
Transducer Descriptions of DNA Code
Properties and Undecidability of Antimorphic

Problems

Lila Kari1, Stavros Konstantinidis2, and Steffen Kopecki1,2

1 The University of Western Ontario, London, Ontario, Canada
lila@csd.uwo.ca, steffen@csd.uwo.ca

2 Saint Mary’s University, Halifax, Nova Scotia, Canada
s.konstantinidis@smu.ca

Abstract. This work concerns formal descriptions of DNA code prop-
erties and related (un)decidability questions. This line of research allows
us to give a property as input to an algorithm, in addition to any regu-
lar language, which can then answer questions about the language and
the property. Here we define DNA code properties via transducers and
show that this method is strictly more expressive than that of regular
trajectories, without sacrificing the efficiency of deciding the satisfaction
question. We also show that the maximality question can be undecidable.
Our undecidability results hold not only for the fixed DNA involution
but also for any fixed antimorphic permutation. Moreover, we also show
the undecidability of the antimorphic version of the Post Corresponding
Problem, for any fixed antimorphic permutation.

Keywords: codes, DNA properties, trajectories, transducers, undecidability

1 Introduction

The study of formal methods for describing independent language properties
(widely known as code properties) provides tools that allow one to give a prop-
erty as input to an algorithm and answer questions about this property. Exam-
ples of such properties include classic ones [4, 17, 27, 28] like prefix codes, bifix
codes, and various error-detecting languages, as well as DNA code properties
[2, 10, 11, 13–15, 18, 20–22, 25] like θ-nonoverlapping and θ-compliant languages.
A formal description method should be expressive enough to allow one to de-
scribe many desirable properties. Examples of formal methods for describing
classic code properties are the implicational conditions method of [16], the tra-
jectories method of [5], and the transducer methods of [8]. The latter two have
been implemented to some extent in the Python package FAdo [9]. A formal
method for describing DNA code properties is the method of trajectory DNA
code properties [6, 22].

Typical questions about properties are the following:

Satisfaction problem: given the description of a property and the description of
a regular language, decide whether the language satisfies the property.

Maximality problem: given the description of a property and the description of
a regular language that satisfies the property, decide whether the language
is maximal with respect to the given property.

Construction problem: given the description of a property and a positive integer
n, find a language of n words (if possible) satisfying the given property.

In the above problems regular languages are described via (non-deterministic)
finite automata (NFA). Depending on the context, properties are described via
trajectory regular expressions or transducer expressions. The satisfaction prob-
lem is the most basic one and can be answered usually in efficient polynomial
time. The maximality problem as stated above can be decidable, in which case
it is normally PSPACE-hard. For existing transducer and trajectory properties,
both problems can be answered using the online (formal) language server LaSer
[24], which relies on FAdo. For the construction problem a simple statistical al-
gorithm is included in FAdo, but we think that this problem is far from being
well-understood.

The general objective of this research is to develop methods for formally
describing DNA code properties that would allow one to express various combi-
nations of such properties and be able to get answers to questions about these
properties in an actual implementation. The contributions of this work are as
follows:

1. The definition of a new simple formal method for describing many DNA code
properties, called θ-transducer properties, some of which cannot be described
by the existing transducer and trajectory methods for classic code properties;
see Sect. 3.

2. The demonstration that the new method of transducer DNA code properties
is properly more expressive than the method of trajectories; see Sect. 4.

3. The demonstration that the maximality problem can be decidable for some
transducer DNA code properties but undecidable for some others; see Sect. 5.

4. The demonstration that some classic undecidable problems (like PCP) re-
main undecidable when rephrased in terms of any fixed (anti-)morphic per-
mutation θ of the alphabet, with the case θ = id corresponding to these
classic problems, where id is the (morphic) identity ; see Sect. 6.

Even though, our main motivation is the description of DNA-related proper-
ties, we follow the more general approach which considers properties described by
transducers involving a fixed (anti-)morphic permutation θ; again, the classical
transducer properties are obtained by letting θ = id.

This is a condensed conference version which does not contain full proofs of
our results. The full version of this paper, containing all proofs, can be accessed
on arXiv [19]. It also contains additional examples of DNA properties which can
be described by θ-transducer properties: these properties naturally extend the
hierarchy of DNA properties that is used in [13,18,20].

2 Basic Notions and Background Information

In this section we lay down our notation for formal languages, (anti-)morphic
permutations, transducers, and language properties. We assume the reader to
be familiar with the fundamental concepts of language theory; see e. g., [12,26].
Then, in Sect. 2.2 we recall the method of transducers for describing classic code
properties, and in Sect. 2.3 we recall the method of trajectories for describing
DNA-related properties.

2.1 Formal Languages and (Anti-)morphic Permutations

For an alphabet A and a language L over A we have the notation: A+ = A∗\{ε},
where ε is the empty word; and Lc = A∗ \L. For an integer k ≥ 2 we define the
generic alphabet Ak = {0, 1, . . . , k − 1} of size k. Throughout this paper we only
consider alphabets with at least two letters because our investigations would
become trivial over unary alphabets.

Let w ∈ A∗ be a word. Unless confusion arises, by w we also denote the single-
ton language {w}, e. g., L ∪w means L ∪ {w}. If w = xyz for some x, y, z ∈ A∗,
then x, y, and z are called prefix, infix (or factor), and suffix of w, respec-
tively. For a language L ⊆ A∗, the set Pref(L) = {x ∈ A∗ | ∃y ∈ A∗ : xy ∈ L}
denotes the language containing all prefixes of words in L. If w = a1a2 · · · an
for letters a1, a2, . . . , an ∈ A, then |w| = n is the length of w; for b ∈ A,
|w|b = |{i | ai = b, 1 ≤ i ≤ n}| is the tally of b occurring in w; the i-th letter
of w is w[i] = ai for 1 ≤ i ≤ n; the infix of w from the i-th letter to the j-
th letter is w[i;j] = aiai+1 · · · aj for 1 ≤ i ≤ j ≤ n; and the reverse of w is
wR = anan−1 · · · a1.

Consider a generic alphabet Ak with k ≥ 2. The identity function on Ak
is denoted by idk; when the alphabet is clear from the context, the index k
is omitted. For a permutation (or bijection) θ : Ak → Ak, and for i ∈ Z, the
permutation θi is the i-fold composition of θ; i. e., θ0 = idk, θi = θ ◦ θi−1, and
θ−i = (θi)−1 = (θ−1)i for i > 0. An involution θ is a permutation such that
θ = θ−1.

A permutation θ over Ak can naturally be extended to operate on words in A∗k
as (a) morphic permutation θ(uv) = θ(u)θ(v), or (b) antimorphic permutation
θ(uv) = θ(v)θ(u), for u, v ∈ A∗k. As before, the inverse θ−1 of the (anti-)morphic
permutation θ over A∗k is the (anti-)morphic extension of the permutation θ−1

over A∗k. The identity idk always denotes the morphic extension of idk while
the antimorphic extension of idk, called the mirror image or reverse, is usually
denoted by the exponent R.

Example 1. The DNA involution, denoted as δ, is an antimorphic involution on
∆ = {A, C, G, T} such that δ(A) = T and δ(C) = G, which implies δ(T) = A and
δ(G) = C.

2.2 Describing Classic Code Properties by Transducers

A (language) property P is any set of languages. A language L satisfies P, or has
P, if L ∈ P. Here by a property P we mean an (n-)independence in the sense
of [17]: there exists n ∈ N ∪ {ℵ0} such that a language L satisfies P if and only
if all nonempty subsets L′ ⊆ L of cardinality less than n satisfy P. A language
L satisfying P is maximal (with respect to P) if for every word w ∈ Lc we have
L ∪ w does not satisfy P—note that, for any independence P, every language
in P is a subset of a maximal language in P [17]. As we shall see further below
the focus of this work is on 3-independence properties that can also be viewed
as independent with respect to a binary relation in the sense of [28].

A transducer t is a non-deterministic finite state automaton with output; see
e. g., [3,30]. Here we only consider transducers whose input and output alphabets
are equal: a transducer is a quintuple t = (Q,A,E, I, F), where A is the input
and output alphabet, Q is a finite set of states, E is a set of directed edges
between states from Q which are labeled by word pairs (u, v) ∈ A∗ × A∗, I is
a set of initial states, and F a set of final states. If t realizes (x, y) then we
write y ∈ t(x). We say that the set t(x) contains all possible outputs of t on
input x. The transducer t−1 is the inverse of t; that is, x ∈ t−1(y) if and only
if y ∈ t(x) for all words x, y. Let θ be an (anti-)morphic permutation and t be
a transducer which are both defined over the same alphabet A. The transducer
t is called θ-input-preserving if for all w ∈ A+ we have θ(w) ∈ t(w); t is called
θ-input-altering if for all w ∈ A+ we have θ(w) /∈ t(w). We use the simpler
terms input-preserving and input-altering t, respectively, when θ = id. Note
that θ(w) ∈ t(w) is equivalent to w ∈ θ−1(t(w)) as well as t−1(θ(w)) 3 w.

Definition 1 ([8]). An input-altering transducer t describes the property that
consists of all languages L such that

t(L) ∩ L = ∅. (1)

An input-preserving transducer t describes the property that consists of all lan-
guages L such that

w /∈ t(L \ w), for all w ∈ L. (2)

A property is called an input-altering (resp. input-preserving) transducer prop-
erty, if it is described by an input-altering (resp. input-preserving) transducer.

Note that every input-altering transducer property is also an input-preserving
transducer property. Input-altering transducers can be used to describe proper-
ties like prefix codes, bifix codes, and hypercodes. Input-preserving transducers
are intended for error-detecting properties, where in fact the transducer plays
the role of the communication channel.

Many input-altering transducer properties can be described in a simpler man-
ner by trajectory regular expressions [5, 8], that is, regular expressions over {0,
1}. For example, the expression 0∗1∗ describes prefix codes and the expression
1∗0∗1∗ describes infix codes. On the other hand, there are natural transducer
properties that cannot be described by trajectory expressions [8].

2.3 Describing DNA-related Properties by Trajectories

In [2, 10, 11, 13–15, 18, 20–22, 25] the authors consider numerous properties of
languages inspired by reliability issues in DNA computing. We state three of
these properties below. Let θ be an antimorphic permutation over A∗k. Recall
that, in the DNA setting, θ = δ is an involution, and therefore, we have θ2 = id.

(A) A language L is θ-nonoverlapping if L ∩ θ(L) = ∅.
(B) L is θ-compliant if ∀w ∈ θ(L), x, y ∈ A∗k : xwy ∈ L =⇒ xy = ε.

(C) L is strictly θ-compliant if it is θ-nonoverlapping and θ-compliant.

Many of the existing DNA-related properties can be modelled using the con-
cept of a bond-free property, first defined in [22] and later rephrased in [6] in
terms of trajectories. We follow the fomulation in [6]. Let ē1 and ē2 be two
regular trajectory expressions. First, we define the following language operators.

Φē1,ē2(L) = (((L ē1 A
+) ∩A+)�ē2 A

∗) ∪ (((L ē1 A
∗) ∩A+)�ē2 A

+), (3)

Φs
ē1,ē2(L) = ((L ē1 A

∗) ∩A+)�ē2 A
∗. (4)

The language operations �ā and ā are shuffle (or scattered insertion) and
scattered deletion, respectively, over the set of trajectories ā; see [6,23] for details.

Definition 2. ([6]) Let θ be an involution (or more generally a permutation)
and ē1, ē2 be two regular trajectory expressions. The bond-free property de-
scribed by (ē1, ē2) is

Bθ(ē1, ē2) = {L ⊆ A∗ | θ(L) ∩ Φē1,ē2(L) = ∅}. (5)

The strictly bond-free property described by (ē1, ē2) is

Bsθ(ē1, ē2) = {L ⊆ A∗ | θ(L) ∩ Φs
ē1,ē2(L) = ∅}. (6)

A regular θ-trajectory property is a bond-free property described by (ē1, ē2), or
a strictly bond-free property described by (ē1, ē2), for some pair (ē1, ē2).

3 New Transducer-based DNA-related Properties

A question that arises from the discussion in sections 2.2 and 2.3 is whether
existing transducer-based properties include DNA-related properties. It turns
out that this is not the case; see Proposition 1. In this section, we define new
transducer-based properties that are appropriate for DNA-related applications,
we demonstrate Proposition 1, and discuss how existing DNA-related properties
can be described with transducers.

Definition 3. A transducer t and an (anti-)morphic permutation θ, defined
over the same alphabet, describe 3-independent properties in two ways:
1.) strict θ-transducer property (S-property): L satisfies the property Sθ,t if

θ(L) ∩ t(L) = ∅ (7)

2.) weak θ-transducer property (W-property): L satisfies the property Wθ,t if

∀w ∈ L : θ(w) /∈ t(L \ w) (8)

Any of the properties Sθ,t or Wθ,t is called a θ-transducer property.

The difference between S-properties and W-properties is that Sθ,t includes
no language containing a word w such that θ(w) ∈ t(w), while this case is allowed
for some L ∈ Wθ,t. For fixed t, θ, and L, Condition (7) implies that for all w ∈ L
we have θ(w)∩t(L\w) = ∅ which is equivalent to Condition (8). In other words,
if L satisfies Sθ,t, then L satisfies Wθ,t as well. If θ = id and t is input-altering,
or input-preserving, then the above defined properties specialize to the existing
ones stated in Definition 1.

0t :
1

2
3

(a, ε)

(a, a)

(a, a)

(a, ε)

(a, ε)

(a, a)

(a, a)

(a, ε)

0ts : 1 2

(a, ε)

(a, a)

(a, a)

(ε, ε)

(a, ε)

Fig. 1. Together with θ, the left transducer describes the strictly θ-compliant property
and the right one describes the θ-compliant property. See Example 2 for explanations.

Example 2. In Fig. 1, an arrow with label (a, a) represents a set of edges with
labels (a, a) for all a ∈ A; and similarly for an arrow with label (a, ε). For any
word xwy, the left transducer ts can delete x, then keep w (which has to be
non-empty), and then delete y. Thus, ts(L)∩ θ(L) = ∅ if and only if L is strictly
θ-compliant. Now let xwy with xy 6= ε and w 6= ε. If y is nonempty, the right
transducer t can delete x, then keep w, and then delete y using the upper path
(containing state 1); and if x is nonempty, t can delete x, then keep w, and
then delete y using the lower path (containing state 2). Thus, t(L)∩ θ(L) = ∅ if
and only if L is θ-compliant. Using FAdo [9] format the left transducer can be
specified by the following string, assuming alphabet {a, b}
@Transducer 2 * 0\n0 a @epsilon 0\n0 b @epsilon 0\n0 a a 1\n

0 b b 1\n1 a a 1\n1 b b 1\n1 @epsilon @epsilon 2\n2 a @epsilon 2\n

2 b @epsilon 2\n

The next result demonstrates that existing transducer properties are not
suitable for describing even simple DNA-related properties.

Proposition 1. The δ-nonoverlapping property is not describable by any input-
preserving transducer.

4 Expressiveness of Transducer-based Properties

In this section we examine the descriptive power of the newly defined transducer
DNA-related properties, that is, the θ-transducer properties. In Theorem 1 we
show that these properties properly include the regular θ-trajectory properties.
On the other hand, in Proposition 2 we show that there is an independent DNA-
related property that is not a θ-transducer property.

Proposition 2. The θ-free property (defined below) [13] is not a θ-transducer
property.

(D) A language L ⊆ A∗ is θ-free if and only if L2 ∩A+θ(L)A+ = ∅.

The following DNA language property is considered in Theorem 1

H = {L ⊆ ∆∗ | H(u, δ(v)) ≥ 2, for all u, v ∈ L},

where H(·, ·) is the Hamming distance function with the assumption that its
value is ∞ when applied on different length words. Note that H is described by
δ and the transducer shown in Fig. 2.

0 1
(a, b)

(a, a) (a, a)

Fig. 2. The transducer t describing, together with δ, the S-property H: the displayed
transducer t realizes (u, v) if and only if H(u, v) < 2; therefore, δ(L) ∩ t(L) = ∅ if and
only if H(u, δ(v)) ≥ 2 for all u, v ∈ L.

Example 3. The DNA language L1 = {AGG, CCA} does not satisfy H because
H(CCA, δ(AGG)) = 1. The DNA language L2 = {AAA, CCT} satisfies H because
δ(AAA) = TTT and all words u ∈ L2 contain at most one T.

Theorem 1.
1. Let θ be an antimorphic involution. Every regular θ-trajectory property is a

θ-transducer property (in particular an S-property).
2. Property H is a δ-transducer property, but not a (regular) δ-trajectory one.

5 The Satisfaction and Maximality Problems

For θ = id and for input-altering and -preserving transducers the satisfaction and
maximality problems are decidable [8]. In particular, for a regular language L
given via an automaton a, Condition (1) can be decided in time O(|t||a|2), where
the function | · | returns the size of the machine in question (= number of states

plus number of edges plus the length of all labels on the edges). Condition (2)
can be decided in time O(|t||a|2), as noted in Remark 1 below. The maximality
problem is decidable, but PSPACE-hard, for both input-altering and -preserving
transducer properties.

Remark 1. Let s = t ↓ a ↑ a be the transducer obtained by two product con-
structions: first on the input of t with a; then, on the output of the resulting
transducer with a. In [8] the authors suggest to decide whether or not L satisfies
the input-preserving transducer property Wid,t by testing if the transducer s
is functional. However, deciding L ∈ Wid,t can be done by the cheaper test of
whether or not s implements a (partial) identity function. Using the identity test
from [1], we obtain that Condition (2) can be decided in time O(|t||a|2) when
the alphabet is considered constant. Also note that the identity test does not
require that t is input-preserving if θ = id. When θ is antimorphic, however, the
identity test does not work anymore and we have to resort to the more expensive
functionality test for θ-input-preserving transducers.

In this work we are interested in the case when θ 6= id is antimorphic; fur-
thermore, the θ-input-altering or -preserving restrictions on the transducer are
not necessarily present in the definition ofW-properties or S-properties. Table 1
summarizes under which conditions the satisfaction and maximality problems
are decidable for regular languages.

Problem
Property Sθ,t Property Wθ,t

no restriction t is θ-i.-altering no restriction t is θ-i.-preserving

Satisfaction
decidable in O(|t||a|2)

as in [8]
decidable

Theorem 2
decidable in O(|t|2|a|4)

as in [8]

Maximality
undecidable
Corollary 2

decidable, PSPACE-hard
Theorem 3, Corollary 1

Table 1. (Un-)decidability of the satisfaction and the maximality problems for a fixed
antimorphic permutation θ, a given transducer t, and a regular language L given via
an automaton a.

Remark 2. We note that deciding the satisfaction question for any θ-trajectory
property involves testing the emptiness conditions in (5) or (6), which requires
time O(|a|2|a1||a2|), where a1,a2 are automata corresponding to ē1, ē2. Such a
property can be expressed as θ-transducer S-property (recall Theorem 1) using
a transducer of size O(|a1||a2|) and, therefore, the satisfaction question can still
be solved within the same asymptotic time complexity.

5.1 The Satisfaction Problem for non-restricted W-properties

We establish the decidability of non-restricted transducer W-properties for reg-
ular languages. We do not concern the complexity of this algorithm; optimizing

the algorithm and analyzing its complexity is part of future research. Let t be a
transducer, θ be an antimorphic permutation, and L be a regular language over
the alphabet A. Let aL and aθ(L) be the NFAs accepting the languages L and
θ(L), respectively. Let s = t ↓ aL ↑ aθ(L) be the product transducer such that
y ∈ s(x) if and only if y ∈ t(x), x ∈ L, and y ∈ θ(L).

Let Ts =
{

(x1, x2, x3) ∈ (A∗)3
∣∣ |x1x2x3| ≤ |s|

}
be a set of word triples. Note

that the length restrictions for the words ensures that Ts is a finite set. For each
triple t = (x1, x2, x3) ∈ Ts we define a relation

Rt =
{

(x1(x2)kx3, θ(x1(x2)kx3))
∣∣ k ∈ N

}
⊆ A∗ ×A∗.

Lemma 1. The regular language L satisfies Wθ,t if and only if the relation
realized by s is included in

⋃
t∈Ts

Rt.

The inclusion in Lemma 1 is decidable performing the following two tests:
1.) verify that s ⊆

⋃
(x1,x2,x3)∈Ts

(x1x
∗
2x3)× θ(x1x

∗
2x3); and 2.) verify that |x| =

|y| for all pairs (x, y) that label an accepting path in s. Note that the inclusion
test can be performed because the right-hand-side relation is recognizable [3].
The second test follows the same ideas as the algorithm outlined in [1] which
decides whether or not a transducer implements a partial identity function.

Theorem 2. Let L be a regular language given as automaton, t be a given
transducer, and θ be a given antimorphic involution (all defined over A). It is
decidable whether L satisfies Wθ,t or not.

5.2 The Maximality Problem

Here we show how to decide maximality of a regular language L with respect to
a θ-transducer property; see Theorem 3. This result only holds when we consider
W-properties or when we consider S-properties for θ-input-altering transducers.
As in the case of existing transducer properties, it turns out that the maxi-
mality problem is PSPACE-hard; see Corollary 1. When we consider general
S-properties, the maximality problem becomes undecidable; see Corollary 2.

Theorem 3. For an antimorphic permutation θ, a transducer t, and a regular
language L, all defined over A∗k, such that either L ∈ Wθ,t, or L ∈ Sθ,t and t is
θ-input altering, we have that L is maximal with property Wθ,t (resp., Sθ,t) if
and only if

L ∪ θ−1(t(L)) ∪ t−1(θ(L)) = A∗k. (9)

We note that it is PSPACE-hard to decide whether or not Equation (9) holds
when L is given as NFA because it is PSPACE-hard to decide universality of a
regular language given as NFA (L ⊆ A∗k is universal if L = A∗k) [29].

Corollary 1. For an antimorphic permutation θ, a transducer t, and a regular
language L given as NFA, all defined over A∗k, such that either L ∈ Wθ,t, or
L ∈ Sθ,t and t is θ-input altering, we have that it is PSPACE-hard to decide
whether or not L is maximal with property Wθ,t (resp., Sθ,t).

In the rest of this section we show that it is undecidable whether or not a
transducer is θ-input-preserving. This question relates directly to the maximality
problem of the empty language ∅ with respect to the property Sθ,t, as stated
in Corollary 2. The following Theorem can be proven using a reduction from
the famous, undecidable Post correspondence problem (PCP) to the problem of
deciding whether a given transducer is θ-input-preserving or not.

Theorem 4. For every fixed antimorphic permutation θ over A∗k with k ≥ 2 it
is undecidable whether or not a given transducer is θ-input-preserving.

This leads to the undecidability of the maximality problem of a regular lan-
guage L with respect to a θ-transducer-property Sθ,t.

Corollary 2. For every fixed antimorphic permutation θ over A∗k with k ≥ 2,
it is undecidable whether or not the empty language ∅ is maximal with respect to
the property Sθ,t, for a given transducer t.

Note that a singleton language {w} satisfies Sθ,t if and only if θ(w) /∈ t(w).
Thus, the corollary follows because ∅ is maximal with property Sθ,t if and only
if t is θ-input-preserving.

6 Undecidability of the θ-PCP and the θ-input-altering
Transducer Problem

Analogous to the undecidable PCP we introduce the θ version of the PCP and
prove that it is undecidable as well; see Theorem 5. Further, we utilize the θ
version of the PCP in order to show that it is undecidable whether or not a
transducer is θ-input-altering; see Corollary 3.

Definition 4. For a fixed antimorphic permutation θ over A∗k, we introduce the
θ-Post correspondence problem (θ-PCP): given words α0, α1, . . . , α`−1 ∈ A+

k and
β0, β1, . . . , β`−1 ∈ A+

k , decide whether or not there exists a non-empty sequence
of integers i1, . . . , in ∈ A` = {0, 1, . . . , `− 1} such that

αi1αi2 · · ·αin = θ(βi1βi2 · · ·βin).

Theorem 5. For every fixed antimorphic permutation θ over A∗k with k ≥ 2 the
θ-PCP is undecidable.

We can utilize the θ-PCP in order to prove that it is undecidable whether or
not a transducer is θ-input-altering, even for one-state transducers.

Corollary 3. For every fixed antimorphic permutation θ over A∗k with k ≥ 2 it
is undecidable whether or not a given (one-state) transducer is θ-input-altering.

Corollary 3 follows because the θ-PCP instance α0, . . . , α`−1, β0, . . . , β`−1 has

a solution if and only if the the one-state transducer t with edges q
(αi,θ

2(βi))−−−−−−−→ q
for i = 0, . . . , `− 1 is not θ-input-altering.

7 Conclusions

We have defined a transducer-based method for describing DNA code properties
which is strictly more expressive than the trajectory method. In doing so, the
satisfaction question remains efficiently decidable. The maximality question for
some types of properties is decidable, but it is undecidable for others. While some
versions of the maximality question for trajectory properties are decidable, the
case of any given pair of regular trajectories and any given regular language is
not addressed in [6], so we consider this to be an interesting problem to solve.

The maximality questions are phrased in terms of any fixed antimorphic
permutation. This direction of generalizing decision questions is also applied
to the classic Post Correspondence Problem, where we demonstrate that it re-
mains undecidable. A consequence of this is that the question of whether a given
transducer is θ-input-altering is also undecidable. It is interesting to note that if,
instead of fixing θ, we fix the transducer t to be the identity, or the transducer
defining the S-property H (see Fig. 2 in Sect. 4), then the question of whether or
not θ(L)∩ t(L) = ∅ is decidable (given any regular language L and antimorphic
permutation θ).

The topic of studying description methods for code properties requires further
attention. One important aim is the actual implementation of the algorithms,
as it is already done for several classic code properties [9, 24]. An immediate
plan is to incorporate in those implementations what we know about DNA code
properties. Another aim is to increase the expressive power of our description
methods. The formal method of [16] is quite expressive, using a certain type of
first order formulae to describe properties. It could perhaps be further worked
out in a way that some of these formulae can be mapped to transducers. We
also note that if the defining method is too expressive then even the satisfaction
problem could become undecidable; see for example the method of multiple sets
of trajectories in [7].

References

1. Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. Journal
of Automata, Languages and Combinatorics 8(2), 117–144 (2003)

2. Baum, E.: DNA sequences useful for computation. In: 2nd DIMACS Workshop on
DNA-based computers, pp. 122–127. Princeton University (1996)

3. Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner, Stuttgart
(1979)

4. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press (2009)

5. Domaratzki, M.: Trajectory-based codes. Acta Informatica 40, 491–527 (2004)
6. Domaratzki, M.: Bond-free DNA language classes. Natural Computing 6, 371–402

(2007)
7. Domaratzki, M., Salomaa, K.: Codes defined by multiple sets of trajectories. The-

oretical Computer Science 366, 182–193 (2006)
8. Dudzinski, K., Konstantinidis, S.: Formal descriptions of code properties: decid-

ability, complexity, implementation. IJFCS 23:1, 67–85 (2012)

9. FAdo: Tools for formal languages manipulation, URL address:
http://fado.dcc.fc.up.pt/ Accessed in February, 2015

10. Fan, C.M., Wang, J.T., Huang, C.C.: Some properties of involution binary rela-
tions. Acta Informatica DOI 10.1007/s00236-014-0208-8 (2014)

11. Genova, D., Mahalingam, K.: Generating DNA code words using forbidding and
enforcing systems. In: Theory and Practice of Natural Computing, pp. 376–393.
LNCS 7505, Springer-Verlag (2012)

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

13. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages.
Theoretical Computer Science 290, 1557–1579 (2003)

14. Jonoska, N., Kari, L., Mahalingam, K.: Involution solid and join codes. Fundamenta
Informaticae 86, 127–142 (2008)

15. Jonoska, N., Mahalingam, K., Chen, J.: Involution codes: with application to DNA
coded languages. Natural Computing 4, 141–162 (2005)

16. Jürgensen, H.: Syntactic monoids of codes. Acta Cybernetica 14, 117–133 (1999)
17. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg and Salomaa [26], pp.

511–607
18. Kari, L., Kitto, R., Thierrin, G.: Codes, involutions, and DNA encodings. In: For-

mal and Natural Computing, pp. 376–393. Springer (2002)
19. Kari, L., Konstantinidis, S., Kopecki, S.: Transducer descriptions of DNA

code properties and undecidability of antimorphic problems. arXiv preprint
arXiv:1503.00035 (2015)

20. Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-
free DNA languages. Acta Informatica 40, 119–157 (2003)

21. Kari, L., Konstantinidis, S., Sośık, P.: Bond-free languages: formalizations, maxi-
mality and construction methods. IJFCS 16, 1039–1070 (2005)

22. Kari, L., Konstantinidis, S., Sośık, P.: On properties of bond-free DNA languages.
Theoretical Computer Science 334, 131–159 (2005)

23. Kari, L., Sośık, P.: Aspects of shuffle and deletion on trajectories. Theoretical
Computer Science 332, 47–61 (2005)

24. LaSer: Independent LAnguage SERver, URL address:
http://laser.cs.smu.ca/independence/ Accessed in February, 2015

25. Mauri, G., Ferretti, C.: Word design for molecular computing: a survey. In: DNA
9, pp. 37–47. LNCS 7505, Springer-Verlag (2004)

26. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Vol. I.
Springer-Verlag, Berlin (1997)

27. Shyr, H.: Free Monoids and Languages. Hon Min Book Company, Taichung, 2nd
edn. (1991)

28. Shyr, H., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.)
Séminaire d’Algèbre Paul Dubreil, Paris 1975–1976 (29ème Année). Lecture Notes
in Mathematics, vol. 586, pp. 180–188 (1977)

29. Stockmeyer, L., Meyer, A.: Word problems requiring exponential time (prelimi-
nary report). In: Proceedings of the 5th annual ACM symposium on Theory of
computing. pp. 1–9. ACM (1973)

30. Yu, S.: Regular languages. In: Rozenberg and Salomaa [26], pp. 41–110

	Transducer Descriptions of DNA Code Properties and Undecidability of Antimorphic Problems

