
Deciding whether a Regular Language is
Generated by a Splicing System?

Lila Kari and Steffen Kopecki

Department of Computer Science
The University of Western Ontario

London, Ontario, N6A 5B7, Canada,
{lila,steffen}@csd.uwo.ca

Abstract. Splicing as a binary word/language operation is inspired by
the DNA recombination under the action of restriction enzymes and
ligases, and was first introduced by Tom Head in 1987. Shortly thereafter,
it was proven that the languages generated by (finite) splicing systems
form a proper subclass of the class of regular languages. However, the
question of whether or not one can decide if a given regular language is
generated by a splicing system remained open. In this paper we give a
positive answer to this question. Namely, we prove that, if a language
is generated by a splicing system, then it is also generated by a splicing
system whose size is a function of the size of the syntactic monoid of the
input language, and which can be effectively constructed.

1 Introduction

In [10] Head described an operation on formal languages, called splicing, which
models DNA recombination, a cut-and-paste operation on DNA strands under
the action of restriction enzymes and ligases. A splicing system consists of a set
of axioms or initial words and a set of (splicing) rules. The most commonly used
definition for a splicing rule is a quadruple of words r = (u1, v1;u2, v2). This rule
splices two words x1u1v1y1 and x2u2v2y2: the words are cut between the factors
u1, v1, respectively u2, v2, and the prefix (the left segment) of the first word is
recombined by catenation with the suffix (the right segment) of the second word,
see Figure 1 and also [17].

Splicing as a language-theoretic word operation is meant to abstract the
action of two compatible restriction enzymes and the ligase enzyme on two DNA
strands. The first enzyme recognizes the subword u1v1, called its restriction site,
in any DNA string and cuts the string containing this subword between u1
and v1. The second restriction enzyme, with restriction site u2v2, acts similarly.
Assuming that the “sticky ends” obtained after these cuts are in some sense
“compatible”, the enzyme ligase aids then the recombination (catenation) of the
first segment of one cut string with the second segment of another cut string.

? This research was supported by the Natural Sciences and Engineering Research
Council of Canada Discovery Grant R2824A01 and UWO Faculty of Science grant
to L. K.

x1 u1 v1 y1

x2 u2 v2 y2

=⇒ x1 u1

v2 y2

v1
y1

u2

x2

Fig. 1. Splicing of the words x1u1v1y1 and x2u2v2y2 by the rule r = (u1, v1;u2, v2).
The splicing result is the word x1u1v2y2.

A splicing system generates a language which contains every word that can
be obtained by successively applying rules to axioms and the intermediately
produced words. The most natural variant of splicing systems, often referred to
as finite splicing systems, is to consider a finite set of axioms and a finite set of
rules. In this paper, by a splicing system we always mean a finite splicing system.
Shortly after the introduction of splicing in formal language theory, Culik II
and Harju [6] proved that splicing systems generate regular languages, only; see
also [12,16]. Gatterdam [7] gave (aa)∗ as an example of a regular language which
cannot be generated by a splicing system; thus, the class of languages generated
by splicing systems is strictly included in the class of regular languages. However,
for a regular language L over an alphabet Σ, adding a marker b /∈ Σ to the left
side of every word in L results in the language bL which can be generated by a
splicing system [11]; e. g., the language b(aa)∗ is generated by the axioms {b, baa}
and the rule (baa, ε; b, ε), where ε is the empty word.

This led to the question of whether or not one of the known subclasses of the
regular languages corresponds to the class S of languages which can be generated
by a splicing system. All investigations to date indicate that the class S does
not coincide with another naturally defined language class. A characterization
of reflexive splicing systems using Schützenberger constants has been given by
Bonizzoni, de Felice, and Zizza [1–3]. A splicing system is reflexive if for all rules
(u1, v1;u2, v2) in the system we have that (u1, v1;u1, v1) and (u2, v2;u2, v2) are
rules in the system, too. A word v is a Schützenberger constant of a language
L if x1vy1 ∈ L and x2vy2 ∈ L imply x1vy2 ∈ L [18]. Recently, it was proven by
Bonizzoni and Jonoska that every splicing language has a constant [5]. However,
not all languages which have a constant are generated by splicing systems, e. g.,
in the language L = (aa)∗+b∗ every word bi is a constant, but L is not generated
by a splicing system.

Another approach was to find an algorithm which decides whether a given
regular language is generated by a splicing system. This problem has been in-
vestigated by Goode, Head, and Pixton [8, 9, 13] but it has only been partially
solved: It is decidable whether a regular language is generated by a reflexive
splicing system. It is worth mentioning that a splicing system by the original
definition in [10] is always reflexive.

In this paper we settle the problem by proving that for a given regular lan-
guage L, it is indeed decidable whether L is generated by a splicing system
(which is not necessarily reflexive), Corollary 1. More precisely, if the language
L is generated by a splicing system, then it is generated by one particular splic-
ing system whose size is a function of the size of the syntactic monoid of L,

2

Theorem 1. If m is the size of the syntactic monoid of L, then all axioms and
all components of rules have a length in O(m2). By results from [12, 13], we
can construct a finite automaton which accepts the language generated by this
splicing system, compare it with a finite automaton which accepts L, and, thus,
decide whether L is generated by a splicing system.

Due to page limitations the proofs of most of the lemmas have been omitted
in this version of the paper. The missing proofs can be found in the arXiv
version [15].

2 Notation and Definitions

We assume the reader to be familiar with the fundamental concepts of language
theory, see [14]. Let Σ be an alphabet, Σ∗ be the set of all words over Σ, and
ε denote the empty word. A subset L of Σ∗ is a language over Σ. Throughout
this paper, we consider languages over the alphabet Σ, only. We consider the
letters of Σ to be ordered and for words u, v ∈ Σ∗ we denote the (strict) length-
lexicographical order by u ≤`` v (resp., u <`` v); i. e., u ≤`` v if either |u| ≤ |v|,
or |u| = |v| and u is equal or less than v in lexicographic order. For a length
bound m ∈ N we let Σ≤m denote the set of words whose length is at most m,
i. e., Σ≤m =

⋃
i≤mΣ

i. Analogously, we define Σ<m =
⋃
i<mΣ

i. Let w ∈ Σ∗

be a word. If w = xyz for some x, y, z ∈ Σ∗, then x, y, and z are called prefix,
factor, and suffix of w, respectively. If a prefix or suffix of w is distinct from w,
it is said to be proper.

Every language L induces a syntactic congruence ∼L over words such that
u ∼L v if and only if for all words x, y we have xuy ∈ L ⇐⇒ xvy ∈ L.
The syntactic class (with respect to L) of a word u is [u]L = {v | u ∼L v}. The
syntactic monoid of L is the quotient monoid ML = Σ∗/∼L = {[u]L | u ∈ Σ∗}.
It is well-known that a language L is regular if and only if its syntactic monoid
ML is finite. We will use two basic facts about syntactic monoids of regular
languages.

Lemma 1. Let L be a regular language and let w be a word with |w| ≥ |ML|2.
We can factorize w = αβγ with β 6= ε such that α ∼L αβ and γ ∼L βγ.

Lemma 2. Let L be a regular language. Every element X ∈ ML contains a
word x ∈ X with |x| < |ML|.

3 Splicing Systems and Regular Languages

We consider the splicing operation as defined in [17]. This is the most commonly
used definition for splicing in formal language theory. The notation we use has
been employed in previous papers, see e. g., [2, 9]. A quadruple of words r =
(u1, v1;u2, v2) ∈ (Σ∗)4 is called a (splicing) rule. The words u1v1 and u2v2 are
called left and right side of r, respectively. This splicing rule can be applied to
two words w1 = x1u1v1y1 and w2 = x2u2v2y2, that each contain one of the sides,

3

in order to create the new word z = x1u1v2y2, see again Figure 1. This operation
is called splicing and it is denoted by (w1, w2) `r z. The splicing position of this
splicing is the position between the factors x1u1 and v2y2 in z.

For a rule r we define the splicing operator σr such that for a language L

σr(L) = {z ∈ Σ∗ | ∃w1, w2 ∈ L : (w1, w2) `r z}

and for a set of splicing rules R, we let σR(L) =
⋃
r∈R σr(L). The reflexive and

transitive closure of the splicing operator σ∗R is given by

σ0
R(L) = L, σi+1

R (L) = σiR(L) ∪ σR(σiR(L)), σ∗R(L) =
⋃
i≥0

σiR(L).

A finite set of axioms I ⊆ Σ∗ and a finite set of splicing rules R ⊆ (Σ∗)4

form a splicing system (I,R). Every splicing system (I,R) generates a language
L(I,R) = σ∗R(I). Note that L(I,R) is the smallest language which is closed
under the splicing operator σR and includes I. It is known that the language
generated by a splicing system is regular, see [6, 16]. A (regular) language L is
called a splicing language if a splicing system (I,R) exists such that L = L(I,R).

A rule r is said to respect a language L if σr(L) ⊆ L. It is easy to see that
for any splicing system (I,R), every rule r ∈ R respects the generated language
L(I,R) and a rule r /∈ R respects L(I,R) if and only if L(I,R ∪ {r}) = L(I,R).
Furthermore, we say a splicing step (w1, w2) `r z respects a language L if
w1, w2 ∈ L and r respects L; obviously, this implies z ∈ L, too.

The purpose of this section is to prove that if a regular language L is a splicing
language, then it is created by a splicing system (I,R) which only depends on
the syntactic monoid of L.

Theorem 1. Let L be a splicing language and m = |ML|. The splicing system

(I,R) with I = Σ<m2+6m ∩ L and

R =
{
r ∈ Σ<m2+10m ×Σ<2m ×Σ<2m ×Σ<m2+10m

∣∣∣ r respects L
}

generates the language L = L(I,R).

The structure of this section is the following. In Section 3.1 we will present
techniques to obtain rules that respect a regular language L from other rules
respecting L and we show how we can modify a single splicing step, such that
the words used for splicing are not significantly longer than the splicing result;
similar results can be found in [8, 9]. In Section 3.2 we use these techniques to
show that a long word z ∈ L can be obtained by a series of splicings from a set
shorter words from L and by using rules which satisfy certain length restrictions.
Finally, in Section 3.3 we prove Theorem 1.

3.1 Rule Modifications

Our first lemma tells us that we can extend the sides of a rule r such that the
extended rule respects all languages that are respected by r.

4

Lemma 3. Let r = (u1, v1;u2, v2) be a rule which respects a language L. For
every word x, the rules (xu1, v1;u2, v2), (u1, v1x;u2, v2), (u1, v1;xu2, v2), and
(u1, v1;u2, v2x) respect L as well.

Henceforth, we will refer to the rules (xu1, v1;u2, v2), (u1, v1x;u2, v2) as ex-
tensions of the left side and to (u1, v1;xu2, v2), (u1, v1;u2, v2x) as extensions of
the right side.

Next, for a language L, let us investigate the syntactic class of a rule r =
(u1, v1;u2, v2). The syntactic class (with respect to L) of r is the set of rules
[r]L = [u1]L × [v1]L × [u2]L × [v2]L and two rules r and s are syntactically
congruent (with respect to L), denoted by r ∼L s, if s ∈ [r]L.

Lemma 4. Let r be a rule which respects a language L. Every rule s ∈ [r]L
respects L.

Consider a splicing (x1u1v1y1, x2u2v2y2) `r x1u1v2y2 which respects a reg-
ular language L, as shown in Figure 2 on the left side. The factors v1y1 and
x2u2 may be relatively long but they do not occur as factors in the resulting
word x1u1v2y2. In particular, it is possible that two long words are spliced and
the outcome is a relatively short word. Using the Lemmas 3 and 4, we can find
shorter words in L and a modified splicing rule which can be used to obtain
x1u1v2y2.

x1 u1

v2 y2

v1
y1

u2

x2

=⇒ x1 u1

v2 y2

ṽ1

ũ2

Fig. 2. Replacing v1y1 and x2u2 by short words.

Lemma 5. Let r = (u1, v1;u2, v2) be a rule which respects a regular language L
and w1 = x1u1v1y1 ∈ L, w2 = x2u2v2y2 ∈ L. There is a rule s = (u1, ṽ1; ũ2, v2)
which respects L and words w̃1 = x1u1ṽ1 ∈ L, w̃2 = ũ2v2y2 ∈ L such that
|ṽ1| , |ũ2| < |ML|. More precisely, ṽ1 ∈ [v1y1]L and ũ2 ∈ [x2u2]L.

In particular, whenever (w1, w2) `r x1u1v2y2 = z, then there is a splicing
(w̃1, w̃2) `s z which respects L where w̃1, w̃2, and s have the properties described
above.

3.2 Series of Splicings

Let us consider the creation of words by a series of splicings. We begin with a
simple observation. In case when a word is created by two (or more) successive
splicings, but the sides of the splicings do not cover the splicing position of
the other splicing, then the order of these splicings is irrelevant. Recall that
the splicing position of a splicing (w1, w2) `r z with r = (u1, v1;u2, v2) is the
position between the factors u1 and v2 in z. The notation in Remark 1 is the
same as in the Figure 3.

5

x1 u1
v1

y1

u2

x2

z2
ṽ2

y2

v3 y3
u3

x3

ũ2

v2

Fig. 3. The word x1u1z2v3y3 can be created by either using the right splicing first or
by using the left splicing first.

Remark 1. Let w1 = x1u1v1y1, w2 = x2u2z2ṽ2y2, where v2 is a prefix of z2
and ũ2 is a suffix of z2, w3 = x3u3v3y3 be words and r1 = (u1, v1;u2, v2),
r2 = (ũ2, ṽ2;u3, v3) be rules. In order to create the word z = x1u1z2v3y3 by
splicing, we may use splicings

(w1, w2) `r1 x1u1z2ṽ2y2 = z′, (z′, w3) `r2 z or

(w2, w3) `r2 x2u2z2v3y3 = z′′, (w1, z
′′) `r1 z.

Consider a splicing system (J, S) and the generated language L = L(J, S). Let
n be the length of the longest word in J and let µ be the length-lexicographically
largest word that is a component of a rule in S. Define Wµ = {w ∈ Σ∗ | w ≤`` µ}
as the set of words which are at most as large as µ, in length-lexicographic order.
Furthermore, let I = Σ≤n ∩ L be a set of axioms and let

R =
{
r ∈W 4

µ

∣∣ r respects L
}

be a set of rules. It is not difficult to see that J ⊆ I, S ⊆ R, and L = L(I,R).
Whenever convenient, we will assume that a splicing language L is generated by
a splicing system which is of the form of (I,R).

Let xzy ∈ L be a word where the length of the middle factor z is at least |µ|.
The creation of xzy by splicing in (I,R) can be traced back to a word x1zy1 = z1
where either z1 ∈ I or where z1 is created by a splicing that affects the factor
z, i. e., the splicing position lies in the factor z. The next lemma describes this
creation of xzy = zk+1 by k splicings in (I,R), and shows that we can choose
the rules and words which are used to create zk+1 from z1 such that the words
and bridges of rules are not significantly longer than ` = max {|x| , |y|}.

Lemma 6. Let L be a splicing language, let `, n ∈ N, let m = |ML|, and
let µ be a word with |µ| ≥ ` + 2m such that for I = Σ≤n ∩ L and R ={
r ∈W 4

µ

∣∣ r respects L
}

we have L = L(I,R).
Let zk+1 = xk+1zyk+1 with |z| ≥ |µ| and |xk+1| , |yk+1| ≤ ` be a word that

is created by k splicings from a word z1 = x1zy1 where either z1 ∈ I or z1 is
created by a splicing (w̃1, w̃2) `s z1 where w̃1, w̃2 ∈ L, s respects L, and the splic-
ing position lies in the factor z. Furthermore, for i = 1, . . . , k the intermediate
splicings are either

(i) (wi, zi) `ri xi+1zyi+1 = zi+1, wi ∈ L, ri ∈ R, yi+1 = yi, and the splicing
position lies on the left of the factor z or

(ii) (zi, wi) `ri xi+1zyi+1 = zi+1, wi ∈ L, ri ∈ R, xi+1 = xi, and the splicing
position lies on the right of the factor z.

6

There are rules and words creating zk+1, as above, satisfying in addition:

1. There is k′ ≤ k such that for i = 1, . . . , k′ all splicings are of the form (i)
and for i = k′ + 1, . . . , k all splicings are of the form (ii).

2. For i = 1, . . . , k′ the following bounds apply: |xi| < ` + 2m, |wi| < ` + 2m,
ri ∈ Σ<`+m ×Σ<2m ×Σ<2m ×Wµ, and xk′+1 = xk′+2 = · · · = xk+1.

3. For i = k′+1, . . . , k the following bounds apply: |yi| < `+2m, |wi| < `+2m,
ri ∈Wµ ×Σ<2m ×Σ<2m ×Σ<`+m, and y1 = y2 = · · · = yk′+1.

In particular, if n ≥ `+ 2m, then w1, . . . , wk ∈ I.

The first statement follows by the fact that |z| ≥ |µ| and by Remark 1. The
proof of the other two statements requires a much more complicated analysis of
the creation of the word zk+1 by splicing which is omitted in this version of the
paper.

3.3 Proof of Theorem 1

Let L be a splicing language and m = |ML|. Throughout this section, by ∼
we denote the equivalence relation ∼L and by [·] we denote the corresponding
equivalence classes [·]L.

Recall that Theorem 1 claims that the splicing system (I,R) with I =

Σ<m2+6m ∩ L and

R =
{
r ∈ Σ<m2+10m ×Σ<2m ×Σ<2m ×Σ<m2+10m

∣∣∣ r respects L
}

generates L. The proof is divided in two parts. In the first part, Lemma 7, we

proof that the set of rules can be chosen as
{
r ∈ (Σ<m2+10m)4

∣∣∣ r respects L
}

for some finite set of axioms. The second part concludes the proof of Theorem 1,
by employing the length bound 2m for the second and third component of rules
and by proving that the set of axioms can be chosen as I = Σ<m2+6m ∩ L.

Lemma 7. Let L and m as above. There exists n ∈ N such that the splicing
system (I,R) with I = Σ≤n ∩ L and

R =
{
r ∈ (Σ<m2+10m)4

∣∣∣ r respects L
}

generates the same language L = L(I,R).

Proof. As every word in I belongs to L and every rule in R respects L, the
inclusion L(I,R) ⊆ L holds (for any n).

Let (I ′, R′) be a splicing system that generates L = L(I ′, R′) and let n such
that n − 6m is larger than any word in I ′ and larger than any component of a
rule in R′. As in the claim, let I = Σ≤n ∩ L.

For a word µ we let Wµ = {w ∈ Σ∗ | w ≤`` µ}, as we did before. Define the
set of rules where every component is length-lexicographically bounded by µ

Rµ =
{
r ∈W 4

µ

∣∣ r respects L
}

7

and the language Lµ = L(I,Rµ); clearly, Lµ ⊆ L. For two words µ ≤`` v we see
that Rµ ⊆ Rv, and hence, Lµ ⊆ Lv. Thus, if Lµ = L for some word µ, then for
all words v with µ ≤`` v, we have Lv = L. As L = L(I ′, R′), there exists a word
µ such that Lµ = L and |µ| + 6m ≤ n. Let b be the lexicographically largest

letter in Σ. For ν = bm
2+10m−1 the set Rν contains exactly the rules that respect

L and where every component has a length of less than m2 + 10m; therefore,
Rν = R and if Lν = L, the claim holds. For the sake of contradiction assume
Lν 6= L and let µ be the smallest word, in the length-lexicographic order, such
that Lµ = L; hence, |µ| ≥ m2 + 10m. Let µ′ be the next-smaller word than µ,
in the length-lexicographic order, and let S = Rµ′ . Note that L(I, S) (L and
Rµ \ S contains only rules which have a component that is equal to µ.

Choose w from L\L(I, S) as a shortest word, i. e., for all w̃ ∈ L with |w̃| < |w|,
we have w̃ ∈ L(I, S). Factorize w = xzy with |x| = |y| = 3m, n. b., |z| ≥ |µ|,
otherwise w ∈ I. Factorize µ = δ1αβγδ2 with |δ1| , |δ2| ≥ 5m, |αβγ| = m2, β 6= ε,
α ∼ αβ, and γ ∼ βγ (Lemma 1).

We will show that there is a series of splicings which creates w from a set of
shorter words and by using splicing rules from S. This yields a contradiction to
the choice of w. In order to find this series of splicings we investigate the creation
of a word xz̃y where z̃ is derived by using a pumping argument on all factors
αβγ in z.

Let j be a sufficiently large even number (j > 4 |µ| + |z| will suffice). Let z̃
be the word that we obtain by replacing all factors αβγ by αβjγ in z by the
following pumping algorithm:

1. z̃ := z;
2. if there is a factor αβγ of z̃ such that neither

(a) the factor αβγ is a prefix of a factor αβj/2 in z̃ nor
(b) the factor αβγ is a suffix of a factor βj/2γ in z̃,
then replace this factor by αβjγ;

3. repeat step 2 until there is no such factor αβγ left.

A proof that the algorithm will terminate, hence z̃ is well defined, can be found
in the arXiv version [15]. The new word z̃ may still contain the factor αβγ, but
if it does, then (a) or (b) holds. By induction and as αβγ ∼ αβjγ, it is easy to
see that z̃ ∼ z.

Let us trace back the creation of xz̃y ∈ L by splicing in (I,Rµ) to a word
x1z̃y1 where either x1z̃y1 ∈ I or where x1z̃y1 is created by a splicing that affects
z̃, i. e., the splicing position lies within the factor z̃. Let zk+1 = xk+1z̃yk+1,
where xk+1 = x and yk+1 = y, be created by k splicings from a word z1 = x1z̃y1
where either x1z̃y1 ∈ I or x1z̃y1 is created by a splicing (w̃1, w̃2) `s z1 with
w̃1, w̃2 ∈ L, s ∈ Rµ, and the splicing position lies in the factor z̃. Furthermore,
for i = 1, . . . , k the intermediate splicings are either

(i) (wi, zi) `ri xi+1z̃yi+1 = zi+1, wi ∈ L, ri ∈ Rµ, yi+1 = yi, and the splicing
position lies on the left of the factor z̃ or

(ii) (zi, wi) `ri xi+1z̃yi+1 = zi+1, wi ∈ L, ri ∈ Rµ, xi+1 = xi, and the splicing
position lies on the right of the factor z̃.

8

Note that |z̃| ≥ |z| ≥ |µ| and, therefore, we can apply Lemma 6 (with ` = 3m).
Thus, wi ∈ I and |xi| , |yi| < 5m for i = 1, . . . , k.

Consider a rule ri in a splicing of the form (i). By Lemma 6, ri ∈ Σ<4m ×
Σ<2m ×Σ<2m ×Wµ. Suppose the fourth component of ri covers a prefix of the
left-most factor αβj/2 in z̃ which is longer than α (as j is very large, it cannot
fully cover αβj/2). By extension (Lemma 3), we may write ri = (u1, v1;u2, ṽαβ

e)
for some e ≥ 1. By Lemma 4 and as α ∼ αβ, we may replace this rule by
(u1, v1;u2, ṽα). Note that, as the fourth component got shorter, now ri ∈ S.

After we symmetrically treated rules of form (ii), these new rules r1, . . . , rk
and the words w1, . . . , wk can be used in order to create w = xk+1zyk+1 from
x1zy1 by splicing. In order to see this, observe that, even though the factors αβγ
in z, which we pumped up before, may overlap with each other, the left-most
(and right-most) position where we replaced β by βj is preceded by the factor
α (resp., succeeded by the factor γ) in z̃.

Furthermore, the rules r1, . . . , rk all belong to S. By contradiction, suppose
ri /∈ S for some i and, by symmetry, suppose the i-th splicing is of the form (i).
Thus, the fourth component of ri has to be µ = δ1αβγδ2. As |δ1| ≥ 5m > |xi|,
αβγ is a factor of z̃. The pumping algorithm ensured that (a) the prefix α is
succeeded by βj/2 or (b) the suffix γ is preceded by βj/2. As j/2 is very large
and the splicing position is too close to the left end of zi, case (b) is not possible.
Thus, the fourth component of ri overlaps in more than |α| letters with the
left-most factor αβj/2 in z̃ and we used the replacement above, which ensured
ri ∈ S — the contradiction.

Let us summarize: If x1zy1 was in L(I, S), then w ∈ L(I, S) as well, which
would contradict the choice of w. If z1 = x1z̃y1 ∈ I, then x1zy1, which is at
most as long as z1, would belong to I and we are done. We only have to consider
the case when (w̃1, w̃2) `s z1 = x1z̃y1 and the splicing position lies within
the factor z̃. We will show that, from this splicing, we derive another splicing
(ŵ1, ŵ2) `t x1zy1 which respects L(I, S) and, therefore, yields the contradiction.

Let s = (u, v1;u2, v), w̃1 = xuv1 and w̃2 = u2vy where |v1| , |u2| < m, by
Lemma 5 (here, x and y are newly chosen words). We have

z1 = x1z̃y1 = xuvy

where xu is a proper prefix of x1z̃ and vy is a proper suffix of z̃y1.
We will see next that if s /∈ S, then we can use a rule s̃ ∈ S and maybe

slightly modified words in order to obtain z1 by splicing. If s /∈ S, then u = µ or
v = µ. Suppose u = µ = δ1αβγδ2. Thus, αβγ is a factor of z̃, as |δ1| ≥ 5m > |x1|,
and, as such, either (a) α is succeeded by βj/2 or (b) γ is preceded by βj/2. If
(b) holds, δ1α is a suffix of a word in β+. We may write δ1α = β2β

` where ` ≥ 0
and β2 is a suffix of β. Replace u by β2γδ1 and use this new rule s̃ in order
to splice (w̃1, w̃2) `s̃ z1. Note that the first component is now shorter than µ.
Otherwise, (a) holds and γδ2v is a prefix of a word in β+. As j is very large
and γ is a prefix of a word in β+, we may extend v (Lemma 3) such that we
can write βγδ2 = β`1β1 and v = β2β

`2γ where `1 ≥ 1, `2 ≥ 0 and β1β2 = β.
Now, we pump down one of the β in the first component and β`2 in the fourth

9

component and we let s̃ = (δ1αβ
`1−1β1, v1;u2, β2γ) ∼ s. As both components

are shorter than µ, we see that s̃ ∈ S and

(xδ1αβ
`1−1β1v1, u2β2β

`2+1γy) `s̃ z1,

i. e., we have shifted one of the occurrences of β from w̃1 to w̃2. Note that β2γ
is a prefix of β2β

`2+1γ. Treating the fourth component analogously justifies the
assumption that s ∈ S.

Next, we will pump down the factors αβjγ to αβγ in z̃ again. At every
position where we pumped up before, we are now pumping down (in reverse
order) in order to obtain the words x̂, û, v̂, ŷ from the words x, u, v, y, respectively.
For each pumping step:

If u is covered by the factor αβjγ (which we pump down in this step), extend
u to the left such that it becomes a prefix of αβjγ. Symmetrically, if v is covered
by the factor αβjγ, extend v to the right such that it becomes a suffix of αβjγ
(Lemma 3). Observe that extension ensures that the factor αβjγ is covered by
either xu, uv, or vy. If αβj or βjγ is fully covered by one of x, u, v, or y, then
replace this factor by αβ or βγ, respectively. Otherwise, let us show how to pump
when αβjγ is covered by xu. The cases when αβjγ is covered by uv or vy can
be treated analogously. We can factorize

x = x̃αβj1β1, u = β2β
j2γũ

where β1β2 = β and j1 + j2 + 1 = j. The pumping result are the words x̃αβ1
and β2γũ, respectively.

Observe that, after reversing all pumping steps, x̂û ∼ xu, v̂ŷ ∼ vy, x̂ûv̂ŷ =
x1zy1, and the rule t = (û, v1;u2, v̂) respects L. Furthermore, if we used extension
for u (or v) in one of the steps, then |û| ≤ m2 (resp., |v̂| ≤ m2); in any case
t ∈ S. Recall that w was chosen as the shortest word from L \ L(I, S). As
|x̂ûv1| , |u2v̂ŷ| < |z|+ 6m = |w|, the words x̂ûv1 and u2v̂ŷ belong to L(I, S), and
as (x̂ûv1, u2v̂ŷ) `t x1zy1, we conclude that x1zy1 as well as w belong to L(I, S)
— the desired contradiction. ut

Now, let us outline how the proof of Theorem 1 can be concluded. The full
proof can be found in the arXiv version [15].

For a splicing language L with m = |ML| we intend to prove that the splicing

system (I,R) with I = Σ<m2+6m ∩ L and

R =
{
r ∈ Σ<m2+10m ×Σ<2m ×Σ<2m ×Σ<m2+10m

∣∣∣ r respects L
}

generates the language L = L(I,R). By Lemma 7, we may assume that L is
generated by a splicing system (J, S) where

S =
{
r ∈ (Σ<m2+10m)4

∣∣∣ r respects L
}
.

In order to prove L ⊆ L(I,R), we use induction on the length of words in L. For
w ∈ L with |w| < m2 + 6m, by definition, w ∈ I ⊆ L(I,R).

10

For w ∈ L with |w| ≥ m2 + 6m, the induction hypothesis states that every
word w̃ ∈ L with |w̃| < |w| belongs to L(I,R). Factorize w = xαβγδy such that
|x| , |y| = 3m, |αβγ| = m2, β 6= ε, α ∼ αβ, and γ ∼ βγ.

The proof idea is similar to the idea in the proof of Lemma 7, but this time
we are using induction instead of a proof-by-contradiction. We use a pumping
argument on β in order to obtain a very long word w̃. This word has to be
created by a series of splicings in (J, S). Due to Lemma 6 these splicings can be
modified in order to create w̃ by splicing from a set of strictly shorter words and
with rules from R. Just like in the proof of Lemma 7, almost the same words
and rules can be used in order to create w from a set of strictly shorter words
and with rules from R. Then, the induction hypothesis yields w ∈ L(I,R).

4 Conclusion and Final Remarks

The main question we intended to answer when starting our investigation was,
if it is decidable whether a given regular language L is a splicing language. If
we can decide whether a splicing rule respects a regular language and if we can
construct a (non-deterministic) finite automaton accepting the language gen-
erated by a given splicing system, then we can decide whether L is a splicing
language as follows. We compute the splicing system (I,R) as given in Theo-
rem 1, we compute a finite automaton accepting the splicing language L(I,R),
and we test whether L(I,R) equals to L. Recall that Theorem 1 implies that L
is a splicing language if and only if L = L(I,R) and that equivalence of regular
languages is decidable [14]. It is known from [8,13] that it is decidable whether a
classic splicing rule respects a regular language. Furthermore, there is an effec-
tive construction of a finite automaton which accepts the language generated by
a splicing system [12, 16]. These observations lead to the following decidability
result.

Corollary 1. For a given regular language L, it is decidable whether or not L
is a splicing language. Moreover, if L is a splicing language, a splicing system
(I,R) generating L can be effectively constructed.

Another variant of splicing has been defined by Pixton in [16]. Pixton’s vari-
ant of splicing can be seen as more general than the classical splicing, which
we investigated in this paper, because every classical splicing rule can easily be
translated into a Pixton splicing rule, but not the other way around. Actually,
the class of classical splicing languages is strictly included in the class of Pixton
splicing languages [4]. In the online version of our paper [15] we also prove that
if a regular language L is a Pixton splicing language, then it is generated by
one particular Pixton splicing system whose size is a function of the size of the
syntactic monoid of L. A decidability result, analogous to Corollary 1, follows
immediately.

As final remarks, note that it has been known since 1991 that the class S of
languages that can be generated by a splicing system is a proper subclass of the
class of regular languages. However, to date, no other natural characterization

11

for the class S exists. The problem of deciding whether a regular language is
generated by a splicing system is a fundamental problem in this context and has
remained unsolved. To the best of our knowledge, the problem was first stated
in the literature in 1998 [11]. In this paper we solved this long standing open
problem.

References

1. P. Bonizzoni. Constants and label-equivalence: A decision procedure for reflexive
regular splicing languages. TCS, 411(6):865–877, 2010.

2. P. Bonizzoni, C. de Felice, and R. Zizza. The structure of reflexive regular splicing
languages via Schützenberger constants. TCS, 334(1-3):71–98, 2005.

3. P. Bonizzoni, C. de Felice, and R. Zizza. A characterization of (regular) circular
languages generated by monotone complete splicing systems. TCS, 411(48):4149–
4161, 2010.

4. P. Bonizzoni, C. Ferretti, G. Mauri, and R. Zizza. Separating some splicing models.
Inf. Process. Lett., 79(6):255–259, 2001.

5. P. Bonizzoni and N. Jonoska. Regular splicing languages must have a constant.
In G. Mauri and A. Leporati, editors, Developments in Language Theory, volume
6795 of LNCS, pages 82–92. Springer Berlin / Heidelberg, 2011.

6. K. Culik II and T. Harju. Splicing semigroups of dominoes and DNA. Discrete
Applied Math., 31(3):261–277, 1991.

7. R. W. Gatterdam. Splicing systems and regularity. International Journal of Com-
puter Mathematics, 31(1-2):63–67, 1989.

8. E. Goode. Constants and Splicing Systems. PhD thesis, Binghamton University,
1999.

9. E. Goode and D. Pixton. Recognizing splicing languages: Syntactic monoids and
simultaneous pumping. Discrete Applied Math., 155(8):989–1006, 2007.

10. T. Head. Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bull. of Math. Bio., 49(6):737–759, 1987.

11. T. Head. Splicing languages generated with one sided context. In G. Păun, editor,
Computing With Bio-molecules: Theory and Experiments, pages 269–282. Springer
Verlag, 1998.

12. T. Head and D. Pixton. Splicing and regularity. In Z. Ésik, C. Mart́ın-Vide,
and V. Mitrana, editors, Recent Advances in Formal Languages and Applications,
volume 25 of Studies in Computational Intelligence, pages 119–147. Springer, 2006.

13. T. Head, D. Pixton, and E. Goode. Splicing systems: Regularity and below. In
M. Hagiya and A. Ohuchi, editors, DNA, volume 2568 of LNCS, pages 262–268.
Springer, 2002.

14. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

15. L. Kari and S. Kopecki. Deciding whether a regular language is generated by a
splicing system. CoRR, abs/1112.4897, 2011.

16. D. Pixton. Regularity of splicing languages. Discrete Applied Math., 69(1-2):101–
124, 1996.

17. G. Păun. On the splicing operation. Discrete Applied Math., 70(1):57 – 79, 1996.
18. M. P. Schützenberger. Sur certaines opérations de fermeture dans le langages

rationnels. Symposia Mathematica, 15:245–253, 1975.

12

