its sentential form to
component i, replacing A (this is similar to replacing A with a set {Qi1 , . . . , Qik

}.
Then, we can also introduce “ready-to-communicate” symbols, as in CSP’s,

pointing to components of the system which can be targets of communication
steps. A communication from a component j to a component i is performed only
if i introduces the query symbol Qj and j introduces the “ready symbol” Ri.

Finally, a filtering of messages can be implemented by considering regular sets
associated to query symbols: a sentential form is communicated (and accepted
by the receiver) only if it is an element of the regular language associated to the
currently used query symbol. (A regular language is a simple enough filter, for
instance, because the membership with respect to such a language can be decided
in real time.)

Bringing PC Grammar Systems Closer to Hoare’s CSP’s 3

Although these modifications of PC grammar systems are very similar to the
corresponding features of CSP’s, we still remain here in the framework of formal
language theory: we are mainly interested in the generative power of the obtained
systems (the language of the system is the language of a designated component, the
“master”) and not, say, in the sequence of communication steps and its properties
(deadlocks, circularities, waiting intervals, etc). We hope to return to such topics
in a forthcoming paper.

2 PC Grammar Systems

We refer to [15] for elements of formal language theory we use, and we specify only
some general notations and notions.

For an alphabet V we denote by V ∗ the free monoid generated by V under
the operation of concatenation; the empty word is denoted by λ and V ∗ − {λ}
(the set of all non-empty words) is denoted by V +. For x ∈ V ∗, |x| is the length
of x, |x|a is the number of occurrences in x of the symbol a ∈ V , and alph(x) is
the set of symbols appearing in x. The families of regular, context-free, context-
sensitive, and recursively enumerable languages are denoted by REG, CF, CS,
RE, respectively.

A PC grammar system of degree n, n ≥ 1 ([13], [1]), is a construct

Γ = (N, K, T, (S1, P1), . . . , (Sn, Pn)),

where N, K, T are pairwise disjoint alphabets, with K = {Q1, . . . , Qn}, Si ∈ N ,
and Pi are finite sets of rewriting rules over N ∪ T ∪K, 1 ≤ i ≤ n; the elements of
N are nonterminal symbols, those of T are terminals; the elements of K are called
query symbols; the pairs (Si, Pi) are the components of the system. Note that,
by their indices, the query symbols are associated with the components. When
discussing the type of the components in Chomsky hierarchy, the query symbols
are interpreted as nonterminals.

For (x1, . . . , xn), (y1, . . . , yn), with xi, yi ∈ (N∪T ∪K)∗, 1 ≤ i ≤ n (we call such
an n-tuple a configuration), and x1 /∈ T ∗, we write (x1, . . . , xn) =⇒r (y1, . . . , yn)
if one of the following two cases holds:

(i) |xi|K = 0 for all 1 ≤ i ≤ n; then xi =⇒Pi yi or xi = yi ∈ T ∗, 1 ≤ i ≤ n;

(ii) there is i, 1 ≤ i ≤ n, such that |xi|K > 0; we write such a string xi as

xi = z1Qi1z2Qi2 . . . ztQitzt+1,

for t ≥ 1, zi ∈ (N ∪ T)∗, 1 ≤ i ≤ t + 1; if |xij |K = 0 for all 1 ≤ j ≤ t, then

yi = z1xi1z2xi2 . . . ztxitzt+1,

[and yij = Sij , 1 ≤ j ≤ t]; otherwise yi = xi. For all unspecified i we have
yi = xi.

Point (i) defines a rewriting step (componentwise, synchronously, using one
rule in all components whose current strings are not terminal), (ii) defines a com-
munication step: the query symbols Qij introduced in some xi are replaced by the

4 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

associated strings xij
, providing that these strings do not contain further query

symbols. The communication has priority over rewriting (a rewriting step is al-
lowed only when no query symbol appears in the current configuration). The work
of the system is blocked when circular queries appear, as well as when no query
symbol is present but point (i) is not realized because a component cannot rewrite
its sentential form, although it is a nonterminal string. Note that the derivation
stops when the first component produces a terminal string.

The above considered relation =⇒r is said to be performed in the returning
mode: after communicating, a component resumes working from its axiom. If the
brackets, [and yij = Sij , 1 ≤ i ≤ t], are removed, then we obtain the non-returning
mode of derivation: after communicating, a component continues the processing
of the current string. We denote by =⇒nr the obtained relation.

PC(CF)

CPC(CF)

PC(RL)

6
³³³³³³1

NPC(CF)

NCPC(CF)

NPC(RL)

6

B
B

B
B

B
B

B
B

B
BM

PPPPPPPPi
¾

¾

CF

6

¡
¡

¡¡µ

@
@

@@I

LIN

6
@

@
@

@
@

@
@

@
@

@
@@I

REG

CS

RE

6

6

Á

£
£
£
£
£
£
£
£
£
£±

Z
Z

Z
Z

ZZ}

½
½

½
½

½½>

NCPC(RL)CPC(RL)

¢
¢
¢
¢
¢¢̧

J
J

J
J

JJ]

£
£
£
£
£
£
£
£
£
£±

B
B

B
B

B
B

B
B

B
BM

¶
¶

¶
¶

¶
¶

¶
¶¶7

MAT

6

@
@

@@I

Figure 1: Hierarchies of PC families

The language generated by Γ is the language generated by its first component
(G1 above), when starting from (S1, . . . , Sn), that is

Lf (Γ) = {w ∈ T ∗ | (S1, . . . , Sn) =⇒∗
f (w,α2, . . . , αn),

for αi ∈ (N ∪ T ∪K)∗, 2 ≤ i ≤ n}, f ∈ {r, nr}.

(No attention is paid to strings in the components 2, . . . , n in the last configuration

Bringing PC Grammar Systems Closer to Hoare’s CSP’s 5

of a derivation; moreover, it is supposed that the work of Γ stops when a terminal
string is obtained by the first component.)

Two basic classes of PC grammar systems can be distinguished: centralized
(only G1, the master of the system, is allowed to introduce query symbols), and
non-centralized (no restriction is imposed on the introduction of query symbols).
Therefore, we get four basic families of languages: we denote by PC(X) the family
of languages generated in the returning mode by non-centralized PC grammar
systems with rules of type X (and of arbitrary degree); when centralized systems
are used, we add the symbol C, when the non-returning mode of derivation is used,
we add the symbol N, thus obtaining the families CPC(X), NPC(X), NCPC(X).
In what concerns X, we can consider λ-free right-linear (RL) or context-free (CF)
rules, or arbitrary right-linear (RLλ) or context-free (CFλ) rules. If the language
we consider contains the empty string, then a rule S → λ is allowed in the master
grammar. (Note that, because the derivation stops in that moment, λ cannot be
communicated to another component.)

The diagram in Figure 1 indicates the relations between the eight basic fami-
lies of languages defined above, as well as their relationships with families in the
Chomsky hierarchy (MAT denotes the family of languages generated by matrix
grammars with λ-free context-free rules and without appearance checking and LIN
is the family of linear languages). The arrows indicate inclusions, not necessarily
proper; the families not connected by a path are not necessarily incomparable.
The families CPC(RL), NCPC(RL) are incomparable. Proofs of these relations
can be found in [1], [4], [5], [8], [9].

Let us consider two examples. For the system

Γ1 = ({S1, S2, S3},K, {a, b, c}, (S1, P1), (S2, P2), (S3, P3)),
P1 = {S1 → abc, S1 → a2b2c2, S1 → aS1,

S1 → a3Q2, S2 → b2Q3, S3 → c},
P2 = {S2 → bS2},
P3 = {S3 → cS3},

we obtain
Lr(Γ) = Lnr(Γ) = {anbncn | n ≥ 1},

hence this language belongs to both CPC(RL) and NCPC(RL).
Here is a derivation in Γ1:

(S1, S2, S3) =⇒f (aS1, bS2, cS3) =⇒f . . . =⇒f (anS1, b
nS2, c

nS3),
=⇒f (an+3Q2, b

n+1S2, c
n+1S3) =⇒f (an+3bn+1S2, y2, c

n+1S3)
=⇒f (an+3bn+3Q3, y

′
2, c

n+2S3) =⇒f (an+3bn+3cn+2S3, y
′
2, y3)

=⇒f (an+3bn+3cn+3, y′′2 , y′3), n ≥ 0,

for f ∈ {r, nr}; in the returning case we have y2 = S2, y
′
2 = bS2, y

′′
2 = b2S2,

y3 = S3, y
′
3 = cS3, in the non-returning case y2 = bn+1S2, y

′
2 = bn+2S2, y

′′
2 =

bn+3S2, y3 = cn+2S3, y
′
3 = cn+3S3. Because the second and the third components

communicate only once to the first component, there is no difference between

6 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

the language generated in the returning mode and the language generated in the
non-returning mode. This is not the case for the following system.

Γ2 = ({S1, S2}, {a},K, (S1, P1), (S2, P2)),
P1 = {S1 → aQ2, S2 → aQ2, S2 → a},
P2 = {S2 → aS2}.

The reader might check that we obtain

Lr(Γ2) = {a2n+1 | n ≥ 1},
Lnr(Γ2) = {a (m+1)(m+2)

2 | m ≥ 1}.

If the synchronization feature is removed (this amounts to suppose that in each
component of a PC grammar system there is a rule of the form A → A for each
nonterminal A), then we speak about unsynchronized PC grammar systems. The
families of languages obtained in this way are denoted by adding the letter U in
front of the notations above; thus, we obtain UPC(CF), UNCPC(CF), etc.

In all sections below we consider only PC grammar systems with context-free
rules (λ-free or arbitrary), but many of the results hold true also for right-linear
rules; we leave to the reader the task of particularizing the proofs for the right-
linear case, when this is possible.

3 Communicating Sequential Processes

This section provides a brief description of the syntax and meaning of CSP com-
mands. Full details of CSP are contained in [6].

Communicating Sequential Processes (CSP) was proposed as a preliminary
solution to the problem of defining a synchronous message-based language.

The basic idea of CSP is that multiple concurrent (parallel) processes can
synchronize with each other most easily by synchronizing their I/O. A CSP pro-
gram consists of a static collection of processes. The basic command of CSP
is [ρ1|| . . . ||ρn] expressing concurrent execution of sequential processes ρ1, . . . , ρn.
Each individual process ρi has a distinct address space and consists of statements
Si. We can also express parallelism between program statements as well as between
processes.

Coordination between processes is implemented by message exchange between
pairs of processes. It involves the synchronized execution of send (output) and
receive (input) operations by both processes. The proposed way to do communi-
cation is to allow communication to occur only when: process ρi states that it is
ready to output (send) to process ρj specifically, and process ρj is ready to input
(receive) from process ρi specifically. The send and receive operations in processes
ρj and ρi take the following forms: ρi!y and ρj?x, respectively.

Input command ρj?x expresses a request to ρj to assign a value to the (local)
variable x of ρi. Output command ρi!y expresses a request to ρi to receive a value
from ρj . Execution of ρj?x and ρi!y is synchronized and results in assigning the
value of y to x. ρj?x and ρi!y are said to be a matching pair of communication

Bringing PC Grammar Systems Closer to Hoare’s CSP’s 7

statements. If one of these happens in a process without the other, the process is
blocked until the other process is ready.

The alteration command allows for a path to be non-deterministically chosen
from a set of paths. The repetition rule allows for repeated non-deterministic
choosing of a path from a set of paths. The alteration and repetition commands
are as follows:

[b1; c1 → S1

.
bn; cn → Sn]

∗[b1; c1 → S1

.
bn; cn → Sn]

Alteration and repetition are formed from sets of guarded commands. A
guarded command b; c → S consists of a guard b; c and a command S. In the
guard, b is a boolean expression and c is either skip or one of the communication
primitives. The symbol “;” is used as a delimiter for separating different program
statements. If b is false, the guard is failed. If b is true and c = skip, the guard
is ready. If b is true and c is one of the communication primitives, then the guard
is prepared to communicate with the process named in the communication primi-
tive. It is ready when the other process is prepared to communicate and blocked
at other times.

Execution of an alteration command selects a guarded command with a ready
guard and executes the sequence c; S. If c is skip, execution is independent of other
processes. If c is a communication command, then a matching communication
command must be executed simultaneously. When some guards are blocked and
none are ready, the process is blocked and must wait. If all guards are failed, the
process aborts.

Execution of the repetitive command is the same except that, whereas execu-
tion of alternation selects one guarded command and is completed, for repetition
the selection is repeated until all guards are failed, at which time execution of the
repetition is completed.

In the case that more than one guard evaluates to true, then one is arbitrarily
chosen to execute while the others are ignored.

Let us now examine a simple banking application that creates, deletes, and
performs rudimentary transactions on bank accounts. This is provided by a server
process that we call ρ1. ρ1 allows other processes (called clients) to contact it and
request create, delete and other simple transaction operations on bank accounts.
Let us assume that the clients are called ρ2, ρ3, ρ4, ρ5.

The CSP representation of ρ1 follows this pattern:

∗[true; ρ2?r → ...process request...; ρ2!a
true; ρ3?r → ...process request...; ρ3!a
true; ρ4?r → ...process request...; ρ4!a
true; ρ5?r → ...process request...; ρ5!a]

8 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

This means that ρ1 repetively receives requests from ρ2, ρ3, ρ4 and ρ5 for either
creating, deleting or performing rudimentary bank account transactions. A guard
is true if a request has actually been received. If several guards are true then
ρ1 arbitrarily chooses which one to execute. After it has chosen, it processes the
request and the sends a response back.

In ρ2, ρ3, ρ4, ρ5, the CSP representation follows this pattern;

. . . ρ1!r; ρ1?a

When process ρi (2 ≤ i ≤ 5) sends a request to ρ1 then it blocks itself until ρ1

responds.
It is the non-determinism and matching pair of communication observed in the

above presented definitions and example that motivates us to extend the PCGS
model.

4 PC Grammar Systems with Set Queries

One possibility of introducing non-determinism in the querying process specific to
PC grammar systems is the following one.

A PC grammar system with set queries is a construct

Γ = (N, K, T, (S1, P1), . . . , (Sn, Pn)),

where all components are as in a usual PC grammar system, except that the sets
Pi contain either context-free rules over N ∪ T or rules of the form

A → z1K1z2 . . . zrKrzr+1,

where zi ∈ (N ∪ T)∗, 1 ≤ i ≤ s + 1, and Ki ⊆ K, 1 ≤ i ≤ r, for r ≥ 1.

The rewriting steps are defined as usual in a PC grammar system (component-
wise, synchronized), but a communication step is defined as follows: for two config-
urations (x1, . . . , xn), (y1, . . . , yn), with xi, yi ∈ (N ∪ T ∪ 2K)∗, 1 ≤ i ≤ n, x1 /∈ T ∗

(the subsets of K are considered symbols), we write (x1, . . . , xn) =⇒r (y1, . . . , yn)
if and only if:

1. there is i, 1 ≤ i ≤ n, with xi containing an occurrence of some K ′ ⊆ K;

2. for xi as above we have

xi = z1K1z2 . . . zsKszs+1,

with zj ∈ (N ∪ T)∗, 1 ≤ j ≤ s + 1, and Kj ⊆ K, 1 ≤ j ≤ s, s ≥ 1; then

yi = z1xj1z2 . . . zsxjszs+1,

provided that Qjt ∈ Kt and xjt ∈ (N ∪ T)∗, 1 ≤ t ≤ s;
moreover, yjt = Sjt , 1 ≤ t ≤ s;

3. for all i for which yi is not defined above we have yi = xi.

Bringing PC Grammar Systems Closer to Hoare’s CSP’s 9

Thus, a query symbol from each set Kj has to be choosen and satisfied; the
communicated strings should not contain further query symbols (sets of query
symbols), otherwise the communication is not accepted. If at least one set Kt

cannot be satisfied in these conditions, then the communication does not take
place, the string xi is not modified.

This is a communication step done in the returning mode. If, after communi-
cating, a component continues to process the current string (hence in condition 2
above we have yjt

= xjt
instead of yjt

= Sjt
), then we speak about a communica-

tion done in the non-returning mode, denoted by =⇒nr.
The language generated by a PC grammar system with query sets Γ in a mode

α ∈ {r, nr}, is denoted by Lα(Γ) and is defined in the usual way, as the language
of the master component, the first one in Γ.

We denote by SPC(CF) the family of languages Lr(Γ), generated in the
returning mode by PC grammar systems with set queries, with arbitrarily
many λ-free context-free components. As in the case of usual systems, we
add the letter C when only centralized systems are used, and the letter N
when we work in the non-returning mode. In this way, we obtain the families
CSPC(CF), NSPC(CF), NCSPC(CF).

The usual PC grammar systems are a particular case of PC grammar sys-
tems with set queries: the sets of query symbols appearing in rewriting rules are
singletons. Therefore, we obtain:

Lemma 1. XPC(CF) ⊆ XSPC(CF), X ∈ {−, C, N, NC}.
The converse inclusions also holds. The non-determinism of a set of query

symbols can be simulated by the intrinsic non-determinism of the set of rewriting
rules able to rewrite a given nonterminal symbol. Specifically, each rule of the
form

A → z1K1z2 . . . zsKszs+1, (1)

with zi ∈ (N ∪ T)∗, 1 ≤ i ≤ s + 1 and Ki ⊆ K, 1 ≤ i ≤ s, can be replaced by the
set of rules

A → z1Qj1z2 . . . zsQjszs+1, (2)

for all possible qji ∈ Ki, 1 ≤ i ≤ s. Non-deterministically satisfying one query
symbol from each set Ki in a rule of type (1) means exactly the using of the
corresponding rule of type (2). The type of the system (centralized or not) and
the type of the derivation (returning or non-returning) are not changed, that is we
have:

Lemma 2. XSPC(CF) ⊆ XPC(CF), X ∈ {−, C, N, NC}.
Combining these two lemmas, we can write

Theorem 1. XSPC(CF) = XPC(CF), X ∈ {−, C,N,NC}.
The generative power of the new systems is equal to the power of the corre-

sponding classes of “old” systems. Identical results are obtained when λ-rules are
allowed.

10 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

5 PC Grammar Systems with Queries by Nonter-
minals

Another natural way of specifying the queries in a non-deterministic manner is to
use the nonterminal symbols for starting communication steps.

A PC grammar system with queries by nonterminals is a construct

Γ = (N,T, (N1, A1, P1), . . . , (Nn, An, Pn)),

where N is a nonterminal alphabet, T is a terminal alphabet, Ni ⊆ N , Ai ∈ Ni,
and Pi are finite sets of context-free rules over N ∪ T of the form A → w, A ∈ Ni,
w ∈ (N ∪ T)∗, 1 ≤ i ≤ n.

(The components of the system have different nonterminal alphabets, subsets
of the nonterminal alphabet of the system.)

The derivation starts from the configuration (A1, . . . , An) and proceeds by com-
ponentwise derivation steps defined as in a usual PC grammar system and commu-
nication steps, defined as follows: for two configurations (x1, . . . , xn), (y1, . . . , yn),
xi, yi ∈ (N ∪ T)∗, 1 ≤ i ≤ n, x1 /∈ T ∗, we write (x1, . . . , xn) =⇒r (y1, . . . , yn) if
and only if:

1. there is i, 1 ≤ i ≤ n, such that xi contains symbols in N −Ni;

2. for xi of the form above we have

xi = z1B1z2 . . . zsBszs+1,

for zj ∈ (Nj ∪ T)∗, 1 ≤ j ≤ s + 1, Bj ∈ N −Nj , 1 ≤ j ≤ s, s ≥ 1; then

yi = z1xj1z2 . . . zsxjszs+1,

for Bt = Ajt and xjt ∈ (Ni ∪ T)∗, 1 ≤ t ≤ s;
moreover, yjt = Ajt , 1 ≤ t ≤ s;

3. for all i for which yi is not defined above we have yi = xi.

In plain words, when a component i of the system introduces a nonterminal A
which cannot be rewritten by its rules, then a communication step should be done;
one component of the system which has A as its start symbol has to communicate
its sentential form to component i, providing that this sentential form does not
contain nonterminal symbols which cannot be rewritten by component i.

The generated language is defined in the usual way (for both return-
ing and non-returning communications). The obtained families are denoted
by XMPC(CF), X ∈ {−, C,N, NC} (thus, XMPC(CF) corresponds to
XSPC(CF) in the previous section, S in front of PC is replaced by M).

Also in this case the generative power of PC grammar systems of any type is
not modified.

Lemma 3. XPC(CF) ⊆ XMPC(CF), X ∈ {−, C, N, NC}.

Bringing PC Grammar Systems Closer to Hoare’s CSP’s 11

Proof. Consider a PC grammar system Γ = (N, K, T, (S1, P1), . . . , (Sn, Pn))
and construct the PC grammar system with queries by nonterminals

Γ′ = (N ∪K, T, (N ∪ {Q1}, Q1, P
′
1), . . . , (N ∪ {Qn}, Qn, P ′n)),

with
P ′i = Pi ∪ {Qi → x | Si → x ∈ Pi}, 1 ≤ i ≤ n.

The query symbols of Γ are usual nonterminals for Γ′, they precisely identify
the components of Γ′, and play the same role in Γ as in Γ′: when a symbol
Qj is introduced by a component i (of Γ or of Γ′), then a communication from
component j to component i must be performed – providing that the sentential
form of component j contains no further query symbols. (If Qi appears in this
sentential form, then a circular query is met and the system is blocked both in the
case of Γ and of Γ′.)

Consequently, Lα(Γ) = Lα(Γ′), α ∈ {r, nr}. Because Γ′ is of the same type as
Γ, the proof is complete. 2

Lemma 4. XMPC(CF) ⊆ XSPC(CF), X ∈ {−, C, N, NC}.
Proof. Consider a PC grammar system with queries by nonterminals Γ =

(N, T, (N1, A1, P1), . . . , (Nn, An, Pn)) and construct the PC grammar system with
query sets

Γ′ = (N, K, T, (A1, P
′
1), . . . , (An, P ′n)),

where

K = {Q1, . . . , Qn},
P ′i = {A → x | A → x ∈ Pi, x ∈ (Ni ∪ T)∗}

∪ {A → z1K1z2 . . . zsKszs+1 | A → z1Aj1z2 . . . zsAjszs+1 ∈ Pi,

zr ∈ (Ni ∪ T)∗, 1 ≤ r ≤ s + 1, Ajr ∈ N −Ni, 1 ≤ r ≤ s, s ≥ 1,

and Kr = {Qt | At = Ajr}, 1 ≤ r ≤ s}, 1 ≤ i ≤ n.

The sets Kr identify the components of Γ′ (hence those of Γ, too) which have
as a starting symbol the nonterminal Ajr . Satisfying a query symbol in Kr is the
same as replacing Ajr by the sentential form of some component of Γ having Ajr

as a starting symbol. Consequently, Lα(Γ) = Lα(Γ′), α ∈ {r, nr}. 2

Combining these two latter lemmas with the equalities in Theorem 1, we obtain
the following equalities:

Theorem 2. XPC(CF) = XSPC(CF) = XMPC(CF), X ∈ {−, C, N,
NC}.

The two modifications of the way of starting a communication in a PC grammar
system considered above are equal in power; moreover, the modified systems have
the same power as the usual PC grammar systems. This is true also in the case
of using λ-rules.

12 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

6 PC Grammar Systems with Flags

We now consider also a way of indicating that a component of a PC grammar sys-
tem is ready to communicate to another component. To this aim we shall consider
flags associated to the symbols of a PC grammar system, namely sequences of the
form i?, i! similar to those in CPS’s: the symbol i? will be equivalent to a query
symbol Qi and i! will indicate that the component which introduces i! is ready to
communicate to component i.

A PC grammar system with flags is a construct

Γ = (N, T, (S1, P1), . . . , (Sn, Pn)),

where N is a nonterminal alphabet, T is a terminal alphabet, Si ∈ N , and Pi are
finite sets of context-free rules of the form A → x, with A ∈ N, x ∈ (N ∪ T)∗ ∪
(N ∪ T ∪N?)∗ ∪ (N ∪ T ∪N!)∗, 1 ≤ i ≤ n, where

N? = {[i?B] | B ∈ N},
N! = {[i!α] | 1 ≤ i ≤ n, α ∈ N ∪ T}.

The elements of N?, N! are called flagged symbols, i?, i! are called flags. Note that
only the nonterminal symbols can be flagged with i?, but both the nonterminal
and the terminal symbols can be flagged with i!. (In fact, the nonterminal symbol
in [i?B] is useless, it is written mainly for uniformity with the notation used for
CPS’s: the whole [i?B] is replaced by a communicated string, irrespective which
is the symbol B.)

The work of such a system is defined according to the following rules (we prefer
here a non-formal formulation):

– we start from the configuration (S1, . . . , Sn);

– when no flag is present in a configuration, then each component has to use
a rule for rewriting its sentential form, unless this sentential form is a string
in T ∗;

– if in some components of a configuration we have flagged symbols, but there
are no matching pairs of the form [i?B], [j!α], with [i?B] appearing in the jth
component and [j!α] appearing in the ith component, then all components
of the system use a rule for rewriting their sentential forms, excepting those
components whose sentential forms either are terminal or contain flagged
symbols;

– when at least a pair of matching flags appear (that is a component j has
introduced [i?B] and the component i has introduced [j!α]), then a commu-
nication step is performed: the sentential form of component i is transmitted
to component j, where it replaces the flagged occurrence of B; the flags i?
from component j are removed and similarly with the flags j! appearing in
component i; all other flags, not involved in this communication, remain
unchanged.

Bringing PC Grammar Systems Closer to Hoare’s CSP’s 13

Therefore, a communication is done only when two matching flags appear,
linking the two communicating components. A component introducing a flag does
not rewrite its sentential form, but waits for the partner components to introduce
matching flags.

We have formulated no condition on the communicated string. Two variants
can be considered: any string can be communicated or only strings which do not
contain flags different from that in the matching pair can be communicated. In
the first case we have to specify how the additional flags are processed. Again two
possibilities exist: either they are removed after communication, or they remain
and have to be satisfied by subsequent communications.) We adopt here the most
complex variant: strings containing flags can be communicated, and the flags are
removed only by communications which satisfy them.

After communicating, a component can return to its axiom or it can continue
to rewrite the current sentential form (providing that it has no remaining flag).
The centralized systems are defined with respect to flags of the form i?: only the
master component can introduce such flags. Of course, the master cannot handle
flags i!, hence such flags are neither introduced by the master, nor communicated
to the master.

We denote by XFPC(CF) the families of languages generated in this way: as
above, X ∈ {−, C,N, NC}.

Here is an example, clarifying the previous definition:

Γ = (N, T, (S1, P1), (S2, P2), (S3, P3)),
N = {S1, S2, S3, A},
T = {a, b, c},

P1 = {S1 → aS1, S1 → [2?A][2?A][3?A]},
P2 = {S2 → bS2b, S2 → [1!a]},
P3 = {S3 → cS3, S3 → [1!c]}.

A derivation in Γ starts with a phase of the form

(S1, S2, S3) =⇒∗ (anS1, b
nS2b

n, cnS3), n ≥ 0.

In any moment, any component can introduce a flagged symbol. If only P1 or only
P2 or P3 introduces such symbols, then the rewriting continues in the components
without flags until a matching pair of flags is produced. For instance, we can have

(anS1, b
nS2b

n, cnS3) =⇒ (an[2?A][2?A][3?A], bn+1S2b
n+1, cn+1S3).

No communication is possible, the first component has to wait until 1! is introduced
in one of the other components. We can continue with

(an[2?A][2?A][3?A], bn+1S2b
n+1, cn+1S3)

=⇒∗ (an[2?A][2?A][3?A], bn+mS2b
n+m, cn+mS3), m ≥ 0

=⇒ (an[2?A][2?A][3?A], bn+m[1!a]bn+m, cn+m+1S3).

A communication must now be performed, leading to

(anbn+mabn+mbn+mabn+m[3?A], S2, c
n+m+1S3).

14 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

We have considered here the returning case; in the non-returning mode, S2 above
is replaced with bn+mabn+m. This string is never rewritten, hence never commu-
nicated (no flag can be introduced). After a number of steps, say p ≥ 0, also the
component P3 will introduce a flag and then again a communication takes place.

If the second component or the third one introduces a flag before having a flag
in the first component, then these components have to wait. Therefore there is
no relation between the number of occurrences of the symbol a introduced by P1,
the number of occurrences of the symbol b introduced by P2, and the number of
occurrences of the symbol c introduced by P3. The generated language is

Lα(Γ) = {anbmabmbmabmcp | n ≥ 0,m ≥ 0, p ≥ 1}.
This is a non-context-free language; the non-context-freeness appears due to the
reduplication of the string produced by the second component.

The system Γ is centralized. One can easily see that the same language as
above can be generated by a centralized PC grammar system with flags having
only two components: we produce both the prefix an and the suffix cp in the first
component, before introducing flagged symbols.

Somewhat expected, at least in the returning centralized case the PC grammar
systems with flags are equivalent with the unsynchronized PC grammar systems.

Lemma 5. CFPC(CF) ⊆ UCPC(CF).

Proof. For a PC grammar system with flags Γ = (N,T, (S1, P1), . . . , (Sn, Pn))
we construct the unsynchronized PC grammar system

Γ′ = (N ′,K, T, (S1, P
′
1), (S

(2)
2 , P ′2), . . . , (S

(n)
n , P ′n)),

where

N ′ = N ∪ {A(i) | A ∈ N, 1 ≤ i ≤ n} ∪ {A | A ∈ N},
K = {Q1, . . . , Qn},
P ′1 = {A → x ∈ P1 | A ∈ N,x ∈ (N ∪ T)∗}

∪ {A → x′ | A → x ∈ P1, A ∈ N, x ∈ (N ∪ T ∪N!)∗,
and x′ is obtained by replacing each symbol [j?B] in x

by Qj , 2 ≤ j ≤ n}
∪ {A → A | A ∈ N},

P ′i = {A → x ∈ Pi | A ∈ N,x ∈ (N ∪ T)∗}
∪ {A(i) → x1B

(i)x2 | A → x1Bx2 ∈ Pi, A,B ∈ N,x1, x2 ∈ (N ∪ T)∗}
∪ {A(i) → x | A → x ∈ P2, A ∈ N, x ∈ (N ∪ T ∪N!)∗

and x is obtained by replacing each symbol [1!α] in x

by α if α ∈ T and by α if α ∈ N}, 2 ≤ i ≤ n.

We have the equality Lr(Γ) = Lr(Γ′): The components 2− n of Γ′ start from
S

(2)
2 , . . . , S

(n)
n , and each sentential form of them contains a symbol A(2), . . . , A(n),

respectively. Such symbols cannot be rewritten in the component P1, hence should
not be communicated. Their superscripts (2), . . . , (n) are eliminated only by rules

Bringing PC Grammar Systems Closer to Hoare’s CSP’s 15

in P ′2, . . . , P
′
n corresponding to rules in P2, . . . , Pn which introduce flagged symbols

[1!α]. This means that the sentential forms are ready to be communicated to the
master. The nonterminals introduced at the same moment with a flagged symbol
[1!α] are not rewritten in components 2 − n. That is why they are introduced in
a barred form. The bars can be removed in P ′1 by rules A → A,A ∈ N . In turn,
the master component uses query symbols Qj instead of flagged symbols [j?A].
Because of the waiting possibilities in Γ and of the unsynchronization of Γ′, no
restriction appears on the length of the derivations in the components of the two
systems.

Consequently, we have Lr(Γ) = Lr(Γ′), that is CFPC(CF) ⊆ UCPC(CF).2

Lemma 6. UCPC(CF) ⊆ CFPC(CF).

Proof. Consider an unsynchronized PC grammar system Γ = (N,K, T,
(S1, P1), . . . , (Sn, Pn)) and construct a PC grammar system with flags

Γ′ = (N, T, (S1, P
′
1), . . . , (Sn, P ′n)),

with

P ′1 = {A → x ∈ P1 | A ∈ N,x ∈ (N ∪ T)∗}
∪ {A → x′ | A → x ∈ P1, A ∈ N, x ∈ (N ∪ T ∪K)∗, where

x′ is obtained by replacing each Qi in x by [i?A], 2 ≤ i ≤ n},
P ′i = Pi ∪ {A → x′ | A → x ∈ Pi, A ∈ N,x ∈ (N ∪ T)∗, |x|N ≥ 1,

and x′ is obtained by replacing a symbol α of x

by [1!α], α ∈ N ∪ T}, 2 ≤ i ≤ n.

The two systems Γ,Γ′ are equivalent when working in the returning mode: a
communication can be performed in Γ′ only after having a matching pair of flags,
but a flag 1! can be introduced at any time, hence no restriction appear in Γ′ when
simulating derivations in Γ. 2

Theorem 3. UCPC(CF) = CFPC(CF).

As a consequence of this equality, we can formulate for languages generated by
PC grammar systems with flags the pumping lemma given in [10]:

Lemma 7. For each infinite language L ∈ CFPC(CF), L ⊆ V ∗, there are a
string z ∈ L, a constant p, and two strings z′, z′′ ∈ V ∗, z′z′′ 6= λ, such that

z = α1β1α2β2 . . . αkβkαk+1,

for 1 ≤ k ≤ p, βi ∈ {z′, z′′}, 1 ≤ i ≤ k, αi ∈ V ∗, 1 ≤ i ≤ k + 1, and

α1β
j
1α2β

j
2 . . . αkβj

kαk+1

is in L for all j ≥ 1.

Note the essential fact here that one pumps occurrences of the same two sub-
strings z′, z′′ of the string z. This ensures the fact that, for instance, the language
{anbncn | n ≥ 1} cannot be generated by a PC grammar system with flags.

16 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

Lemma 8. The family NCFPC(CF) contains one-letter non-regular langua-
ges.

Proof. Consider the system

Γ = ({A}, {a}, (A,P1), (A,P2)),
P1 = {A → [2?A], A → a},
P2 = {A → a[1!A]}.

A derivation in Γ proceeds as follows:

(A,A) =⇒∗ ([2?A], a[1!A]) =⇒nr (aA, aA) =⇒∗ (a[2?A], aa[1!A])
=⇒nr (aa2A, a2A) =⇒∗ (aa2[2?A], aaa[1!A]) =⇒nr (aa2a3A, a3A)
=⇒∗ (aa2a3 . . . anA, anA) =⇒∗ (aa2a3 . . . ana, x).

Consequently,

Lnr(Γ) = {am | m =
n(n + 1)

2
+ 1, n ≥ 0}.

This is a one-letter non-regular language. 2

Clearly, the language above does not have the pumping property in Lemma 7.
Therefore, we obtain the following result (for PC grammar systems of the usual
form such a result is not yet known):

Theorem 4. NCFPC(CF)− CFPC(CF) 6= ∅.
The above results hold true also when λ-rules are allowed.
The power of non-centralized PC grammar systems with flags remains to be

investigated.

7 PC Grammar Systems with Filters

A loose selection of the messages exists already in the previous variants of PC
grammar systems, as well as in the basic classes of PC grammar systems: a string
containing query symbols (or nonterminals which cannot be rewritten in the receiv-
ing component in the case of queries by nonterminals) cannot be communicated.
Communicating only terminal strings has been also considered in [1].

A variant as in [6] is introduced here: each query symbol is paired with a
target language, which is a regular one, and a sentential form can satisfy that
query symbol only if it is an element of the associated language.

Formally, a PC grammar system with local targets is a construct

Γ = (N, K, T, (S1, P1), . . . , (Sn, Pn)),

where each component is exactly as in a usual PC grammar system, except that in
rules of P1, . . . , Pn the query symbols appear in pairs of the form [Qi, R], where R
is a regular language over N ∪T associated with that occurrence of Qi. (Different
occurrences of Qi can be paired with different regular languages.)

Bringing PC Grammar Systems Closer to Hoare’s CSP’s 17

When a communication is intended to satisfy an occurrence of a query symbol
Qi paired with a language R, then only strings in R can be used.

If all regular languages used in such pairs are equal, then the system is written
in the form

Γ = (N,K, T, (S1, P1), . . . , (Sn, Pn), R),

where (N,K, T, (S1, P1), . . . , (Sn, Pn)) is a usual PC grammar system and R ⊆
(N ∪ T)∗ is the common target language. (The query symbols appear in rules
of P1, . . . , Pn as in a PC grammar system, but they are satisfied only by strings
belonging to R.) Such a system is said to be with a global target.

The language generated by a PC grammar system with local or global targets is
defined in the natural way. We leave the formal details to the reader. The families
of such languages are denoted by XTlPC(CF), XTgPC(CF), X ∈ {−, C, N, NC},
where Tl indicates local targets and Tg indicates global targets.

By the definitions, we have

Lemma 9. XPC(Y) ⊆ XTgPC(Y) ⊆ XTlPC(Y), X ∈ {−, C, N, NC}, Y ∈
{CF,CFλ}.

Using targets, even in the global version, seems to significantly increase the
power of PC grammar systems at least in the non-centralized returning case (the
relation between families XPC(CF) and CS, even when using only λ-free rules in
PC grammar systems, is not settled yet). The explanation lies in the fact that by
means of the filtering restriction we introduce a powerful context-sensing ability
in the system.

Lemma 10. RE ⊆ TgPC(CF).

Proof. Let G = (N, T, S, P) be a type-0 grammar in Kuroda normal form, that
is with P containing rules of the following forms:

1. A → x, with A ∈ N,x ∈ (N ∪ T)∗, |x| ≤ 2,

2. AB → CD, with A,B, C, D ∈ N.

We consider the rules of type 2 labelled in a one-to-one manner, r : AB → CD.
We construct the PC grammar system with a global target

Γ = (N ′,K, T, (S1, P1), (S2, P2)),

where

N ′ = N ∪ {Cr, Dr | r : AB → CD ∈ P} ∪ {S1, S2},
K = {Q1, Q2},
P1 = {S1 → S2, S1 → S, S1 → Q2}

∪ {Cr → C, Dr → D | r : AB → CD ∈ P}
∪ {A → x | A → x ∈ P},

P2 = {S2 → S2, S2 → Q1}
∪ {A → Cr, B → Dr | r : AB → CD ∈ P},

R = (N ∪ T)∗ ∪ (N ∪ T)∗{CrDr | r : AB → CD ∈ P}(N ∪ T)∗.

18 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

We obtain L(G) = Lr(Γ).
Let us examine the possible derivations in Γ.
If P1 introduces the symbol Q2 while P2 is still processing S2, then the system is

blocked: S2 /∈ R, hence this symbol cannot be communicated. If both components
introduce query symbols at the same time, then the system is blocked by circularity
of queries.

Thus, P1 has to eventually use the rule S1 → S, which will entails a context-
free derivation simulating a context-free derivation in G. If a terminal string is
obtained, then the derivation stops by producing a string in L(G).

Assume that at some moment we obtain a configuration of the form (w,Q2).
If w ∈ (N ∪ T)∗, then w can be communicated (this is the case at the first step
when Q2 is introduced). We obtain (S1, w). The only way of continuing in P2 is
to use rules of the form A → Cr, B → Dr, maybe associated to different rules in
P . If no query symbol is introduced in P1, then the derivation will either finish
with a terminal string in P1 or it will be blocked when P2 will have no symbol to
rewrite.

Assume that P1 introduces Q2. The string z of P2 should be in R, otherwise
the communication is not permitted. At least a rule A → Cr, B → Dr has been
used, hence z should be of the form z = z1CrDrz2, for some z1, z2 ∈ (N ∪ T)∗,
r : AB → CD ∈ P . This means that the second component has received from
the first one, two steps ago, a string z′ = z1ABz2. By communication, we get the
configuration (z1CrDrz2, S2). The first component can use context-free rules of
P and can replace Cr, Dr by C,D, respectively. By replacing Cr, Dr by C, D, we
get the string z′′ = z1CDz2. Clearly, z′ =⇒ z′′ by the rule r : AB → CD of P . In
order to communicate the string of the first component to the second one, either
no subscripted nonterminal should exist, or both Cr, Dr should be still present. In
the second case the string is lost: P2 has to use one of its rules of the form X → Xs,
for s being a non-context-free rule in P , and no further communication can use this
string. Therefore, P1 should replace Cr, Dr by C, D if a further communication
will be done.

Consequently, each derivation in the grammar G can be simulated in the system
Γ and, conversely, each returning derivation in Γ corresponds to a derivation in G.
That is, L(G) = Lr(Γ). 2

Theorem 5. TgPC(CF) = TlPC(CF) = RE.

Proof. The inclusion TgPC(CF) ⊆ TlPC(CF) is pointed out in Lemma 9,
the inclusion TlPC(CF) ⊆ RE follows from the Turing-Church thesis (or can be
directly proved in a straightforward way), whereas the inclusion RE ⊆ TgPC(CF)
is proved in Lemma 10. 2

When considering PC grammar systems with targets, non-centralized, working
in the returning mode and using only λ-free rules, we obtain a characterization of
context-sensitive languages:

Corollary 1. TgPC(CF) = TlPC(CF) = CS.

It is worth emphasizing in these results the equivalence of local targets with
global targets, which can be interpreted in terms of decentralized multi-agent
systems.

Bringing PC Grammar Systems Closer to Hoare’s CSP’s 19

In the centralized systems we do not have a result as above:

Lemma 11. CTgPC(CF) ⊆ CPC(CF).

Proof. Let Γ = (N, K, T, (S1, P1), . . . , (Sn, Pn), R) be a PC grammar system
with a global target, R ⊆ (N ∪ T)∗, R ∈ REG. Consider a deterministic finite
automaton M = (H,N ∪T, s0, F, δ) recognizing R (H is the set of states, s0 is the
initial state, F is the set of final states, and δ : H × (N ∪ T) −→ H is the next
state mapping).

For each i = 2, 3, . . . , n let mi be the length of the longest derivation which can
be performed using the rules in Pi, starting from Si. If a terminal derivation is
possible in (Si, Pi), then we put mi = ∞. (Because Pi contains only context-free
rules, the value of mi can be computed algorithmically.) Denote

m = max{mi | 2 ≤ i ≤ n, mi < ∞}.

We construct the PC grammar system

Γ′ = (N ′,K, T, (S1, P1), (S′2, P
′
2), . . . , (S

′
n, P ′n)),

where

N ′ = N ∪ {S′2, . . . , S′n} × {Xj | 1 ≤ j ≤ m}
∪ {X} ∪ {(s,A, s′) | s, s′ ∈ H, A ∈ N},

and for i = 2, 3, . . . , n we put

P ′i = {S′i → λ | if Si → λ ∈ Pi}
∪ {S′i → α′1α

′
2 . . . α′t+1 | t ≥ 0, Si → α1α2 . . . αt+1 ∈ Pi,

αj ∈ N ∪ T, 1 ≤ j ≤ t + 1, there are s1, . . . , st+1 ∈ H,

st+1 ∈ F such that δ(sj , αj+1) = sj+1, 0 ≤ j ≤ t,

and α′j ∈ {αj , (sj−1, αj , sj)}, 1 ≤ j ≤ t + 1}
∪ {(s,A, s′) → α′1α

′
2 . . . α′t+1 | t ≥ 0, Si → α1α2 . . . αt+1 ∈ Pi,

αj ∈ N ∪ T, 1 ≤ j ≤ t + 1, there are s1, . . . , st+1 ∈ H,

such that δ(sj , αj+1) = sj+1, 0 ≤ j ≤ t,

and α′j ∈ {αj , (sj−1, αj , sj)}, 1 ≤ j ≤ t + 1}
∪ {S′i → X,X → X | if mi = ∞}
∪ {S′i → X1, X1 → X2, . . . , Xmi−1 → Xmi | if mi < ∞}.

The idea behind this construction is the following.
The master component of Γ′ is the same as that of Γ, (S1, P1), hence it can

rewrite only symbols in N . The other components of Γ′, that is (S′2, P
′
2), . . . ,

(S′n, P ′n), can choose two ways of working: producing a string in R or introducing
a symbol X or X1. In the latter case, X will be rewritten for ever by X → X,
whereas X1 will impose a derivation of length at most mi. This path of deriving
is important when no communication will be performed from the corresponding
component, but there is a bound on the number of steps a derivation in Γ can

20 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

continue after the last communication from that component. By means of X and
X1, . . . , Xmi , this bound is “imported” in Γ, too. When choosing to produce a
string in R, then both the terminals and the nonterminals could be bracketed
with states in H. The triples of the form (s,A, s′) with A ∈ N can be rewritten
in P ′i , but triples (s, a, s′), a ∈ T , not. Therefore, no terminal symbols should
appear in such a triple and communicated to the first component. Moreover, when
communicating to the first component, the string cannot contain triples (s,A, s′)
either. If the string still contain nonterminal symbols, then the last triple of the
form (s,A, s′) has to be rewritten exactly in the step when the master introduces
the query symbols: the nonterminals in N cannot be rewritten in P ′i , 2 ≤ i ≤ n,
hence the derivation is blocked. This means that the derivation in P ′i has to
correspond to the derivation in Pi which uses the same rules but without bracketing
the nonterminals with states in H.

Consequently, Lr(Γ′) = Lr(Γ), completing the proof. 2

Theorem 6. CTgPC(CF) = CPC(CF).

Proof. The inclusion CPC(CF) ⊆ CTgPC(CF) is pointed out in Lemma 8,
the converse inclusion is proved in Lemma 11. 2

A result similar to Lemma 11 is probably true also for local targets, but the
proof seems not to be similarly simple. One difficulty is the following: if we
have two rules in the master, one introducing a query (Qi, R1) and the other one
introducing (Qi, R2), with the same i, but different languages R1, R2, then, on
the one hand, we need two “twin” components P ′i , P

′′
i , one producing strings in

R1 and one in R2, on the other hand, we cannot handle two different components
associated to Pi, because after a communication the component has to return to
the axiom; if P ′i communicates first and then we have to communicate from P ′′i ,
then the string of the latter component is incorrectly derived, during a derivation
which has started before the last communication from Pi.

Also the case of non-returning systems remains open.

8 Final Remarks

We have introduced in the architecture of PC grammar systems features suggested
by three basic characteristics of CPS’s: nondeterminism of queries (in two vari-
ants), ready-to-communicate symbols (with waiting possibilities until producing
matching queries and ready symbols), and filtering procedures for the communi-
cated strings (in a local or in a global way). The effect of these modifications of
the basic definition of PC grammar systems on the generative power is different
from a case to the other one: the nondeterminism of queries does not modify the
generative power, ready-to-communicate symbols associated with waiting possibil-
ities decreases the power (because of the lost of the synchronization), both global
and local targets increase the power of non-centralized systems (because of the
additional context-sensitivity brought by the filters). The possibility (and the ef-
fect) of introducing other CPS’s features in PC grammar systems remains to be
investigated.

We close this discussion by mentioning that two of the previous variants of
PC grammar systems have some resemblance with earlier variants present in the

Bringing PC Grammar Systems Closer to Hoare’s CSP’s 21

literature: a non-deterministic way of querying is also considered in [14] (any
component can answer a query, there is only one query symbol in the system),
filtering features appear also in [12] (each component has an associated regular
language and the sentential form obtained by the receiver after a communication
step – hence not the communicated string – should be an element of this language)
and in [2], [3] (the communication is started by the sending component, like in
the WAVE paradigm of communicating in distributed computing, [16], while the
receiver selects the messages according to associated regular languages, as above).

References

[1] E. Csuhaj-Varju, J. Dassow, J, Kelemen, Gh. Păun, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London, 1994.

[2] E. Csuhaj-Varju, J. Kelemen, Gh. Păun, Grammar systems with WAVE-like
communication, Computers and AI, 15, 5 (1996), 419 – 436.

[3] E. Csuhaj-Varju, A. Salomaa, Networks of parallel language processors, in
New Trends in Formal Languages. Control, Cooperation, Combinatorics (Gh.
Păun, A. Salomaa, eds.), Lecture Notes in Computer Science 1218, Springer-
Verlag, 1997, 299 – 318.

[4] S. Dumitrescu, Non-returning PC grammar systems can be simulated by re-
turning systems, Theoretical Computer Sci., 161 (1996), 463 – 474.

[5] S. Dumitrescu, Gh. Păun, On the generative power of PC grammar systems
with right-linear rules, RAIRO, 1997.

[6] C. A. R. Hoare, Communicating sequential processes, in Communications of
the ACM, 21 (1978), 666-677.

[7] C. Martin-Vide, Natural language understanding: a new challenge for gram-
mar systems, Acta Cybernetica, 12, 4 (1996), 461 – 472.

[8] V. Mihalache, Matrix grammars versus parallel communicating grammar sys-
tems, in Mathematical Aspects of Natural and Formal Languages ed. Gh. Păun
(World Sci. Publ., Singapore, 1994) pp. 293 – 318.

[9] V. Mihalache, On the generative capacity of parallel communicating grammar
systems with regular components, Computers and AI, 15 (1996) 155 – 172.

[10] Gh. Păun, On the synchronization in parallel communicating grammar sys-
tems, Acta Informatica, 30 (1993), 351 – 367.

[11] Gh. Păun, Parallel communicating grammar systems: Recent results, open
problems, Acta Cybernetica, 12, 4 (1996), 381 – 395.

[12] Gh. Păun, L. Polkowski, A. Skowron, Parallel communicating grammar sys-
tems with negociation, Fundamenta Informaticae, 28 (1996), 315 – 330.

22 L. Kari, H. Lutfyya, C. Mart́ın-Vide, Gh. Păun

[13] Gh. Păun, L. Sântean, Parallel communicating grammar systems: the regular
case, Ann. Univ. Buc., Matem.-Inform. Series, 38, 2 (1989), 55 – 63.

[14] D. Popescu, Parallel communicating grammar systems with comunication by
signals, in New Trends in Formal Languages. Control, Cooperation, and Com-
binatorics (Gh. Păun, A. Salomaa, eds.), Lecture Notes in Computer Science
1218, Springer-Verlag, 1997, 267 – 277.

[15] G. Rozenberg, A. Salomaa, Eds., Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Berlin, Heidelberg, 1997.

[16] P. S. Sapaty, The WAVE paradigm, Internal Report 17/92, Dept. of Infor-
matics, Univ. of Karlsruhe, 1992.

