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Abstract. The problem of negative design of DNA languages is ad-
dressed, that is, properties and construction methods of large sets of
words that prevent undesired bonds when used in DNA computations.
We recall a few existing formalizations of the problem and then define the
property of sim-bond-freedom, where sim is a similarity relation between
words. We show that this property is decidable for context-free languages
and polynomial-time decidable for regular languages. The maximality of
this property also turns out to be decidable for regular languages and
polynomial-time decidable for an important case of the Hamming sim-
ilarity. Then we consider various construction methods for Hamming
bond-free languages, including the recently introduced method of tem-
plates, and obtain a complete structural characterization of all maximal
Hamming bond-free languages. This result is applicable to the θ-k-code
property introduced by Jonoska and Mahalingam.

1 Introduction

Most of the operations involved in DNA computations rely on the capability of
controlling the bonds that can be formed between (single-stranded) DNA mole-
cules. Such bonds are created due to the well-known Watson-Crick complemen-
tarity property of the four nucleotides A,C,G, T , which are the building blocks
of DNA molecules. This property is important in conjunction with the fact that
every molecule has a certain orientation, which is denoted by placing the sym-
bols ‘5′−’ and ‘−3′’ at the two ends of the sequence of nucleotides comprising
the molecule. For example, the molecules 5′−ACCGT −3′ and 3′−ACCGT −5′

are different – they have different chemical properties. In practice, the collection
of DNA molecules exists as a ‘soup’ inside a test tube. Under favorable physical
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tube conditions, if a molecule of the form 5′ − X1X2 · · ·Xk − 3′, where each Xi

is a nucleotide, encounters the molecule 5′ − Yk · · ·Y2Y1 − 3′ in which each nu-
cleotide Yi is the complement of Xi, then the pairs (Xi, Yi) will form k chemical
bonds and a double-stranded structure will be created – see Figure 1(a).

5’- A G T T C C -3’ 5’- v A G T T C C w -3’ 5’- v A G T T C C w

| | | | | | | | | | | | | | | | | | x

3’- T C A A G G -5’ 3’- z T C A A G G y -5’ 3’- z T C A A G G y

(a) (b) (c)

Fig. 1. Vertical bars represent bonds between complementary nucleotides. In (b), the

complementary parts 5′−AGTTCC−3′ and 5′−GGAACT −3′ of the DNA molecules

5′ − vAGTTCCw − 3′ and 5′ − yGGAACTz − 3′ bind together. In (c), the molecule

5′ − vAGTTCCwxyGGAACTz − 3′ is twisted at x and its complementary parts bind

together

It is important to note that bonds can be formed even between complementary
parts of two molecules, provided that these parts are sufficiently long – see
Figure 1(b). Moreover, a molecule containing two complementary parts can bind
to itself, or to a copy of itself – see Figure 1(c).

The bonds shown in Figure 1 are formed between parts that are perfect
complements of each other. In practice, however, it is possible that two parts of
molecules will bind together even if some of their corresponding nucleotides are
not complementary to each other – see Figure 2.

5’- v A G A T T C C G T G w -3’ 5’- v A G A T T C C G T G w

| | | | | | | | | | | | | | | | x

3’- z T C T C A G G A A C y -5’ 3’- z T C T C A G G A A C y

(a) (b)

Fig. 2. In (a), parts of two DNA molecules bind together although these parts are not

perfect complements of each other. In (b), the same parts appear in one molecule

1.1 The Problem of Undesirable Bonds

The success of a DNA operation relies on the assumption that no accidental
bonds can be formed between molecules in the tube before the operation is
initiated, or even during the operation. With this motivation, one of the foremost
problems in DNA computing today is the following.

Problem 1 Define a large, potential collection of DNA molecules such that there
can be no (sufficiently long and possibly imperfect) complementary parts in any
two molecules, and no (sufficiently long and possibly imperfect) complementary
parts in any one molecule.
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In many cases in the literature, this problem is addressed in conjunction
with the uniqueness problem, which involves designing molecules whose parts
are different between each other. The motivation here is that, usually, a DNA
operation is intended only for molecules containing a specific pattern (or specific
patterns) of nucleotides. In this paper, however, we focus on Problem 1.

1.2 Notation for Molecules and Bonds

We proceed now with establishing the notation that would allow us to describe
formalizations of Problem 1. Specifically, we define the terms word, subword,
language, involution, and codeword.

A given alphabet can be used to form sequences of symbols that are called
words. For example, 01001 is a word over the alphabet {0, 1}. The length of
a word w is denoted by |w|. For example, |01001| = 5. The prime example
of an alphabet will be the DNA alphabet {A,C,G, T}. In this case, we agree
that the left end of a DNA word represents the 5′−end of the corresponding
DNA molecule. For example, the word CCATGT represents the molecule 5′ −
CCATGT−3′. If a word w can be written in the form xyz – this is the catenation
of some words x, y and z – then we say that y is a subword of w. A language
is any set of words. We shall use the expression ‘x is a subword of a language’
as a shorthand for x is a subword of some word in the language. One use of a
language L is to represent all the possible distinct copies of DNA molecules that
might appear in a tube. In this case, we refer to L as a tube language and we
assume that every word in L is of length at least k, for some parameter k. This
parameter represents the smallest length of two molecule parts for which it is
possible to form a stable bond.

To represent the complementarity of nucleotides we use the concept of an-
timorphic involution introduced in [13]. In general an involution of an alpha-
bet Σ is a function θ : Σ → Σ such that θ(θ(a)) = a, for all symbols a in
Σ. The involution is called antimorphic if we extend it to words such that
θ(a1 · · · an) = θ(an) · · · θ(a1), where each ai is a symbol in Σ. The prime ex-
ample of an antimorphic involution will be the DNA involution τ such that

τ(A) = T, τ(T ) = A, τ(C) = G, τ(G) = C.

For example, τ(ACCGTT ) = AACGGT . In general, for two DNA words x and
y of length k, the identity τ(x) = y represents the fact that the molecules (or
parts of molecules) 5′−x−3′ and 5′−y−3′ could bind to each other. According
to the requirement in Problem 1, if k = 6, the words ACCGTT and AACGGT
should not be subwords of the tube language L.

In the literature on DNA encodings, the tube language L is usually equal
to, or a subset of, K+, where K is a finite language whose elements are called
codewords. The language K+ consists of all words that are obtained by concate-
nating one or more codewords from K. For a nonnegative integer n, the notation
Kn is used for the set of all words that are obtained by concatenating any n
codewords from K. In general, K might contain codewords of different lengths.
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In many cases, however, the set K consists of words of a certain fixed length l.
In this case, we shall refer to K as a code of length l.

1.3 Formalizations of the Problem of Undesirable Bonds

With the preceding terminology in mind, Problem 1 is called the negative word
design problem in [18]. Now we recall a few existing formalizations of Problem 1
and we propose a new one, which appears to be closer to the intuition behind the
problem. It should be noted, however, that all formalizations are inter-related in
some interesting ways.

One of the most recent attempts to address Problem 1 appears in [10]. In
that paper, the authors require that a tube language L must satisfy the following
property.

P1[k]: If x and y are any subwords of L of length k then x �= τ(y).

A language satisfying this property is called a τ -k-code in [10]. An advantage of
this formalization is that the property is defined independently of the structure
of L. This property is also considered implicitly in [3] and [6]. In particular,
reference [3] considers tube languages of the form (sZ)+ satisfying P1[k], where
s is a fixed word of length k and Z is a code of length k – the notation sZ
represents the set of all words sz such that z is in Z.

In [9], the authors introduce the concept of a strictly τ -free code K, which
is a generalization of the notion of comma-free code [12], and show that the
language K+ must be strictly τ -free as well. Here we shall assume that K is of
fixed length k. In this formalization the tube language L is equal to K+. Using
the tools of [9], it can be shown that L is a strictly τ -free language iff (if and
only if) L satisfies the following property

P2[k]: If x is a subword of L of length k and v is a codeword in K then x �= τ(v).

We note that similar properties are considered also in [15] and [16].
As noted earlier, parts of DNA molecules can bind to each other even if

they are not perfect complements of each other. Hence, although sufficient, the
condition τ(x) = y might not be necessary for the DNA words x and y to
stick together. The common approach to deal with this is to modify the above
condition by using the Hamming distance function H(·, ·). More specifically, for
two words x and y of length k, the relation H(x, τ(y)) ≤ d represents the fact
that the molecules (or parts of molecules) 5′ − x − 3′ and 5′ − y − 3′ could bind
to each other. Here, d is a nonnegative integer less than k.

In [5] and [21], the authors consider codes K of length k satisfying the fol-
lowing property

P3[d, k]: If u and v are any codewords in K then H(u, τ(v)) > d.

In fact the above property is studied in conjunction with the uniqueness property
H(K) > d.

Reference [2] considers a measure between two words, which is applied to
codes of length k whose words can be concatenated in arbitrary ways. Thus,
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the tube language here is L = K+. The code K satisfies certain uniqueness
conditions as well as conditions related to Problem 1. In particular, the tube
language L = K+ satisfies the following property.

P4[d, k]: If x is a subword of L of length k and v is a codeword in K then
H(x, τ(v)) > d.

We note that also reference [19] considers this property for tube languages of
the form K1K2 · · ·Km, where each Ki is a certain code of length k.

With ‘H(x, τ(y)) ≤ d’ as the criterion for x and y to bind together, it appears
that P4[d, k] is the strictest property in the literature for addressing Problem 1.
This property, however, is not sufficient in general for avoiding undesirable bonds
in the tube. To see this, consider the case where

d = 1, k = 5, K = {ACGAT,CCGAA}.
One can verify that the language K+ satisfies P4[d, k] and that the DNA words
ACGATACGATCCGAA and ACGATCCGAACCGAA are in K+ and contain
the subwords GATCC and CGATC such that

H(GATCC, τ(CGATC)) ≤ 1.

Motivated by the above observation, we introduce the following property of
a tube language L.

P5[d, k]: If x and y are any subwords of L of length k then H(x, τ(y)) > d.

Note that, as in the case of P1[k], the new property is defined independently of
the structure of L. Any tube language satisfying this property will be called a
(τ,Hd,k)-bond-free language.

We list now a few interesting connections among the properties P1–P5. We
note that the condition x �= τ(y) is equivalent to H(x, τ(y)) > 0.

P3 and P5: In this paper we introduce the subword closure operation ⊗
and we show that if a code K satisfies P3[d, k] then the language K⊗ satisfies
P5[d, k].

P4 and P2: It is evident that any language K+ satisfying P4[d, k] also
satisfies P2[k]. Moreover, P4[0, k] is identical to P2[k]. We can show that, for
every code Q of length q, if the language Q+ satisfies P2[q] then the language
(Qd+1)+ satisfies P4[d, q(d + 1)], for any d > 0.

P4 and P5: It is evident that any language K+ satisfying P5[d, k] also
satisfies P4[d, k]. Moreover, it can be shown that if K+ satisfies P4[d, k] then
(K2)+ satisfies P5[d, k].

P5 and P1: Obviously, any language satisfying P5[d, k] also satisfies P1[k].
Moreover, the property P1[k] coincides with P5[0, k]. It can be shown that every
language satisfying P1[q], for some positive integer q, also satisfies P5[d, q(d+1)]
for every d > 0, and conversely, if the language is of the form K+ and satisfies
P5[d, k] then it satisfies P1[k − d] as well.

Important Note. Proofs of the results obtained in this paper can be found in
the full version [17].
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1.4 A More General Formalization: (θ, sim)-Bond-Freeness

The choice of the Hamming distance in the condition ‘H(x, τ(y))’ for similarity
between words is a very natural one and has attracted a lot of interest in the
literature. One might argue, however, that parts of two DNA molecules could
form a stable bond even if they have different lengths – hybridizations of this type
are addressed in [1]. Based on this observation, the condition for two subwords
x and y to bind together should be

|x|, |y| ≥ k and Lev(x, τ(y)) ≤ d.

The symbol |u| denotes the length of the word u and Lev(u, v) is the Levenshtein
distance between the words u and v – this is the smallest number of substitutions,
insertions and deletions of symbols required to transform u to v. With this
formulation, the condition for similarity based on the Hamming distance can be
rephrased as follows

|x|, |y| ≥ k and H(x, τ(y)) ≤ d,

where we assume that H(u, v) = ∞ if the words u and v have different lengths.
In general, for any similarity relation sim(·, ·) between words and for every in-
volution θ, we define the following property of a language L.

P[θ, sim]: If x and y are any nonempty subwords of L then sim(x, θ(y)) is false.

Any language satisfying P[θ, sim] is called a (θ, sim)-bond-free language.
The precise definition of a similarity relation is given in Section 2. It can

be shown that the relations ‘|u|, |v| ≥ k and H(u, v) ≤ d’ and ‘|u|, |v| ≥ k and
Lev(u, v) ≤ d’ are indeed similarity relations. For these relations we shall use
the notation Hd,k and Levd,k, respectively.

2 Decidability Questions About (θ, sim)-Bond-Freedom

In this section, we use the general tools about language operations and trajecto-
ries obtained in [16] and we show that one can decide in quadratic time whether
a given regular language is (θ, sim)-bond-free. Moreover, we show that this prob-
lem is decidable even when the given language is context-free. Then, we use also
the general tools about maximal solutions of language inequations developed in
[14] and [16] to establish the decidability of whether a given regular language
is maximal with respect to the (θ, sim)-bond-free property. The acronyms DFA
and NFA stand for deterministic and nondeterministic, respectively, finite au-
tomaton. A relation between words (binary relation) is rational if it is realized
by a finite-state transducer.

Definition 1. A binary relation sim is called a similarity relation with param-
eters (t, l), where t and l are nonnegative integers, if the following conditions are
satisfied. (i) If sim(u, v) is true then abs(|u| − |v|) ≤ t. (ii) If sim(u, v) is true
and |u|, |v| > l then there are proper subwords x and y of u and v, respectively,
such that sim(x, y) is true.
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We can interpret the above conditions as follows: (i) the lengths of two similar
words cannot be too different and (ii) if two words are similar and long enough,
then they contain two similar proper subwords. In the rest of the section we shall
assume that sim is a fixed, but arbitrary, similarity relation with parameters (t, l).
It is evident that the relation Hd,k defined in Subsection 1.4 is an example of a
similarity relation with parameters (0, k). It can be shown that also Levd,k is a
similarity relation, with parameters (d, d + k) – see [17].

Theorem 1. Assume that sim is a rational relation. The following problem
is decidable in quadratic time. Input: NFA A. Output: Y/N, depending on
whether L(A) is a (θ, sim)-bond-free language.

We note that for most of the DNA language properties considered in [9, 15, 16]
the above problem is undecidable for context-free languages. As the (θ, sim)-
bond-free property seems to be rather general, it might be surprising that the
same problem is decidable.

Theorem 2. If the similarity relation sim is computable, then it is decidable
whether a given context-free language is (θ, sim)-bond-free.

Corollary 1. Let d and k be nonnegative integers with k ≥ 1. It is decidable
whether a given context-free language is (θ,Hd,k)-bond-free (or (θ, Levd,k)-bond-
free).

Theorem 3. Assume that the similarity relation sim is rational. Then the fol-
lowing problem is decidable. Input: NFAs A and B such that L(A) is a (θ, sim)-
bond-free subset of L(B). Output: Y/N, depending on whether L(A) is a max-
imal (θ, sim)-bond-free subset of L(B).

3 Decidability of Maximality in the Hamming Case

In the literature on DNA encodings, and in coding theory in general, the set
of words that are involved in the application of interest are usually formed by
concatenating shorter words of a certain fixed length. Following this practice,
we consider languages that are subsets of (Σk)+, for some positive integer k. We
call such languages k-block languages. Naturally, any regular k-block language
can be represented by a special type of lazy DFA, which we call k-block DFA.
This is a deterministic finite automaton such that, for every production pu → q,
the word u is of length k.

The decision method for maximality of the previous section is not of poly-
nomial time. In this section, however, we are able to show a polynomial time
algorithm for testing whether a given regular langauge is (θ,Hd,k)-bond-free, for
d = 0 or d = 1. We remind the reader that, in the case of d = 0, the prop-
erty coincides with P1[k] – see Subsection 1.3. Next we illustrate the concept
of maximality with an example. The notation Subk(L) represents the set of all
subwords of length k of the language L.
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Example 3.1. Consider the code K1 = {AA,AC,CA,CC} over the DNA al-
phabet and the 2-block language K+

1 . Let S1 = Sub2(K+
1 ). Then, S1 is equal

to K1 and S1 ∩ τ(S1) is empty. Hence, the language K+
1 is a (τ,H0,2)-bond-free

subset of (Σ2)+. Moreover, there is no word v in Σ2 − K1 such that the lan-
guage (K1 ∪ {v})+ is H0,2-bond-free. For example, if v = AG then GC would
be a subword of length 2 of (K1 ∪ {v})+ such that GC = τ(GC). On the other
hand, it is possible to add AG as a subword with the constraint that AG cannot
be followed by CA or CC. In fact we can add also GA as a subword, provided
that GA cannot be preceded by AC, CC, or AG. More specifically, consider the
language L2 accepted by the 2-block DFA (Σ, {1, 2, 3, 4}, 1, {2, 3, 4}, P2), where
2, 3, 4 are the final states and the set of productions P2 is equal to

{1u → 2, 1v → 3, 1(AG) → 4 | u = AA,CA,GA and v = AC,CC} ∪
{2u → 2, 2v → 3, 2(AG) → 4 | u = AA,CA,GA and v = AC,CC} ∪
{3u → 2, 3v → 3, 3(AG) → 4 | u = AA,CA and v = AC,CC} ∪
{4(AG) → 4, 4(AC) → 3, 4(AA) → 2}.

The language L2 is a proper superset of K+
1 and is a (τ,H0,2)-bond-free subset

of (Σ2)+. In fact it can be shown that L2 is maximal with this property [17].

Theorem 4. Let d be a fixed value in {0, 1}. The following problem is com-
putable in polynomial time. Input: k-block DFA A such that L(A) is a (θ,Hd,k)-
bond-free subset of (Σk)+. Output: Y/N, depending on whether L(A) is maximal
with that property. Moreover, if L(A) is not maximal, output a minimal-length
word w ∈ (Σk)+ − L(A) such that L(A) ∪ {w} is a (θ,Hd,k)-bond-free subset
of (Σk)+.

4 Construction Methods for the Hamming Case

In this section we describe methods for constructing (τ,Hd,k)-bond-free lan-
guages. We focus on languages that are subsets of (Σk)+ or ΣkΣ∗. We assume
throughout that k and d are integers, with k ≥ 1 and 0 ≤ d < k, and τ is
the DNA involution. Moreover, we introduce the subword closure operation, ⊗,
which plays an important role in the sequel.

Let d be a nonnegative integer and let S and S1 be languages containing only
words of the same length k, for some positive integer k. The Hamming ball Hd(S)
of S is the set {v | H(v, z) ≤ d, for some z ∈ S}. Note that Hd(S) = S when
d = 0. The subword closure S⊗ of S is the set {w ∈ Σ∗ | |w| ≥ k, Subk(w) ⊆ S}.
We note that S1 ⊆ S iff S1

⊗ ⊆ S⊗. This implies that, if S1 �= S then S1
⊗ �=

S⊗. Moreover we note that, given S, one can construct in linear time a DFA
accepting S⊗ [17].

4.1 Direct Methods

Here we consider analytical methods that do not rely on previously constructed
languages. The first method is based on the concept of a template and the
operation ‘·’: 0 · 0 = C, 0 · 1 = G, 1 · 0 = T, 1 · 1 = A [2]. This operation is
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extended to binary words of the same length in a natural manner. A k-template
is any binary word of length k. If x is a k-template and E is subset of {0, 1}k

then x · E = {x · v | v ∈ E}. The construction method of [2] involves choosing
a k-template x and a code E such that x · E satisfies a desired property. In our
case, we are interested in k-templates x such that

H(x2x1, (x4x3)R) > d, (1)

for all prefixes x1 and x3 of x and suffixes x2 and x4 of x.

Theorem 5. Let x be a k-template satisfying (1).Then the language (x·{0, 1}k)+

is (τ,Hd,k)-bond-free.

Observe that the cardinality of the code x · {0, 1}k is 2k. The advantage of
the method of templates is that properties of the template x, which is a simple
object, are passed gracefully to the code x ·E, where E is any subset of {0, 1}k.
We note that many of the templates listed in [2] satisfy (1).

We introduce now another direct construction method. The bond-free lan-
guage is again of the form K+, where K is a code of fixed-length. Moreover
there is a set I of positions in which the codeword symbols are always in {A,C}.
The method is described more formally in the next theorem. The notation k % 2
stands for the remainder of the integer division k/2, and v[i] stands for the
symbol of the word v at position i.

Theorem 6. Let I be a nonempty subset of {1, . . . , k} of cardinality �k/2� +
1 + �(d + k % 2)/2�. Then the language K+ is (τ,Hd,k)-bond-free, where

K = {v ∈ Σk | if i ∈ I then v[i] ∈ {A,C}}.

Let l be the quantity �k/2� + 1 + �(d + k % 2)/2� that appears in the above
theorem. The size of the code K is 2l4k−l. On the other hand the method of
k-templates produces codes K of size 2k. Obviously, 2l4k−l ≥ 2k. Moreover, one
can verify that k = l iff d is in {k − 2, k − 3}. An advantage of the method of
Theorem 6 is that we can construct (τ,Hd,k)-bond-free languages with a large
ratio d/k. Another advantage of some codes K defined in the previous theorem
is that one can encode and decode information in linear time [17].

4.2 Methods Based on the Catenation Closure

The main idea here is that the catenation closure of Qd+1, that is the language
(Qd+1)+, is (τ,Hd,k)-bond-free if Q is of length q with the property that Q+

is (τ,H0,q)-bond-free. The correctness of the method is based on the following
theorem.

Theorem 7. Let j and q be positive integers and let L be a subset of ΣjqΣ∗. If
L is (τ,Ht,q)-bond-free, for some integer t ≥ 0, then it is also (τ,Hd,k)-bond-free,
where d = j(t + 1) − 1 and k = jq.
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Observe that for t = 0, the above theorem says that nearly every language
that is (τ,H0,q)-bond-free is inherently (τ,Hd,k)-bond-free for any d > 0 and any
k ≥ q(d+1). This is a connection between the properties P1 and P5 considered
in Section 1.

With the notation of the above theorem, let Q be a code of length q such that
the language Q+ is (τ,Ht,q)-bond-free. Let K = Qj and let k = jq. The code Q
could be defined by some direct method, or by brute force for small values of q
and t. In either case, the language K+ is (τ,Hd,k)-bond-free.

In the case of t = 0, we have that j = d + 1 and the cardinality of the
code K is |Q|d+1, which can be larger than the cardinality of the codes defined
in Theorem 6 with the same parameters. For example, if Q = {A,C}2Σ ∪
{A,C}{G,T}{A,C}, then the code K = Qd+1 consists of 24d+1 codewords.
On the other hand, if the code K is defined using Theorem 6 for k = 3(d + 1)
then the cardinality of K is equal to 16d+1.

The following observation can be viewed as a converse type of Theorem 7.

Theorem 8. Let K be any set of words such that the language K+ is (τ,Hd,k)-
bond-free, for some integers d ≥ 0 and k ≥ 1. Then the language K+ is also
(τ,H0,k−d)-bond-free.

4.3 All Maximal (Hamming) Bond-Free Languages

With the results of Section 3 in mind [17], we understand that the languages of
the form K+ obtained by the preceding methods are not necessarily maximal. In
what follows we discuss methods of obtaining new bond-free languages, possibly
maximal, from old ones using the subword closure operation ⊗. We also need
the following, slightly restricted, version of the subword closure of S, where S is
any code of fixed length k, S⊕ � S⊗ ∩ (Σk)+. We call S⊕ the block closure
of S.

Theorem 9. Let S be a set of words of fixed length k. Then each of the languages
S⊗ and S⊕ is (τ,Hd,k)-bond-free iff

τ(S) ∩ Hd(S) = ∅. (2)

Using the above observation we can extend (τ,Hd,k)-bond-free languages of
the form K+, such as those constructed earlier, as follows – we assume the
words of K are of fixed length k. Let S = Subk(K2) = Subk(K+). Then S
satisfies (2) and, therefore, the language S⊗ is a (τ,Hd,k)-bond-free language
that includes K+. Next consider any code K of length k satisfying property
P3[d, k] – recall from Section 1 that such codes have been studied in [5] and
[21]. Using again the above theorem it follows that K⊗ is a (τ,Hd,k)-bond-free
language.

The question that arises now is when the bond-free languages of Theorem 9
are maximal. The following result addresses this question. In fact we show a
complete structural characterization of all maximal (τ,Hd,k)-bond-free subsets
of (Σk)+ and ΣkΣ∗.
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Theorem 10. The class of all maximal (τ,Hd,k)-bond-free subsets of (Σk)+ is
finite and equal to {S⊕ | S ⊆ Σk and S is maximal satisfying τ(S)∩Hd(S) = ∅}.
In particular, if d = 0 then this class is equal to {S⊕ | S ∪ τ(S) = {v ∈ Σk | v �=
τ(v)}, τ(S) ∩ S = ∅}.
Note: The above theorem holds also for subsets of ΣkΣ∗ if we replace S⊕ with
S⊗.

According to Theorem 10, if K is a maximal subset of Σk satisfying τ(K) ∩
Hd(K) then the language K⊕ is a maximal (τ,Hd,k)-bond-free subset of (Σk)+.
In the case of d = 0 the characterization of the maximal bond-free languages
is quite explicit: Define any partition {S, τ(S)} of the set {v ∈ Σk | v �= τ(v)}
and then compute S⊕; this language will be maximal. The language L2 con-
sidered in Example 3.1 is a particular instance of this type of construction
[17].

The above theorem implies that every k-block (τ,Hd,k)-bond-free language
L is included in a regular maximal such language. Statements of this type with
L being regular have been obtained for various code-related properties and are
of particular interest in the theory of codes [12]. In our case it is also interesting
to note that the language L is not necessarily regular.

5 Discussion

We have considered the problem of undesirable bonds and proposed the property
of (θ, sim)-bond-freedom for DNA languages, which addresses this problem when
bonds between imperfect complements of DNA molecules are permitted. Using
recent language theoretic tools, we were able to establish various decidability
results about (θ, sim)-bond-freedom. The case where sim is the Hamming simi-
larity has been considered by many authors. In this case, we have demonstrated
interesting connections between our property and those of other authors, and
have identified general construction methods. In particular, we have identified
all DNA languages that are maximal with respect to the new property. This re-
sult is also applicable to the case of the θ-k-code property of [10]. Directions for
future research include the following: (i) Derive a methodology for defining prop-
erties of DNA languages that would be able to address the uniqueness problem
– called positive design problem in [18] – as independently of the application as
possible. (ii) Elaborate on the proposed construction methods to obtain concrete
constructions of languages that, in addition to being bond-free, they satisfy ad-
ditional properties such as uniqueness and fixed GC-ratio. (iii) Explore further
the subword closure operation from a theoretical at least point of view.
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17. Kari, L., Konstantinidis, S., Sośık, P.: Bond-free languages: formalizations, max-
imality and construction methods. Tech. report 2004-01, Dept. Mathematics and
Computing Science, Saint Mary’s University, Halifax, Canada (2004). Electronic
form available at http://www.stmarys.ca/academic/science/compsci/

18. Mauri, G., Ferretti, C.: Word Design for Molecular Computing: A Survey. In: [4],
37–46

19. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wick-
ham, G.S.: Experimental construction of very large scale DNA databases with
associative search capability. In: [11], 231–247



Title Suppressed Due to Excessive Length 183

20. Tanaka, F., Nakatsugawa, M., Yamamoto, M., Shiba, T., Ohuchi, A.: Developing
support system for sequence design in DNA computing. In: [11], 129–137.

21. Tulpan, D.C., Hoos, H.H., Condon, A.E.: Stochastic Local Search Algorithms for
DNA Word Design. In: [7], 229–241.


	Introduction
	The Problem of Undesirable Bonds
	Notation for Molecules and Bonds
	Formalizations of the Problem of Undesirable Bonds
	A More General Formalization: (,sim)-Bond-Freeness

	Decidability Questions About (,sim)-Bond-Freedom
	Decidability of Maximality in the Hamming Case
	Construction Methods for the Hamming Case
	Direct Methods
	Methods Based on the Catenation Closure
	All Maximal (Hamming)
Bond-Free Languages

	Discussion

