
In the prehistory of formal language theory:

Gauss languages

Lila Kari2), Solomon Marcus1),

Gheorghe Paun1), Arto Salomaa2)

Abstract

The problem proposed by Gauss of characterizing the code of a simple
crossing closed curve (SCCC, for short) can be considered a formal lan-
guage question. We define three related infinite languages. Two of them
are regular; the type of the third is an open problem.

1 Gauss codes

The origin of formal language theory is usually considered (see [12]) to be the
Thue paper [13] but, as it is pointed out in [5], one can identify formal language
theory problems even in [7]; the topic, known in combinatorics under the name
of Langford strings [3], raises challenging formal language theory problems (see
[6], [9]). However, the prehistory of formal language theory can be spectacularly
enlarged, taking into account that also C. F. Gauss proposed and investigated
[1] a problem which could be considered of syntactic nature, dealing with the
formal structure of strings of abstract symbols. It concerns the so-called Gauss
code describing a planar closed curve with simple crossing points (a point is
simple if it is not a tangent point and the curve crosses itself only once at that
point). Assign the numbers 1, 2, . . . , n to the n crossing points of a given curve
c. A sequence xc containing exactly two occurrences of each i, 1 ≤ i ≤ n, and
describing the passing of the curve through the crossing points is called a Gauss
code (of the curve c). Example: for the curve c in Figure 1, the sequence

xc = 123441562365

is a Gauss code.

1University of Bucharest, Faculty of Mathematics Str. Academiei 14, 70109 Bucuresti,
ROMANIA

2Academy of Finland and University of Turku, Department of Mathematics, 20500
Turku,FINLAND

Fig. 1

In [1], Gauss called for the characterization of Gauss codes (of SCCC) in
terms of the interlacement properties of their symbols. Moreover, Gauss himself
has proved such a syntactic-like condition, which is only necessary for a string
to be a Gauss code:

Denote Vn = {1, 2, . . . , n} and let x ∈ V ∗

n be a string such that | x |i= 2, 1 ≤
i ≤ n. (| x |i is the number of occurrences of symbol i in x). Denote

V (x, i) = {j ∈ Vn | x = x1ix2ix3, x1, x2, x3 ∈ V ∗

n , | x2 |j= 1}

(the set of symbols having exactly one occurrence between the two occurrences
of i).

In [1] it is proved that for a Gauss code xc, each set V (xc, i), 1 ≤ i ≤ n, is
of even cardinality.

The problem of characterizing Gauss codes was approached in a large number
of papers (see [2] for a history of the problem). Most of the proposed solutions
are topological and graph theoretical (even the ”algebraic” one in [10] is of this
type; see also [11]). There exist syntactic characterizations too; see, for instance
[4], where a theorem of the following type is proved : ”a word x is a Gauss code
if and only if it contains no subwords of the form. . .”.

2 Gauss languages (I)

Clearly, as it stands, the Gauss problem refers to finite strings (hence languages),
therefore it is not purely of formal language nature. However, certain infinite
languages can be naturally defined in this frame.

The most natural idea is to consider paths of arbitrary lengths along a SCCC.
As above, describe such a path by the sequence of visited points; call such a
sequence a weak Gauss code. Given a curve c, denote by WG(c) the set of all
weak Gauss codes associated to it. Clearly,

Proposition 1 (i)WG(c) is an infinite language; (ii) WG(c) = mi(WG(c)),
for any SCCC c. (mi denotes the mirror image operation.)

Having an infinite language, it is natural to ask which is its place in the Chomsky
hierarchy; the question can easily be answered using the next formal construc-
tion of WG(c).

First, some notations: for a string z over some alphabet V , denote

σ(z) = {z2z1 | z = z1z2, z1, z2 ∈ V ∗}

(the circular permutation of z). For L ⊆ V ∗, denote by D(L) the smallest
language L′ ⊆ V ∗ containing L and having the next property: if w ∈ L′, w =
w1w2, w1, w2 ∈ V ∗, and w2a ∈ L for some a ∈ V , then wa ∈ L′(the right
prolongation of L according to itself). Denote also by sub(z) the set of all
subwords of z ∈ V ∗.

Proposition 2 Let c be a SCCC and xc be a Gauss code associated to it, xc ∈
V ∗

n , for some n ≥ 1. Then,

WG(c) = Lc ∪ mi(Lc)

where

Lc = sub(D(σ(xc))).

Proof. The code xc determines an orientation of the curve c; σ(xc) contains all
Gauss codes describing the curve c in this orientation. If x′

c is another Gauss
code associated to c, then either x′

c ∈ σ(xc) or x′

c ∈ mi(σ(xc)); in the first case
σ(x′

c) = σ(xc), in the second one σ(x′

c) = mi(σ(xc)). Therefore, the choice of xc

is not important. Now, a string z in WG(c), with the length larger than | xc |, is
obtained from a string in σ(xc) or in mi(σ(xc)), depending on the orientation of
z with respect to the orientation of xc, by right prolongation. Any substring of
such a string is in WG(c) too. In conclusion, each weak Gauss code associated
to c is either in Lc or in mi(Lc) and, conversely, each string in Lc ∪mi(Lc) is a
weak Gauss code associated to c.

From this representation we obtain

Proposition 3 For any SCCC c, the language WG(c) is regular.

Proof. Indeed, σ(xc) is a finite language, and the family of regular languages is
closed under operations D([8]), sub, mi, union.

Given a curve c, the Gauss code xc is uniquely determined up to a circu-
lar permutation and the mirror image (hence the language WG(c) is uniquely
determined).

The converse is not true, even considering topologically equivalent curves.
For instance, given two points, 1, 2, we have two essentially different ”codes”
(modulo the circular permutation and the mirror image), namely

1212, 1122

The first one cannot describe a SCCC (apply Gauss criterion: V (1212, 1) and
V (1212, 2) are of odd cardinality), but 1122 can describe three topologically
different curves - see Figure 2.

Fig. 2

Problem 1. What topological/geometrical properties of a curve c can be
(algorithmically) inferred from xc(or from WG(c)), hence are common to all
curves associated to a given Gauss code xc ?

For instance, consider the number of crossing points on the edges of simple
closed regions (not composed of two closed regions) determined by a curve (the
external region is not taken into consideration - or it can be taken separately).
Call this number the order of the simple closed region and call the order of the
curve the maximum order of a simple closed region of this curve. (We can call
external order of the curve the order of the external region.) For instance, in
Figure 1 we have closed regions of order one, two, three, four: (4), (5, 6), (2, 3,
6), (1, 2, 6, 5), respectively, whereas the external order is five (1, 4, 3, 6, 5 are
on the frontier).

On the other hand, in Figure 2 all curves are of order two, all contain two
regions of order one and one of order two. Is the order/the external order
precisely identified by the Gauss code, for any curve associated to it ? Can
we deduce from examining the code whether the curve contains simple closed

regions of a given order ? Clearly, a simple closed region of order one corresponds
to a substring of the form ii, and a simple closed region of order two corresponds
to the existence of a substring ij appearing twice or to the pair of substrings
ij, ji appearing in the Gauss code describing the curve. What about higher
orders ?

Problem 2. Is it possible to represent/characterize (in a ”simple” and ”natu-
ral” way) the family of regular languages obtained from Gauss codes (languages
WG(c)) and using suitable operations with languages ?

3 Gauss languages (II)

Given a SCCC c, another language can be constructed too, considering paths
along c, but permitting returnings along segments, not on intersection points.
Thus, we do not have a fixed orientation of the curve, but we can go freely
forward and backward on it. (Of course, after passing through i, if we came

back, we have to pass again through i.)
Call such strings double-weak Gauss codes and denote by DWG(c) the lan-

guage associated in this way to c. Clearly, we have also now

Proposition 4 (i) DWG(c) includes WG(c)(hence DWG(c) is infinite); (ii)
DWG(c) = mi(DWG(c)), for any SCCC c.

The language DWG(c) is in general strictly larger than WG(c). More ex-
actly, we have

Proposition 5 If c is a SCCC with at least two intersection points, then WG(c)
is strictly included in DWG(c).

Proof. If there is in ca simple cycle from some j to the same point (Figure 3.a),
then we cannot find in WG(c) substrings of the form pj3q, p 6= j 6= q, but such
substrings can appear in strings of DWG(c).

Fig. 3

Similarly, when there is no simple cycle for a point j(Figure 3.b), then WG(c)
does not contain substrings of the form pj2q, p 6= j 6= q, but such substrings can
appear in strings of DWG(c).

Problem 3. Find a representation of DWG(c) (similar to that in Proposition
2 for WG(c)).

A result analogous to Proposition 3 can be easily obtained for DWG(c) by
direct arguments.

Proposition 6 DWG(c) is regular for any SCCC c.

Proof. Take a curve c, with intersections marked by elements of Vn and construct
the right-linear grammar

G = (VN , Vn, S, P)

with

VN = {[i, j] | 1 ≤ i, j ≤ n, i is directly linked to j by the curve c} ∪ {S},

P = {S → [i, j], [i, j] → λ | [i, j] ∈ VN}∪

∪{[i, j] → j[j, k] | [i, j], [j, k] ∈ VN}∪

∪{[i, j] → i[k, i] | [i, j], [k, i] ∈ VN}.

The equality L(G) = DWG(c) is obvious, hence DWG(c) is regular.

The language DWG(c) is larger than WG(c), but it is not ”too large”. More
exactly, we have

Proposition 7 The Gauss criterion is a necessary condition for a string to be
in DWG(c).

Proof. Consider a set V (x, i), x ∈ DWG(c), i ∈ Vn. If when writing x = x1ix2ix3

we came from i back to i, after passing through x2, on the same segments of
c(with a returning point somewhere inside x2), then we pass twice (at least)
through some intersection point in x2, hence such points do not appear in
V (x, i). Similarly, if we have returnings in x2, the involved points do not appear
in V (x, i). Thus, if we return to i on another segment of c, after passing only
one time through the segments in x2(without returnings), this implies we have
a closed region determined by ix2i. The numbers of points used for coming in
and for coming out this region are equal; this means the number of symbols ap-
pearing only once in x2(each corresponds either to a coming in or to a coming
out) is even. This is exactly the Gauss criterion.

4 Gauss languages (III)

Another way for obtaining an infinite language is to allow points of multiple
crossing. More exactly, given n points, consider all planar closed curves which
cross arbitrarily many times in these points, in the sense that each passing
through a point intersects all other passings of the curve through that point (no
two curve branches are tangent in a crossing point). Denote by SGn the set

sub {x | x is a Gauss code of a curve passing arbitrarily
many times through points 1, 2, . . . , n}

Please note that SGn refers to all curves which pass through (some of) points
1, 2, . . .,n. We call such strings semi-Gauss codes.

Proposition 8 All languages SGn, n ≥ 1, are infinite.

Proof. We shall show that SG1 = {1k | k ≥ 2}(therefore it is infinite) and that
SGn ⊂ SGn+1, n ≥ 1.

The idea of proving the former assertion is that in Figure 4. For an odd
number of passings through the crossing points (and for k = 2 too), we get
ak-petal ”flower”, and for an even number of passings we get a(k − 1)-petal
”flower”, provided with a ”macro-petal” - see Figure 5.

Fig. 4

Fig. 5

On the other hand, each Gauss code in SGn can be viewed as an element of
SGn+1(zero passings through point n+1). Moreover, for each string x ∈ SGn we
can find a string x′ ∈ SGn+1 effectively passing through the point n+1. Indeed,
write x = x1rsx2, x1, x2 ∈ V ∗

n , r, s ∈ Vn(r, s may be different or not). Then, the
string x′ = x1r(n + 1)(n + 1)sx2 is a semi-Gauss code (hence x′ ∈ SGn+1);
Figure 6 indicates the way of constructing a curve for x′, starting from a curve
for x(the dotted ”region” of the x-curve remains unchanged).

Fig. 6

Clearly, SG1 is a regular language.
Problem 4. Which is the place of languages SGn, n ≥ 2, in the Chomsky

hierarchy? Are there ”simple” characterizations of SGn for small values of
n(n = 2, for example) ?

5 Comparing Gauss-Thue-Langford strings

A natural ”combinatorial puzzle” is now to ask whether a Gauss or a semi-
Gauss code can be square- or cube-free or a Langford string. (Recall that an
(m, n)-Langford string over Vn = {1, 2, . . . , n} is a string x ∈ V ∗

n such that (a)
| x |i= m, 1 ≤ i ≤ n, and (b) for each writing x = x1ix2ix3, | x2 |i= 0, we have
| x2 |= i, 1 ≤ i ≤ n. A string x ∈ V ∗

n fullfilling only condition (b) is called
weak-Langford [6].)

First, let us point out that the strings (12)k1, k ≥ 2, are in SG2(see Figure
7), but contain subwords xt with arbitrarily large t.

Fig. 7

On the other hand, h3(1), for the (classical) Thue morphism h : {1, 2}∗ →
{1, 2}∗ defined by h(1) = 12, h(2) = 21, [13], is a semi-Gauss code. In Figure 8
we provide a curve the semi-Gauss code of which is

h3(1) = 12212112

Fig. 8

A similar (but more complicated) curve can be constructed for

h4(1) = 1221211221121221

Problem 5. We conjecture that all strings hn(1), n ≥ 3, are semi-Gauss codes
(hence there are arbitrarily long cube-free strings in SG2).

As regards the Langford case, there is no (2, n)-Langford string in SGn. This
follows from the necessary Gauss condition quoted above: each (2, n)-Langford
string w contains exactly two occurrences of each i, hence if w ∈ SGn, then w is
a Gauss code; moreover, each (2, n)-Langford string x must contain a substring
1 ≤ k ≤ 1, hence we have V (x, 1) of odd cardinality, and x cannot be a Gauss
code.

Problem 6. We conjecture that no (m, n)-Langford string, with m ≥ 2, can
be a semi-Gauss code.

On the other hand, there are weak-Langford strings in SG3. One example
is

x = 2312132

corresponding to the curve in Figure 9.

Fig. 9

The problem of finding weak-Langford strings of arbitrary length which are
Gauss codes remains open.

Notes. Problems 1, 5, 6 have been approached and partially solved in [1].
We gratefully acknowledge the bibliographical help provided us by dr. Sorin

Istrail, Wisconsin University, USA. The pictures with lassoing animals are by
Anu Heinimki.

References

[1] J.Cassaigne, S.Schwer, P.Seebold. About Gauss codes. Bull. EATCS, to ap-
pear.

[2] C. F. Gauss. Werke. Teubner, Leipzig, 1900 (pp. 272 and 282 - 286).

[3] B. Grünbaum. Arrangements and spreads. Conf. Board. Math. Sci. Reg.
Conf. Ser. Math. nr. 10, Amer. Math. Soc., Providence, RI, 1972.

[4] C. Langford. Problem. Math. Gazette, 42(1958), 228.

[5] L. Lovász, M. L. Marx. A forbidding substructure characterization of Gauss
codes. Bull. Amer. Math. Soc. 82, 1 (1976), 121 - 122.

[6] S. Marcus. Formal languages before Axel Thue ? Bull. EATCS, 34 (1988),
62.

[7] S. Marcus, Gh. Paun. Langford strings, formal languages and contextual
ambiguity. Intern. J. Computer Math., 26 (1988), 179 - 191.

[8] E. Netto. Lehrbuch der Combinatorik, Leipzig, 1901.

[9] Gh. Paun. Generative mechanisms for economic processes, Ed. Tehnica, Bu-
curesti, 1980 (in Romanian).

[10] Gh. Paun. On Langford-Lyndon-Thue sequences. Bull. EATCS, 34 (1988),
63 - 67.

[11] P. Rosenstiehl. Solution algebrique du probléme de Gauss sur la permuta-
tion des points d’intersection d’une ou plusieurs courbes fermées du plan. C.
R. Acad. Sci. Paris, 283, 8 (1976), 551 - 553.

[12] P. Rosenstiehl, R. J. Tarjan. Gauss codes, planar hamiltonian graphs, and
stack-sortable permutations. J. Algorithms, 5 (1984), 391 - 407.

[13] A. Salomaa. Two-way Thue. Bull. EATCS, 32 (1987), 82 - 86.

[14] A. Thue. Uber unendliche Zeichenreihen. Videns. selskapets Skrifter, Kris-
tiania, 1906, 1 - 22.

