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Abstract. Repetition avoidance has been intensely studied since Thue’s work in the early 1900’s. In
this paper, we consider another type of repetition, called pseudopower, inspired by the Watson-Crick
complementarity property of DNA sequences. A DNA single strand can be viewed as a string over
the four-letter alphabet{A,C,G, T }, whereinA is the complement ofT , whileC is the complement
of G. Such a DNA single strand will bind to a reverse complement DNA single strand, called its
Watson-Crick complement, to form a helical double-stranded DNA molecule. The Watson-Crick
complement of a DNA strand is deducible from, and thus informationally equivalent to, the original
strand. We use this fact to generalize the notion of the powerof a word by relaxing the meaning
of “sameness” to include the image through anantimorphic involution, the model of DNA Watson-
Crick complementarity. Given a finite alphabetΣ, an antimorphic involution is a functionθ : Σ∗ −→
Σ∗ which is an involution, i.e.,θ2 equals the identity, and an antimorphism, i.e.,θ(uv) = θ(v)θ(u),
for all u ∈ Σ∗. For a positive integerk, we call a wordw a pseudo-kth-power with respect toθ if
it can be written asw = u1 . . . uk, where for1 ≤ i, j ≤ k we have eitherui = uj or ui = θ(uj).
The classicalkth-power of a word is a special case of a pseudo-kth-power, where all the repeating
units are identical. We first classify the alphabetsΣ and the antimorphic involutionsθ for which
there exist arbitrarily long pseudo-kth-power-free words. Then we present efficient algorithms to
test whether a finite wordw is pseudo-kth-power-free.
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1. Introduction

Let Σ be a finite alphabet. The set of finite words and infinite words overΣ are denoted byΣ∗ andΣω,
respectively. A wordv is called afactor of x if x = uvw for some wordsu andw. A nonempty word
w is called asquare(resp.,cube) if w can be written asw = uu (resp.,w = uuu) for someu ∈ Σ∗.
For example, the English word “murmur” is a square. More generally, for an integerk ≥ 2, a nonempty
wordw is called akth-powerif w = uk for someu ∈ Σ∗. A wordw is calledsquare-free(resp.,cube-
free, kth-power-free) if w does not contain any square (resp., cube,kth-power) as a factor. In the early
1900’s, Thue showed in a series of papers examples of square-free infinite words over3 letters and4
letters, respectively, and cube-free infinite words over a binary alphabet [22, 23] (see [3] for the English
translation). In 1921, Morse [19] independently discovered Thue’s construction. In 1957, Leech [16]
showed another construction of square-free infinite words,which are generated by a morphism. There
are square-free infinite words that cannot be generated by any morphism [2, 25].

Let |w |a be the total number of occurrences of the lettera in the wordw, and let|w | =
∑

a∈Σ |w |a
be the length of wordw for w ∈ Σ∗. A nonempty wordw is called anabelian squareif w is in the
form w = u1u2 such that|u1 |a = |u2 |a for each lettera. For example, the English word “teammate”
is an abelian square. Analogously, a nonempty wordw is called anabelian cubeif w = u1u2u3, where
|u1 |a = |u2 |a = |u3 |a for eacha ∈ Σ, and called anabeliankth powerif w = u1u2 . . . uk, where
k is an integer andk ≥ 2, |ui |a = |uj |a for a ∈ Σ and1 ≤ i, j ≤ k. A word w is calledabelian-
square-free(resp.,abelian-cube-free, abelian-kth-power-free) if w contains no abelian square (resp.,
abelian cube, abeliankth power) as a factor. In 1957, Erdös [8] asked whether thereexists an abelian-
square-free infinite word. Constructions of such words weregiven by Evdokimov [9] in 1968 over 25
letters, Pleasants [20] in 1970 over5 letters, and by Keränen [12] in 1992 over4 letters. Most recently,
Keränen [13] presented many new abelian-square-free infinite words. In 1979, Dekking [7] discussed
abelian-kth-power-free infinite words fork ≥ 3.

The discussion onkth-powers is related to molecular biology, and especially nucleic acids research
(DNA, RNA). Indeed, repeats of certain segments in human DNAgenomic sequences are sometimes
indicative of disease [18]. In the same context, another natural notion arises, that of “informational
equivalence” between a DNA sequence and its Watson-Crick complement. A DNA single strand is a
polymer consisting of a linear arrangement of monomers called nucleotides. There are four different
types of nucleotides, adenine, cytosine, guanine and thymine. Mathematically, a DNA single strand
can thus be viewed as a string over the four-letter alphabet{A,C,G, T}. An essential property of
DNA strands is their Watson-Crick complementarity:A is complementary toT , andC to G, and two
DNA single strands of opposite orientation and whose nucleotides are respectively complementary, bind
together by hydrogen bonds to form a double-stranded helical DNA molecule. The reverse complement
of a DNA single-strand is called its Watson-Crick complement. Given a DNA single strand and a supply
of individual nucleotides, under certain conditions, the enzyme DNA polymerase proceeds to form a new
DNA single strand that is the perfect Watson-Crick complement of the original template. A DNA strand
and its Watson-Crick complement can even be experimentallyobtained from each other, and can thus be
viewed as being informationally equivalent.

We model this fact by relaxing the “measure of sameness” of two words to include an antimorphic
involution besides the identity function. Given an alphabet Σ, an antimorphic involution is a function
θ : Σ∗ −→ Σ∗ which is an involution, i.e.,θ2 equals the identity, and an antimorphism, i.e.,θ(uv) =
θ(v)θ(u), for all u ∈ Σ∗. Note that, ifΣ = {A,C,G, T} andδ is the antimorphic involution defined
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as δ(A) = T , δ(C) = G, then for any stringw representing a DNA strand,δ(u) will represent its
Watson-Crick complement.

Other concepts in combinatorics on words have been generalized by replacing the identity function
by more general functions, e.g., morphic or antimorphic involutions. They include pseudoprimitive
words [5] and pseudopalindromes [6, 11, 1].

Given an antimorphic involutionθ of Σ∗ and a positive integerk, we call a wordw a pseudo-kth-
power with respect toθ if it can be written asw = u1 . . . uk, where for1 ≤ i, j ≤ k we have either
ui = uj or ui = θ(uj). In this paper, given integersk ≥ 2, we investigate words that do not contain any
pseudo-kth-power as a factor.

In Section 2, we introduce the concept of pseudopower-free words and discuss the existence of such
words over different settings of alphabetsΣ and antimorphic involutionsθ. For example, we show
that, for anyΣ with |Σ | ≥ 4 (resp.,|Σ | ≥ 3), and any antimorphic involutionθ overΣ, there exist
pseudosquare-free (resp., pseudocube-free) infinite words with respect toθ. In Section 3, we discuss
algorithms for deciding, given an alphabetΣ, an antimorphic involutionθ of Σ∗, a positive integerk,
and a wordw ∈ Σ∗, whether or not the wordw is pseudo-kth-power-free. The pseudosquare-freeness
and pseudocube-freeness of a wordw can be tested inO(|w |) andO(|w |2) time, respectively. For any
integerk, k ≥ 2, the pseudo-kth-power-freeness can be tested inO(|w |2 log |w |) time, which does not
depend onk. Section 4 summarizes our results and presents open problems.

2. Pseudopower-Free Infinite Words

Without loss of generality, unless mentioned explicitly, we always assume the letters are0, 1, 2, . . .. The
empty word is denoted byǫ and the lexicographical order of words is denoted by<.

A function θ : Σ∗ → Σ∗ is called aninvolution if θ(θ(w)) = w for all w ∈ Σ∗, and called an
antimorphism(resp.,morphism) if θ(uv) = θ(v)θ(u) (resp.,θ(uv) = θ(u)θ(v)). We callθ anantimor-
phic involution, if θ is both an involution and an antimorphism. An antimorphic involution is also called
an involutory antimorphism in the literature. For example,the classic Watson-Crick complementarity
of DNA strands can be viewed as an antimorphic involutionδ over the four-letter alphabet of DNA nu-
cleotides{A, T, C, G}. Reversal(also calledmirror image), defined by(a1a2 . . . an)R = an . . . a2a1, is
an antimorphic involution over any given alphabet. We also write (a1a2 . . . an)

R asR(a1a2 . . . an) for
the convenience of composition of functions. Atransposition(a, b), a < b, is a morphism defined by
(a, b)(a) = b, (a, b)(b) = a, and(a, b)(c) = c for c 6= a, c 6= b, a, b, c ∈ Σ. One can verify that reversal
and any transposition commute, i.e.,R ◦ (a, b) = (a, b) ◦R, and two disjoint transpositions(a1, a2) and
(b1, b2) commute, i.e.,(a1, a2) ◦ (b1, b2) = (b1, b2) ◦ (a1, a2) for ai 6= bj , i, j ∈ {1, 2}. By definition,
every antimorphic involution on an alphabet is a permutation of the letters. Furthermore, we have the
following proposition.

Proposition 2.1. Let θ be an antimorphic involution over the alphabetΣ. Thenθ can be uniquely written
as the composition of transpositions with reversal

θ = (a0, a1) ◦ (a2, a3) . . . (a2m−2, a2m−1) ◦ R (1)

up to changing the composition order, whereai 6= aj for i 6= j andm ≥ 0.
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Proof:
First we show thatθ(a) is a single letter for any lettera. By definitions,θ(w) = θ(ǫw) = θ(ǫ)θ(w), so
θ(ǫ) = ǫ. For anya ∈ Σ, sinceθ(θ(a)) = a, we have| θ(a) | > 0 and| θ(a) | < 2. Hence| θ(a) | = 1
for anya ∈ Σ.

Now we prove the existence of the decomposition in (1) forθ by induction on the size of the alphabet.
If |Σ | = 1, thenθ(0) = 0 andθ(0m) = 0m = R(0m). Soθ = R and (1) holds. If|Σ | = 2, then
eitherθ(0) = 0 or θ(0) = 1. One can verify thatθ = R whenθ(0) = 0 andθ = (0, 1) ◦ R when
θ(0) = 1. Suppose (1) holds for any|Σ | < n. For |Σ | = n ≥ 3, eitherθ(0) = 0 or θ(0) = a for
somea 6= 0, a ∈ Σ. If θ(0) = 0, then by induction hypothesis the restriction ofθ on alphabetΣ \ {0}
can be written as(a0, a1) . . . (a2m−2, a2m−1) ◦ R. Soθ = (a0, a1) . . . (a2m−2, a2m−1) ◦ R in this case.
If θ(0) = a, thenθ(a) = 0. By induction hypothesis, the restriction ofθ on alphabetΣ \ {0, a} can be
written as(a0, a1) . . . (a2m−2, a2m−1) ◦ R. Soθ = (0, a) ◦ (a0, a1) . . . (a2m−2, a2m−1) ◦ R. Therefore,
(1) holds.

To show the uniqueness of the form in (1), we first notice that every transposition is the inverse of
itself. Assume there is another decompositionθ = (b0, b1)◦(b2, b3) . . . (b2n−2, b2n−1)◦R, wherebi 6= bj
for i 6= j andn ≥ 0. Thenθ(b0) = b1 and thus there is some(ap, ap+1) = (b0, b1). Sinceai 6= aj for
i 6= j, the order of composition in (1) can be arbitrarily changed.Hence we have

(b2, b3) . . . (b2n−2, b2n−1) ◦ R

=(b0, b1) ◦ θ

=(a0, a1) . . . (ap−2, ap−1) ◦ (ap+2, ap+3) . . . (a2m−2, a2m−1) ◦ R .

Continuing this procedure, it follows thatR = (a′0, a
′
1) . . . (a

′
2m′−2, a

′
2m′−1) ◦ R. By the construction of

{ai}, however, we knowa′i 6= a′j for i 6= j. Som′ = 0, since otherwiseR(a′0) = a′1 6= a′0. Therefore,
m = n and{(b0, b1), . . . , (b2n−2, b2n−1)} = {(a0, a1), . . . , (a2m−2, a2m−1)}. ⊓⊔

For any antimorphic involutionθ overΣ, we defineIdt(θ) = {a ∈ Σ : a = θ(a)} to be the set of all
letters that remain identical underθ, and defineTrn(θ) = {a ∈ Σ : a < θ(a)} to be the set consisting
of the “smaller” letter, of each pair of letters that are “transposed” into each other byθ. Thenθ is
fully characterized by| Idt(θ) | and|Trn(θ) | up to an isomorphism. The following proposition follows
directly from Proposition 2.1.

Proposition 2.2. Let θ be an antimorphic involution overΣ. Thenθ can be written as the composition
of |Trn(θ) | distinct transpositions with reversal, and

| Idt(θ) |+ 2|Trn(θ) | = |Σ | . (2)

Proof:
By the proof of Proposition 2.1,θ can be written asθ = (a0, a1)◦(a2, a3) . . . (a2m−2, a2m−1)◦R, where
ai 6= aj for i 6= j. ThenIdt(θ) = Σ \ {a0, a1, . . . , a2m−1} andTrn(θ) = {a0, a2, . . . , a2m−2}. So
m = |Trn(θ) | and (2) holds. ⊓⊔

For integersk, k ≥ 2, and antimorphic involutionθ, we call a wordw a pseudo-kth-power(with re-
spect toθ) if w can be written asw = u1u2 . . . uk, where eitherui = uj or ui = θ(uj) for 1 ≤ i, j ≤ k.
In particular, we call a pseudo-2nd-power apseudosquare, and a pseudo-3rd-power apseudocube. For
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example, over the alphabet{A, T, C, G} (here we use the conventional symbols instead of{0, 1, 2, 3}) with
respect to the Watson-Crick complementarity (δ: A 7→ T, T 7→ A, C 7→ G, G 7→ C), ACGCGT = ACGθ(ACG)
is a pseudosquare andACGTAC = ACθ(AC)AC is a pseudocube. By definition, a palindrome is a pseu-
dosquare with respect to reversal. A wordw is calledpseudo-kth-power-free(resp.,pseudosquare-free,
pseudocube-free), if w cannot be written asw = uvx wherev is a pseudo-kth-power (resp., pseu-
dosquare, pseudocube). The first proposition is rather straightforward.

Proposition 2.3. If a wordw is pseudo-kth-power-free, thenw iskth-power-free. If a wordw is abelian-
kth-power-free, thenw is pseudo-kth-power-free with respect to reversal.

In the remaining part of this section, we will discuss the following problem: Is there a pseudo-kth-
power-free infinite word overΣ with respect toθ? The discussion on pseudo-kth-power-free words is
related to ordinarykth-power-free words and abelian-kth-power-free words in some cases. By defini-
tion, everykth-power is a pseudo-kth-power (with respect to any antimorphic involution on thesame
alphabet). Every pseudo-kth-power is an abeliankth power with respect to reversal, but a pseudo-kth-
power may not be an abeliankth power in general. For example,ACGT is a pseudosquare with respect
to Watson-Crick complementarityδ and is not an abelian square, while012021 is an abelian square and
is not a pseudosquare with respect to any antimorphic involution of 3 letters. We, however, have the
following lemmas that reveal part of the relation between the avoidance of different types of repetitions.

Lemma 2.1. Let l be the minimal size of the alphabet over whichkth-power-free infinite words exist,
letΣ be an alphabet, and letθ be an antimorphic involution overΣ.

(1) If |Σ | < l, then no pseudo-kth-power-free infinite word overΣ exists with respect toθ; otherwise

(2) When|Trn(θ) | ≥ l, then there is a pseudo-kth-power-free infinite word overΣ with respect toθ.

Proof:
(1) Sincel is the minimal size of the alphabet over which there is akth-power-free infinite word and
|Σ | < l, there is an integerN such that any word of length greater thanN overΣ contains akth-power.
Notice that akth-power is a pseudo-kth-power (with respect to any antimorphic involution). So any word
of length greater thanN overΣ contains a pseudo-kth-power with respect toθ.

(2) We chooseΣ′ ⊆ Trn(θ) such that|Σ′ | = l. Then there is an infinite wordw overΣ′ such thatw is
kth-power-free. Now we claim thatw is also pseudo-kth-power-free overΣ with respect toθ. Suppose
w contains a pseudo-kth-power. Thenw = xu1u2 . . . uky, where eitherui = uj or ui = θ(uj) for
1 ≤ i, j ≤ k. For anya ∈ Σ′, by definition,a < θ(a) andθ(θ(a)) = a < θ(a). Soθ(a) 6∈ Σ′ and
thus θ(ui) is not a word overΣ′ for every1 ≤ i ≤ k. Henceui = uj for 1 ≤ i, j ≤ k and thus
u1u2 . . . uk is a normalkth-power, which contradicts the fact thatw is kth-power-free. Therefore,w is
pseudo-kth-power-free with respect toθ. ⊓⊔

Lemma 2.2. Let Σ be a(2l − 1)-letter alphabet and letθ be an antimorphic involution overΣ. If there
is an abelian-kth-power-free infinite word overl letters, then there is a pseudo-kth-power-free infinite
word overΣ with respect toθ.
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Proof:
By Eq. (2) in Proposition 2.2, it follows that|Trn(θ) | < l and thus| Idt(θ) | + |Trn(θ) | ≥ l. We
chooseΣ′ ⊆ Idt(θ)∪Trn(θ) such that|Σ′ | = l. Then there is an infinite wordw overΣ′ such thatw is
abelian-kth-power-free. Now we claim thatw is also pseudo-kth-power-free overΣ with respect toθ.

Supposew = xu1u2 . . . uky contains a pseudo-kth-power, where eitherui = u1 or ui = θ(u1) for
1 ≤ i ≤ k. Then eitheru1 is a word overIdt(θ) or u1 contains at least one letter fromTrn(θ). If
u1 ∈ Idt(θ)∗, thenθ(u1) = R(u1). Sou1u2 . . . uk is an abeliankth power, which contradicts the fact
thatw is abelian-kth-power-free. Otherwise,u1 contains at least one letter fromTrn(θ), saya. Then
sincea < θ(a) andθ(θ(a)) = a < θ(a), we haveθ(a) 6∈ Σ′ ⊆ Idt(θ) ∪ Trn(θ). Soui = u1 for
1 ≤ i ≤ k, and thusw contains akth-power, which again contradicts the fact thatw is abelian-kth-
power-free.

Therefore,w is pseudo-kth-power-free with respect toθ. ⊓⊔

Lemma 2.3. Let θ be an antimorphic involution overΣ and letθ′ be an antimorphic involution overΣ′

such that|Trn(θ′) | ≥ |Trn(θ) | and | Idt(θ′) | + |Trn(θ′) | ≥ | Idt(θ) | + |Trn(θ) |. If pseudo-kth-
power-free infinite words exist overΣ with respect toθ, then such words also exist overΣ′ with respect
to θ′.

Proof:
We chooseΣ1 ⊆ Trn(θ′) such that|Σ1 | = |Trn(θ) |. Since| Idt(θ′) | + |Trn(θ′) | − |Trn(θ) | ≥
| Idt(θ) |, we can chooseΣ2 ⊆ Idt(θ′) ∪ Trn(θ′) \ Σ1 such that|Σ2 | = | Idt(θ) |. DefineΣ′′ =
Σ1 ∪ {θ′(a) : a ∈ Σ1} ∪ Σ2, and define antimorphic involutionθ′′ by θ′′(a) = a, θ′′(b) = θ′(b)
for a ∈ Σ2, b ∈ Σ1 ∪ {θ′(a) : a ∈ Σ1}. Then |Σ′′ | = |Σ |, | Idt(θ′′) | = |Σ2 | = | Idt(θ) | and
|Trn(θ′′) | = |Σ1 | = |Trn(θ) |. Soθ andθ′′ are identical up to renaming of the letters. There is a word
w overΣ′′ such thatw is pseudo-kth-power-free with respect toθ′′. We claimw is also pseudo-kth-
power-free overΣ′ with respect toθ′.

Supposew = xu1u2 . . . uky contains a pseudo-kth-power, where eitherui = u1 or ui = θ′(u1) for
1 ≤ i ≤ k. Then eitheru1 is a word overΣ1 ∪ {θ′(a) : a ∈ Σ1} ∪ (Σ2 ∩ Idt(θ′)) or u1 contains at
least one letter fromΣ2 ∩ (Trn(θ′) \ Σ1). In the former case,θ′′(u1) = θ′(u1) and thusw contains
a pseudo-kth-power with respect toθ′′, which contradicts the fact thatw is pseudo-kth-power-free. In
the latter case, we assumeu1 containsa ∈ Σ2 ∩ (Trn(θ′) \ Σ1). One can verify thatθ′(a) 6∈ Σ′′, so
ui 6= θ′(u1) for every1 ≤ i ≤ k. Hencew contains akth-poweru1u2 . . . uk, which again contradicts
the fact thatw is pseudo-kth-power-free.

Therefore,w is pseudo-kth-power-free overΣ′ with respect toθ′. ⊓⊔

2.1. Pseudosquare-Free Infinite Words

From the general case of pseudo-kth-power-free infinite words, we now focus our attention on the partic-
ular case of pseudosquare-free infinite words. Since every binary word of length greater than3 contains
squares, there is no square-free infinite word over2 letters. By Keränen’s construction of abelian-square-
free infinite words, there exist pseudosquare-free infinitewords over4 letters with respect to reversal.
Furthermore, we have the following result.

Proposition 2.4. For a three-letter alphabet, a pseudosquare-free infinite word exists with respect to
reversal, and does not exist with respect to any other antimorphic involution.
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Proof:
There are two kinds of antimorphic involutions over3 letters: θ is either reversal or a transposition
composed with reversal.

Supposeθ is reversal. Then a word is pseudosquare-free if and only if it is square-free. Every
pseudosquare-free word is square-free. To see the other direction, assumew is square-free. Ifw contains
a pseudosquare of the formu1u2 such thatu1 = θ(u2), thenu1u2 = uR2 u2 contains a square of length
2 in the middle, which is impossible sincew is square-free. Sow is also pseudosquare-free. Since
there are square-free infinite words over a three-letter alphabet, for example the wordw = lω(0) where
l is a morphism given by Leech [16] asl(0) = 0121021201210, l(1) = 1202102012021, l(2) =
2010210120102, there are pseudosquare-free infinite words with respect toreversal.

Now supposeθ is a transposition composed with reversal. Without loss of generality, we assume
θ = (0, 1) ◦ R. We prove that no pseudosquare-free word of length greater than7 exists in this setting.
Supposew is a pseudosquare-free word of length greater than7. Since a pseudosquare-free word (with
respect toθ) cannot contain00, 11, 22, 01, 10, the letter2’s in this word either all appear at odd positions
or all appear at even positions. If we omit all symbols2 in w, the new wordw′ is over{0, 1} and is of
length greater than3. Thenw′ must contain a square and so doesw. So there is no pseudosquare-free
infinite word over3 letters with respect to a transposition composed with reversal. ⊓⊔

We wrote a computer program to find the longest pseudosquare-free word with respect toθ = (0, 1) ◦R,
if any. Starting from the empty wordǫ, if a word is pseudosquare-free, then we extend the word by adding
a new letter0 at the end; otherwise, we do back-tracking and try the next letter. In other words, we do
a depth-first-search in a labeled tree (called atrie), where each node presents a finite word. Application
of similar techniques have been used in the literature to show the non-existence of words of certain type
(for example, see [21]). In the case of3 letters andθ = (0, 1) ◦ R, the tree has91 nodes, including61
leaves, and all pseudosquare-free words are enumerated. The tree is of depth8 and one of the longest
pseudosquare-free words is0212021 of length7.

Now we discuss the existence of pseudosquare-free infinite words in the “DNA setting”, that is over
4 letters with respect to an antimorphic involutionθ such that|Trn(θ) | = 2.

Proposition 2.5. Let Σ = {1, 2, 3, 4} and θ be an antimorphic involution overΣ such thatθ(0) =
1, θ(2) = 3. Then an infinite wordw ∈ Σω is pseudosquare-free with respect toθ, if and only if
w ∈ ((0 + 1)(2+ 3))ω + ((2 + 3)(0+ 1))ω andw is square-free.

Proof:
“⇒”. Sincew is pseudosquare-free,w is square-free. Furthermore, any word in(0 + 1)2 + (2 + 3)2

is a pseudosquare, so the letters inw must appear alternatively from{0, 1} and{2, 3}. Hencew ∈
((0+ 1)(2 + 3))ω + ((2 + 3)(0+ 1))ω.

“⇐”. Supposew contains a pseudosquare. Sincew is square-free, it must be the case thatw =
uxθ(x)u. By the definition of antimorphic involution, the last letter of x and the first letter ofθ(x) are
either both from{0, 1} or both from{2, 3}, which contradicts the fact thatw ∈ ((0 + 1)(2 + 3))ω +
((2+ 3)(0 + 1))ω. ⊓⊔

Lemma 2.4. Let θ be an antimorphism over4 letters with|Trn(θ) | = 2. A pseudosquare-free infinite
word exists with respect toθ.
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Table 1. The existence of pseudosquare-free infinite words

|Σ | 1 2 3 4 5 6 7 8

|Trn(θ) | = 0 No No Yes Yes Yes Yes Yes Yes

|Trn(θ) | = 1 − No No Yes Yes Yes Yes Yes

|Trn(θ) | = 2 − − − Yes Yes Yes Yes Yes

|Trn(θ) | = 3 − − − − − Yes Yes Yes

|Trn(θ) | = 4 − − − − − − − Yes

Proof:
Without loss of generality, supposeθ = (0, 1) ◦ (2, 3). Let the morphismf bef(0) = 02, f(1) = 12,
f(2) = 03, f(3) = 13. We prove thatw = fω(0) satisfies the conditions in Proposition 2.5 and
thus is pseudosquare-free. First, by noticingf(a) ∈ (0 + 1)(2 + 3) for every lettera, we havew ∈
((0 + 1)(2 + 3))ω. Now we show thatf preserves square-freeness for some particular type of words.
Let w be the shortest square-free word such thatw does not contain01, 10, 23, 32 andf(w) contains
a square. Then there are four cases: (i)w = uu′, f(u) = f(u′); (ii) w = uau′, a ∈ Σ, f(a) = bc,
f(u)b = cf(u′); (iii) w = uu′, f(u) = av, f(u′) = va′; (iv) w = uau′, a ∈ Σ, f(a) = bc, f(u) = dcv,
f(u′) = vbd′. Case (i) is impossible sincef is a length-uniform morphism andw is square-free. Both
cases (ii) and (iii) are impossible due to the interlacing ofthe letters0, 1 with 1, 2 in f(w). For case (iv),
we have eitherw = 1x0x2 orw = 0x1x3 orw = 2x3x1 orw = 3x2x0, none of which is possible due
to the interlacing of the letters inw. So, for a square-free wordw that does not contain01, 10, 23, 32,
the wordf(w) is also square-free. Thereforew = fω(0) is pseudosquare-free. ⊓⊔

Theorem 2.1. Let θ be an antimorphic involution over the alphabetΣ. The existence of pseudosquare-
free infinite words is as specified in Table 1.

Proof:
(i) Since3 is the minimal size of alphabet over which there is a square-free infinite word, by Lemma 2.1,
there is no pseudosquare-free infinite word overk letters fork ≤ 2 and there is a pseudosquare-free
infinite word with respect toθ with |Trn(θ) | ≥ 3.

(ii) Since there exists an abelian-square-free infinite word over4 letters, by Lemma 2.2, there is a
pseudosquare-free infinite word over7 or more letters.

(iii) By Proposition 2.4, over3 letters, there is a pseudosquare-free infinite word with respect to
reversal, where| Idt(R) | = 3, |Trn(R) | = 0, and there is no pseudosquare-free infinite word with
respect to other antimorphic involution. So by Lemma 2.3, there is a pseudosquare-free infinite word
with respect toθ such that| Idt(θ) |+ |Trn(θ) | ≥ 3.

(iv) The only case remaining is over4 letters with|Trn(θ) | = 2, and by Lemma 2.4 pseudosquare-
free infinite words exist.

The results are as summarized in Table 1 and thus the theorem is proved. ⊓⊔
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2.2. Other Pseudopower-Free Infinite Words

We now focus our attention on other pseudopower-free infinite words. First, we consider pseudocube-
free infinite words. By Dekking’s construction of abelian-cube-free infinite words, there exist pseudocube-
free infinite words over3 letters with respect to reversal. The case over the unary alphabet is trivial. For
the binary alphabet, we have the following result.

Proposition 2.6. No pseudocube-free infinite word exists over a binary alphabet with respect to any
antimorphic involution.

Proof:
There are two kinds of antimorphic involutions over a binaryalphabet: we have eitherθ = R or θ =
(0, 1) ◦ R.

Supposeθ = R. We use the computer to find the longest pseudocube-free word, if any, as we did
with pseudosquare-free words. Starting from the empty wordǫ, if a word is pseudocube-free, then we
extend the word by appending0; otherwise, we do back-tracking and try the next letter. Theresulting
depth-first-search tree is finite. There are in total171 nodes, including86 leaves. The tree is of depth
10 and one of the longest pseudocube-free words is001101100. So there is no pseudocube-free infinite
word on this setting.

Supposeθ = (0, 1) ◦ R. Then any word in this setting is a pseudopower and thus one ofthe longest
pseudocube-free words is00. ⊓⊔

Proposition 2.7. There is a pseudocube-free infinite word over3 letters with respect to each antimorphic
involution.

Proof:
There are two kinds of antimorphic involutions over3 letters: θ is either reversal or a transposition
composed with reversal.

Supposeθ is reversal. The following morphismd3 given by Dekking [7] presents an abelian-cube-
free infinite worddω3 (0) over3 letters, which is therefore also pseudocube-free:d3(0) = 0012, d3(1) =
112, d3(2) = 022. So there is a pseudocube-free infinite worddω3 (0) over 3 letters with respect to
reversal.

Now supposeθ is a transposition composed with reversal. Without loss of generality, we assume
θ = (0, 1) ◦ R. Consider the following morphism:t(0) = 021, t(1) = 120, t(2) = 2. One can verify
that the wordz = tω(0) = 02121202120202121202021 . . . is the Thue-Morse sequence [23] with
the letter2 inserted between every two consecutive letters. Now we prove thatz is pseudocube-free.
Supposez = xw1w2w3y contains a pseudocubew1w2w3 with |w1 | = |w2 | = |w3 |. Either the last
letter ofw1 or the first letter ofw2 is 2, but not both. Sinceθ(2) = 2, we havew1 6= θ(w2). Sow1 = w2.
By the same reasoning,w2 = w3. Then the length ofw1 = w2 = w3 must be even. Otherwise, either
the first letter ofw1 or the first letter ofw2 is 2, but not both, and thus we havew1 6= w2. Now since
|w1 | = |w2 | = |w3 | is even, we can omit the letter2 from each word and get new wordsw′

1, w
′
2, w

′
3

such thatw′
1 = w′

2 = w′
3 andw′

1w
′
2w

′
3 is a factor of the Thue-Morse sequence, which contradicts the

fact that the Thue-Morse sequence is cube-free. Therefore,z = tω(0) is pseudocube-free with respect to
(0, 1) ◦ R over3 letters. ⊓⊔
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Table 2. The existence of pseudocube-free infinite words

|Σ | 1 2 3 4 5 6 7 8

|Trn(θ) | = 0 No No Yes Yes Yes Yes Yes Yes

|Trn(θ) | = 1 − No Yes Yes Yes Yes Yes Yes

|Trn(θ) | = 2 − − − Yes Yes Yes Yes Yes

|Trn(θ) | = 3 − − − − − Yes Yes Yes

|Trn(θ) | = 4 − − − − − − − Yes

Theorem 2.2. Let θ be an antimorphic involution over the alphabetΣ. Then pseudocube-free infinite
words overΣ do not exist for|Σ | ≤ 2 and exist for|Σ | ≥ 3, with respect toθ.

Proof:
(i) Since2 is the minimal size of alphabet over which there is a cube-free infinite word, by Lemma 2.1,
there is no pseudocube-free infinite word overk letters fork ≤ 1 and there is a pseudocube-free infinite
word with respect to anyθ such that|Trn(θ) | ≥ 2.

(ii) There is an abelian-cube-free infinite worddω3 (0) over 3 letters. By Lemma 2.2, there is a
pseudocube-free infinite word over5 or more letters.

(iii) By Proposition 2.6, there is no pseudocube-free infinite word over a binary alphabet. By Propo-
sition 2.7, there is a pseudocube-free infinite word over3 letters. In particular, there is a pseudocube-
free infinite word over3 letters with respect to reversal, where| Idt(R) | = 3, |Trn(R) | = 0. So by
Lemma 2.3, there is a pseudocube-free infinite word with respect toθ such that| Idt(θ) |+|Trn(θ) | ≥ 3.

The results are summarized in Table 2. ⊓⊔

We now discuss pseudo-kth-power-free infinite words fork ≥ 4. Every word over a single letter is
a power. So the unary case is trivial and no X-free infinite word exists for X either akth-power, or an
abeliankth power, or a pseudo-kth-power. One can verify that the worddω4 (0) is pseudo-kth-power-free
for k ≥ 4 with respect to reversal, where the morphismd4 is given by Dekking [7] asd4(0) = 011,
d4(1) = 0001. By Lemma 2.3, the following theorem holds.

Theorem 2.3. Let θ be an antimorphic involution over the alphabetΣ and letk ≥ 4 be an integer. Then
pseudo-kth-power-free infinite words exist either when|Σ | > 2 or when|Σ | = 2 and|Trn(θ) | = 0.

Proof:
(1) There are no pseudopower-free infinite words over the unary alphabet. Since there is akth-power-
free infinite word over the binary alphabet, by Lemma 2.1, there is a pseudo-kth-power-free infinite word
with respect to anyθ such that|Trn(θ) | ≥ 2.

(2) There exists an pseudo-4th-power-free infinite word over the binary alphabet, such as the fol-
lowing construction by Dekking [7]w = dω4 (0) whered4(0) = 011, d4(1) = 0001. So there exists an
abelian-kth-power-free infinite wordw over the binary alphabet for any integerk ≥ 4. By Lemma 2.2,
there is a pseudo-kth-power-free infinite word over3 or more letters.

(3) That infinite wordw = dω4 (0) is also a pseudo-kth-power-free infinite word fork ≥ 4 over
binary alphabet with respect to reversal, where| Idt(R) | = 2, |Trn(R) | = 0. So by Lemma 2.3, there
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Table 3. The existence of pseudo-kth-power-free infinite words fork ≥ 4

|Σ | 1 2 3 4 5 6 7 8

|Trn(θ) | = 0 No Yes Yes Yes Yes Yes Yes Yes

|Trn(θ) | = 1 − No Yes Yes Yes Yes Yes Yes

|Trn(θ) | = 2 − − − Yes Yes Yes Yes Yes

|Trn(θ) | = 3 − − − − − Yes Yes Yes

|Trn(θ) | = 4 − − − − − − − Yes

is a pseudo-kth-power-free infinite word fork ≥ 4 with respect toθ such that| Idt(θ) |+ |Trn(θ) | ≥ 2.
If θ = (0, 1) ◦ R over binary alphabet, then any word is a pseudopower.

The results are summarized in Table 3. ⊓⊔

3. Testing Pseudopower-Freeness of Words

Let Σ be an alphabet and letθ be an antimorphic involution overΣ. In this section, we will discuss the
following problem: Given a finite wordw overΣ and an integerk ≥ 2, doesw contain a pseudo-kth-
power with respect toθ as a factor? Section 3.1 discusses the general algorithm foran arbitraryk, and
Section 3.2 provides more efficient algorithms for the particular cases of the existence of pseudosquares
and pseudocubes. We assume|w | = N in the following discussion.

3.1. Testing Pseudo-kth-Power-Freeness for Arbitrary k

The naı̈ve algorithm to decide whetherw contains any pseudo-kth-power as a factor runs inO(N3) time.
The idea is that we check each possible candidate factoru of w to see whetheru is a pseudo-kth-power.
There areO(N2) factors, and checking whether a word is a pseudo-kth-power can be done withO(N)
comparisons of letters.

Here we consider a more general problem and present anO(N2 logN)-time algorithm. Letd :
Σ∗ × Σ∗ → R be a function. Sinced will serve as a tool to compare words and we only care about
comparing equal-length words, we assume thatd(u, v) = ∞ for all wordsu andv with unequal lengths.
The FIND-d-POWERSproblem is as follows:

Input: A finite wordw and two integersk ≥ 2 andg ≥ 0.

Output: All pairs(s, t) such thatw[s . . . t] = u1v1u2v2 . . . uk−1vk−1uk, |ui | = |ui+1 |, d(ui, ui+1) =
0, and| vi | = g, for all 1 ≤ i < k.

In Fig. 1, an output pair(s, t) is shown (g = 2). Our original problem of finding all pseudo-kth-power
factors is equivalent to FIND-d-POWERS if we setd(u, v) = min{H(u, v),H(u, θ(v))}, whereH is the
Hamming distance betweenu andv, andg = 0. We show that a simple dynamic programming approach
can be used to solve FIND-d-POWERS in O(N2t(N) lgN) time for a large class of functions, called
t-breakable.
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u1 v1 u2 v2 u3

s t

Figure 1. A third-power with gaps of length two (d(u1, u2) = d(u2, u3) = 0).

We first explain our algorithm ford(u, v) = H(u, v); then, we show how it can be expanded to more
general distance functions.

Lemma 3.1. Let g ≥ 0 be an integer, andw ∈ Σ∗ be a word. Then there is an algorithm that constructs
anN ×N matrixD in timeO(N2 lgN) such that

Di,j =

{

∞, if i+ 2j + g − 1 > N ;

d(w[i . . . i+ j − 1], w[i + j + g . . . i+ 2j + g − 1]), otherwise.

Note that an equivalent description ofD is thatDi,j is the distance between two subwords ofw, both
of lengthj, such that there is a gap of exactlyg letters in between them and the first subword starts at
positioni.

Proof:
In order to computeD, we first construct a number of auxiliaryN ×N matricesD(0),D(1), . . . ,D(lgN)

such that

D
(p)
i,j =

{

∞, if i+ 2p − 1 > N or j + 2p − 1 > N ;

d(w[i . . . i+ 2p − 1], w[j . . . j + 2p − 1]), otherwise.

SinceD(0)
i,j = d(w[i], w[j]), D(0) can be computed in timeO(N2). Moreover,D(p)

i,j can be computed in

constant time using values inD(p−1):

D
(p)
i,j = D

(p−1)
i,j +D

(p−1)
i+2p−1,j+2p−1 . (3)

Therefore, constructing all the auxiliary matrices can be done in timeO(N2 lgN). Since each entry of
D can be computed as the sum of at most⌈lgN⌉ entries from the auxilary matrices,D can be computed
in timeO(N2 lgN). ⊓⊔

We observe that a pair(s, t) is in the output of FIND-d-POWERS if and only if the column number

x =
t− s+ 1− (k − 1)g

k

in D containsk − 1 zero’s at rowss, s+ x+ g, s + 2x+ 2g, . . . , s+ (k − 2)x+ (k − 2)g. So, having
D computed, it is possible to compute the output of FIND-d-POWERSwith only one scan of all entries
of D. Note that this does not depend onk; we do anO(N2 lgN) time preprocessing, and, then, we can
solve FIND-d-POWERSfor any given value ofk in timeO(N2).

Now, in an exactly similar manner, we can solve FIND-d-POWERS, whered is t-breakable for a non-
decreasing functiont : N → N: we calld t-breakableif there are two algorithms BREAK and COMBINE

such that for all wordsu1, u2, v ∈ Σ∗,
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1. BREAK(u1, u2, v) is an integer in[0, | v |].

2. d(u1u2, v1v2) = COMBINE

(

u1, u2, v1, v2,

[

d(u1, v1), d(u1, v2),

d(u2, v2), d(u2, v2)

])

, wherev = v1v2 and

| v1 | = BREAK(u1, u2, v).

3. BREAK and COMBINE run in timeO(t(|u1 |+ |u2 |+ | v |))1.

The only modification is that in (3), we use BREAK and COMBINE to computeD(p)
i,j in time O(t(N))

from appropriate entries ofD(p−1).

Lemma 3.2. For everyt-breakable functiond : Σ∗ × Σ∗ → R, there is anO(N2t(N) lgN)-time
algorithm for FIND-d-POWERS. �

Example 3.1. The following functions are1-breakable, where1 is a function mapping every number to
1:

1. the Hamming distanceH(u, v);

2. d(u, v) = H(u, θ(v));

3. d(u, v) =

{

0 if u = v,
1

| lcp(u,v) |+1 otherwise,
wherelcp(u, v) is the longest common prefix ofu andv;

4. d(u, v) =
∑|u |

i=1 s(u[i], v[i]) + s(u[i], v[i − 1])/10 + s(u[i], v[i + 1])/10, wheres : Σ2 → R is
any function assigning penalties to mismatches depending on the letters that mismatch. Roughly
speaking, in this case, the distance functiond is a “weighted-Hamming distance” function which
also takes into account neighbouring positions.

Hamming distanceH is a1-breakable function, because BREAK(u1, u2, v) = |u1 | and

COMBINE

(

u1, u2, v1, v2,

[

H(u1, v1) H(u1, v2)

H(u2, v2) H(u2, v2)

])

= H(u1, v1) +H(u2, v2)

satisfy the above-mentioned three conditions. The discussion of other examples is similar and omitted
here.

We call a functiond, pseudo-t-breakable if there is a constant number oft-breakable functions
d1, d2, . . . , dm and anO(t(|u |+| v |))-time algorithmA that computesd(u, v) if u, v, d1(u, v), d2(u, v),
. . ., dm(u, v) are given as the input. Clearly, if we compute the matrixD of Lemma 3.1 for functions
d1, d2, . . . , dm, we can combine these matrices usingA and computeD for d in timeO(N2t(N)). So,
we have the following lemma.

Lemma 3.3. For every pseudo-t-breakable functiond : Σ∗×Σ∗ → R, there is anO(N2t(N) lgN)-time
algorithm for FIND-d-POWERS. �

1Here we are assuming that BREAK and COMBINE have oracle access to the input words, i.e., they can read theith letter of an
input word and the length of an input word in constant time.



14 E. Chiniforooshan et al. / Pseudopower Avoidance

Example 3.2. The following are pseudo-1-breakable:

1. anyc-breakable function;

2. d(u, v) = min{H(u, v),H(u, θ(v))};

3. d(u, v) = 0, if min{H(u, v),H(u, θ(v))} ≤ |u |/10, and1 otherwise.

In the particular cased(u, v) = min{H(u, v),H(u, θ(v))}, which is a pseudo-1-breakable, we have
the following result.

Corollary 3.1. There is anO(N2 lgN)-time algorithm to enumerate all pseudo-kth-power factors inw.

3.2. Testing Pseudosquare- and Pseudocube-Freeness

In this subsection, we show how to efficiently decide whetheror not a wordw is pseudosquare-free
(resp., pseudocube-free).

A word w is pseudosquare-free with respect toθ if and only if w is square-free (which can be tested
in O(N) time [4, 17]) andw does not have factors of the formaθ(a) for a ∈ Σ. Thus, we have the
following theorem.

Theorem 3.1. There is a linear-time algorithm to decide whether a wordw is pseudosquare-free.

Proof:
A word w contains a pseudosquare if and only ifw contains a square or a word of the formwθ(w).

To check whetherw contains a square can be done in linear time. There are a few papers in the
literature on testing square-freeness in linear time [4, 17].

To check whetherw contains a word of the formuθ(u), it is enough to check whetherw contains a
wordaθ(a) for a lettera. To see this, ifw containsuθ(u), then leta be the right-most letter ofu andw
containsaθ(a); for the other direction, the wordaθ(a) itself is a pseudosquare.

Algorithm 1: Decide whetherw is pseudosquare-free in linear time

Input : a wordw = w[1 .. N ].
Output : “YES” if w is pseudosquare-free; “NO” otherwise.

1 if w contains a squarethen return “NO” ;
2 for i from 1 to N − 1 do
3 if θ(w[i]) = w[i+ 1] then return “NO” ;

4 return “YES” ;

The algorithm is illustrated in Algorithm 1. It is obvious that the algorithm is linear. ⊓⊔

Before we show a quadratic-time algorithm for testing whether a word is pseudocube-free, we first
introduce some concepts. Letw = w[1 .. N ] be a finite word overΣ and letθ be an antimorphic
involution over the same alphabetΣ. For a fixed integerk, aright minimal period arrayrmpkw[1 .. N ] of
w is a vector and is defined by

rmpkw[i] = min
{

{n : w[i .. i + kn− 1] = xk for somex 6= ǫ} ∪ {+∞}
}

,
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and similarly aleft minimal period arraylmpkw[1 .. N ] of w is defined by

lmpkw[i] = min
{

{n : w[i− kn+ 1 .. i] = xk for somex 6= ǫ} ∪ {+∞}
}

.

A centralized maximal pseudopalindrome arraycmpw[0 .. N ] of w (with respect toθ) is defined by

cmpw[i] = max {{m : θ(w[i−m.. i− 1]) = w[i .. i +m− 1]} ∪ {0}} .

For example, whenw = 01001010 and θ = R, we havermp2w = [3,+∞, 1, 2, 2,+∞,+∞,+∞],
lmp2w = [+∞,+∞,+∞, 1,+∞, 3, 2,+∞], andcmpw = [0, 0, 0, 3, 0, 0, 0, 0, 0].

Lemma 3.4. [15] For any fixed integerk, the right minimal period arrayrmp2w of wordw can be com-
puted inO(N) time.

There is an algorithm to computermp2w, the shortest square starting at each position, in linear
time [15] by using suffix trees. Sincelmp2w can be obtained by first computingV = rmp2R(w) and

then reversingV , lmp2w can also be computed inO(N) time.

Lemma 3.5. The arraycmpw of wordw can be computed inO(N) time.

Lemma 3.5 in the caseθ = R has been proved in the book [10, pp. 197–198], and can be generalized
to arbitrary antimorphic involutionsθ.

Now we are ready to give a quadratic-time algorithm to test whether a wordw is pseudocube-free.
By definition, a pseudocube is in one of the formsxxx, xxθ(x), θ(x)xx, andxθ(x)x. We check each of
the four cases. A wordw has any factor of the formxxx if and only if any maximal repetition [14]
in w has exponent≥ 3, which can be tested in linear time by finding all maximal repetitions. To
check whetherw contains any word of the formxxθ(x), we check whether there is a pair of factors
w[i− 2n+ 1 .. i] = yy andw[i −m+ 1 .. i+m] = zθ(z) that overlap in the sense thatn ≤ m. By the
definitions oflmp2w andcmpw, we only need to check for each positioni whetherlmp2w[i] ≤ cmpw[i].
This can be done inO(N) time when alllmp2w, cmpw are already computed. The case forθ(x)xx is
similar. To check whetherw contains any word of the formxθ(x)x, we check whether there is a pair of
factorsw[i − n + 1 .. i + n] = yθ(y) andw[j −m+ 1 .. j +m] = zθ(z) that overlap in the sense that
| i− j | ≤ n and | i− j | ≤ m. By the definition ofcmpw, we check for each pair of indicesi, j with
i < j whetherj − i ≤ cmpw[i] andj − i ≤ cmpw[j]. This can be done inO(N2) time whencmpw is
already known. The completed algorithm is given in Algorithm 2. Thus, the following theorem holds.

Theorem 3.2. There is a quadratic-time algorithm to decide whether a wordw is pseudocube-free.

Proof:
Algorithm 2 checks the pseudocube-freeness ofw in quadratic time. By Lemma 3.4 and Lemma 3.5, the
computation ofrmp2w, lmp2w, cmpw in line 1 can be done inO(N) times. Line 2 can be done inO(N)
time. Line 3–8 can be done inO(N2) time. So the algorithm runs inO(N2) time.

Now we prove the correctness of the algorithm. First, we prove that if the algorithm returns “NO”,
thenw contains a pseudocube. If the algorithm stops at line 2, thenw contains a cube of the form
xxx, which is also a pseudocube. Suppose the algorithm stops at line 4. Letn = rmpw[i]

2 andm =
cmpw[i − 1]. Thenn ≤ m and the wordw[i − n .. i + 2n − 1] is of the formθ(x)xx, which is a
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Algorithm 2: Decide whetherw is pseudocube-free inO(N2) time

Input : a wordw = w[1 .. N ].
Output : “YES” if w is pseudocube-free; “NO” otherwise.

1 computermp2w, lmp2w, cmpw;
2 if w contains a cubethen return “NO” ; // The case xxx
3 for i from 1 to N do
4 if rmp2w[i] ≤ cmpw[i− 1] then return “NO” ; // The case θ(x)xx

5 if lmp2w[i] ≤ cmpw[i] then return “NO” ; // The case xxθ(x)
6 for d from 1 to cmpw[i] do
7 if d ≤ cmpw[i+ d] then return “NO” ; // The case xθ(x)x

8 return “YES” ;

pseudocube. Suppose the algorithm stops at line 5. Letn = lmp2w[i] andm = cmpw[i]. Thenn ≤ m
and the wordw[i− 2n+1 .. i+n] is of the formxxθ(x), which is a pseudocube. Suppose the algorithm
stops at line 7. Then the wordw[i − d+ 1 .. i + 2d] is of the formxθ(x)x, which is a pseudocube.

Now, we prove that ifw contains a pseudocube, then the algorithm returns “NO”. Ifw contains a
pseudocube of the formxxx, then the algorithm stops at line 2. Supposew[s .. s + 3p − 1] = xxθ(x).
Thenq = lmp2w[s+2p−1] ≤ |x | andcmpw[s+2p−1] ≥ |x | ≥ q. So the algorithm stops at line 5 for
i = s+2p−1, (although the detected pseudocubew[s+2p−2q .. s+2p+ q−1] may be different from
w[s .. s+3p−1].) The casew[s .. s+3p−1] = θ(x)xx is similar. Supposew[s .. s+3p−1] = xθ(x)x.
Then cmpw[s + p − 1] ≥ |x | and cmpw[s + 2p − 1] ≥ |x |. So the algorithm stops at line 7 for
i = s+ p− 1 andd = p. ⊓⊔

4. Conclusion

In this paper, we discussed the existence of infinite words that do not contain pseudo-kth-powers, in all
possible settings for the alphabetΣ and the antimorphic involutionθ. No pseudosquare-free infinite word
exists for|Σ | ≤ 2, and pseudosquare-free infinite words exist for|Σ | ≥ 4. For |Σ | = 3, the existence
of pseudosquare-free infinite words depends onθ. No pseudocube-free infinite word exists for|Σ | ≤ 2
and pseudocube-free infinite words exist for|Σ | ≥ 3. For any integerk ≥ 4, pseudo-kth-power-free
infinite words exist except when either|Σ | = 1, or |Σ | = 2 and|Trn(θ) | = 1. In the particular DNA
setting,| δ | = 4 and|Trn(δ) | = 2, pseudo-kth-power-free infinite words exist for any exponentk.

We also proposed algorithms for testing whether or not a wordw of lengthN is pseudo-kth-power-
free. For an arbitrary integerk ≥ 2, we provide anO(N2 lgN)-time algorithm to find all pseudo-
kth-powers inw, whereN = |w |. In addition, we provide anO(N)-time algorithm and anO(N2)-
time algorithm for testing whetherw is pseudosquare-free and pseudocube-free, respectively.It is still
unknown whether there is faster algorithm for testing whetherw is pseudo-kth-power-free.

Lemma 3.4 can be generalized to arbitrary (fractional) powers with exponentsk > 1 [24] such that
the right (resp., left) minimal period arrayrmpkw (resp.,lmpkw) can be computed in linear time. Thus, by
the same techniques in testing pseudocube-freeness, it canbe tested in linear time whether or not a word
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w contains any pseudo-kth-power of the particular formxx . . . xθ(x) andθ(x)xx . . . x. In addition, it can
be tested in quadratic time whether or notw contains any pseudo-kth-power of the formxθ(x)xθ(x) . . ..
It is also possible that some other particular cases of pseudopowers could be detected faster.
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