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Abstract 

We investigate languages consisting of words following one of the given finitely many 

patterns. The issues concerning such multi-pattern languages are relevant in inductive infer- 
ence, theory of learning and term rewriting. We obtain results about decidability, characteriza- 
tion, hierarchies and special classes of multi-pattern languages. Some open problems are also 
presented. 

1. Introduction 

A natural way of describing a given sample of words is to exhibit a common pattern 

or patterns for the words. Such an approach is especially appropriate if the sample set 

is growing, for instance, through some learning process. Finding patterns for sample 

sets is a typical problem of inductive inference [S]. Languages defined by patterns are 

also closely related to word rewriting systems with variables [lo]. 

Although the idea of patterns goes back to the seminal work of Thue [13] and was 

afterwards studied for instance in [3], pattern languages in the sense investigated in 

this paper were introduced by Angluin [2]. One starts with two disjoint alphabets, the 

alphabet Z of terminals and the alphabet V of variables. A pattern u is a word over the 

union Z u V. Thus, for Z = (0, l} and V = {x, y, z}, a = 0x1 lxy is a pattern. A pattern 

defines a language consisting of words “following the pattern a”. This means words 

obtained from Ed by uniformly substituting arbitrary terminal words for the variables. 

According to [2], the terminal words must be nonempty. We refer to this as the 

nonerasing or NE-case, a is then called also an NE-pattern. An essentially different 

theory results in the erasing or E-case [S, 91. For instance, 01111 is in the language 
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defined by the E-pattern c1= 0x1 lxy but not in the language defined by the NE- 

pattern CI. 
A natural way to generalize such pattern languages is to start with an arbitrary finite 

number of patterns instead of just a single one. In this paper we will investigate such 
multi-pattern languages. Indeed, in many cases no reasonable description of a sample 
set can be obtained using one pattern only. For instance, such a case results when the 
sample consists of lots of words with two different prefixes like 0001 and 1100. Then 
two patterns describe the sample much more appropriately than one. 

A brief description of the contents of the paper follows. The basic definitions, as well 
as some initial results, are given in Section 2. Section 3 contains comparisons between 
multi-pattern languages and some other language families, namely, languages of 
simple matrix grammars [7] and languages of cooperating distributed grammar 
systems [4]. Such comparisons give results about the generative capacity of multi- 
patterns, as well as make it possible to transfer results concerning other languages to 
concern multi-pattern languages. Section 4 establishes an important undecidability 
result: it is undecidable whether or not a given context-free language is multi-pattern. 
The decidability status of the reverse problem (whether or not a given multi-pattern 
language is context-free) is open. 

Section 5 deals with the hierarchy of language families obtained by increasing the 
number of patterns, and Section 6 closure properties of the family of multi-pattern 
languages. An important subclass, languages generated by repetition-free patterns, is 
investigated in Section 7. The concluding Section 8 contains some remarks about the 
ambiguity of pattern and multi-pattern languages. 

This paper is largely self-contained. The reader is referred to [2,6,8-lo] for more 
background and motivations, and to [12] for all unexplained notions in language 
theory. 

2. Basic notions and preliminary results 

Let Z be an alphabet (of terminals) and let V be an alphabet (of variables) such that 
C n I/ = 8. The set of words over C u V is denoted by (C u I’)* and the empty word is 
denoted by II. A pattern u is word over C u V, i.e. CG(Z u V)*. Let Hz,” be the set of 
morphisms h,h:(Z u V)* + (C u V)*. 

We view patterns c1 as E-patterns (E from “erasing”) and NE-patterns (“noneras- 
ing”). The language generated by the E-pattern uo(C u V)* is defined as 

L E,P = {weC* 1 w = h(or) for some II~:H~,~ such that h(a) = a for each agC}. 

The language generated by the NE-pattern tl, cre(C u V)* is 

L NE.z = (wgZ* ( w = h(a) for some R-free heH, v 

such that h(a) = a for each a&}. 

If C is understood, we use also the notations LE(~) and LNE(a). 
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A multi-pattern K is a finite set of patterns, rr = {tlI, az, . . . , a.}, aie(Z u I/)*, 
i = 1, . . ..n. 

The language generated by an E-multi-pattern {al,a2, . . . . a.), aie(Z u V)*, 
i=l , . . ..n. is 

&s,z(al, . . . . a,) = i, Lkz(4). 

i=l 

The language generated by an NE-multi-pattern {aI, a2, . . . , a,}, aiE(Z u V)*, 
i=l , . . ..n. is 

n 
f&.,&r, . . ..a.) = tJ kd4. 

i=l 

We introduce the family of erasing multi-pattern languages of degree n as 

MPLE(n) = {L 1 L = LE,z(aIr . . . . a,) for some multi-pattern {a,, . . . . a,}} 

and the family of erasing multi-pattern languages as 

MPLE = u MPLE(n). 
It>0 

Analogously, the family of nonerasing multi-pattern languages of degree n is defined as 

MPLNE(n) = {LI LNE,I(aI, . . . . a,) for some multi-pattern {aI, . . . . a,>} 

and the family of nonerasing multi-pattern languages as 

MPLNE = u MPLNE(n). 
iI20 

We write also Ls,~(rr), LNE,z(71) for n = {aI, . . . ,a.}, aie(C U V)*, i = 1, . . . , n. 

Lemma 1 (Jiang et al. [9]). Let V be a set of variables, Z be a terminal alphabet and 
f2 z C. Consider a pattern a+ v V)*. Then there exist efectively m 2 1 and patterns 

al, . . ..a.,&u V)* such that 

L_Aa) = i, hkz.&i)~ 
i=l 

Consequently, 

MPLE = MPLNE. 

When the model E/NE is not relevant we write Lz(a) instead of LE,z(~) or LNE,z(x). 
We write also briefly MPL = MPLE (= MPLNE). 

There are essential differences between languages generated by E-patterns and 
NE-patterns, [8,9]. For instance, while the equivalence problem is trivially decidable 
for NE-patterns (that is, the problem of whether two given NE-patterns generate the 
same language), its decidability status is open for E-patterns. Lemma 1 shows that, as 
far as the generated language families are concerned, there is no difference between 
E- and NE-multi-patterns. 
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Clearly, L.&z) E L.&I) iff L&Y) = &(a,/?). (This holds both for E- and NE-pat- 
terns.) Since the inclusion is undecidable [9] for pattern languages (both E and NE) 
and membership is NP-complete [2,8] we obtain the following result. 

Theorem 1. The equivalence and the inclusion problems are undecidable for the family 
MPLE = MPLNE. The membership problem is NP-complete for languages in this 
family. 

One may consider terminal-free patterns, that is, words over the alphabet of 
variables. As regards single patterns, the inclusion problem is decidable in the E-case 
but open in the NE-case. As regards multi-patterns, the decidability of both equiva- 
lence and inclusion problems is open. 

Instead of allowing arbitrary (uniform) substitutions for the variables, one may 
restrict the substitutions in various ways. A generative approach was taken in [6]. 
Initially one has a finite set of words that can be used in the substitutions. Whenever 
new words have resulted from the patterns, they become available for forthcoming 
substitutions. 

Another possibility is to associate to each variable x a language K(x), see also Cl]; 
only words from K(x) can be substituted for x. In the definitions above, K(x) = C* for 
E-patterns, and K(x) = Z+ for NE-patterns. 

If K(x) is regular for every variable x, we speak of multi-pattern languages with 
regular substitutions. Their family is denoted by MPLREG. Clearly, we have the strict 
inclusion. 

MPLE c MPLREC . 

3. Simulations of multi-patterns mechanisms 

We now show that the family MPLE, in fact the family MPLEREG, is contained in 
some other language families such as the well-known family ETOL [ 111. This gives an 
idea of the generative capacity of the mechanism of multi-patterns, as well as the 
possibility of applying to multi-pattern languages results concerning some other 
languages. 

We begin with some further definitions. 

Definition. A cooperating distributed grammar system (shortly a CD grammar system) 
is an (n + 2) tuple, 

r = (T,G,G,, . . ..G.% 

where (i) for 1 < i < n, each Gi = (Nip z’, Pi) is a context-free grammar with the set Ni of 
nonterminals, the set z of terminals, the set Pi of context-free rules, and without an axiom. 
(ii) T E U:= 1 T;:, 

(iii) S~uy= 1 Ni. 
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The grammars Gi, 1 < i G n, are called the components of r. Further we set 
K= Niuzand 

Definition. Let r be a CD grammar system and let x, y be in v. The string x derives 
in Gi the string y using the t-mode of derivation, denoted x =- fG, y, iff x =- 2, y and there 
is no z, z # y, with y + 2, z. 

Definition. If r is a CD grammar system then the language generated by r in the 
t-mode of derivation, denoted L,(T), is defined as the set of all words ZE T * for which 
there is a derivation 

Denote by CD, the family of all languages generated by CD grammar systems in the 
t-mode of derivation. 

Theorem 2. MPL REG c CD, and the inclusion is proper. 

Proof. First, assume that a is a pattern over Z u K Let L,,, be the regular language 
corresponding to the variable x. For each XE V, let A, = (C, QX, qO,_ F,, 6,) be a finite 
deterministic automaton such that L(A,) = Lx,.. 

If alph(a)r\ V= (xl,..., xk}, k 3 0, then consider the nonterminals: [q,j], qEQx,, 

1 < j < k. Consider also, the morphism h defined by h(a) = a,aEZ and 

h(xj) = C~o.x,A 1 <j < k. 
Then construct the CD grammar system r with the terminal alphabet C, the axiom 

S, and the nonterminal alphabet. 

N = {S) u {CW~ 11 Gj G k FQ,,) L-J {(cdl 1 Gj G k CFQ,,) 

and the components having all the same alphabets N, T and the following sets of 
productions: 

PO = {S + h(a)), 

Pj.a = {CM -+ a(6,,(q,a),j)Iq~Q,), 1 Gi < k =C, 

Pl,,. = { Cq,f + a I q@,,}, 1 < j < k, acZ, 

Pj = {hi) + CCII I ~EQ,,}, 1 <j < k. 

The component PO introduces a string h(a), obtained from a by replacing each variable 
xj with [qO,X,.jJ The use of a component Pi,. in the t-mode (when an enabled 
component works as long as possible) replaces all occurrences of [q,J by the same 
symbol acZ. The components Pj return systematically the symbols (q,j) into [q,j]. 
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The derivation can be finished by components Pi... The determinism of the automa- 
ton and the t-mode of the derivation ensure the fact that from each occurrence of 
a variable xj in a we generate the same string. Consequently, Lr(crl, . . . , a,) = L,(T). 

Note that the family CD, is closed under union (see [4]) and hence any language 
from MPLREG is in CD,. 

The above inclusion is proper. This assertion follows from the fact that the language 

L = {a”b”ln 2 l> 

is not in MPLREC. Indeed, assume that L = Lia,bj(q, . . . . a,) for some patterns 

al, v--t IX,. For each XE V we have either L, E a* or Lx c b* or L, s a+b+. If in one 
pattern ai we have a variable of one of the first two types, then strings a”bm, n # m, can 
be produced. On the other hand, a variable x with L, E a+b+ cannot appear twice. 
Consequently the obtained strings are of the form aia”bmbj for a”bmczLx, for some 
i,j 2 0. Such languages are regular, hence we cannot have L = LIo,6J(tlI, . . . , a,). 0 

Corollary. MPLREC c E TOL. 

Proof. It is known (see [4]) that CD, = ETOL. 0 

Definition (Zbarra [7]). A regular simple matrix grammar of degree n is an ordered 
system G = (N,, . . . . N,, V, P, S), where Ni, 1 < i < n, are finite sets of nonterminals, 
V is a terminal alphabet, S is the start symbol, 

S$VuiJNi 
i=l 

and P is a finite set of n-dimensional vectors of rules, (rl, . . . , r,), such that each rule ri is 
a regular rule over the alphabet Ni u V. Moreover, P contains also rules (S + u), with 
urzV* and rules (S + uOXlul . . . Xnun), where UjE V*, j = O,l, . . . . n and XiENi, 
i = 1, . . ..n. 

Let G be a regular simple matrix grammar of degree n. G defines a relation of direct 

derivation as 

and uOXlul . . . X,,u,, * GUOtilU1 . . . u,u, iff (Xi + al, . . . . X, + u&P, where UjE V*, 

j = O,l, . . . . n, XiEN~, i = 1, . . . . n,ukE(Vu Nk)*, k = 1, . . . . n. 
The derivation relation induced by G, denoted * 2, is the reflexive and transitive 

closure of * c. 
The language generated by a regular simple matrix grammar G of degree n is 

L(G)= (wEV*IS*EW}. 

Notation. RLSM is the family of all regular simple matrix languages. 
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Theorem 3. MPLREo E RLSM. 

Proof. Assume that a is a pattern over C u V. For each XE V, let 

A, = (LQx,qo,x, x, x F 6 ) be a finite deterministic automaton such that I&4,) = L,,,. 

Ifa = BOXIBI . ..&lBm. where pjEC*, XiE V, 0 < j < m, 1 < i < m, then consider the 
nonterminals: [q,j], qEQx,, 1 <j < m. Denote 

a’ = BoC4lL,, lIPI ... C40,x,,~l/L* 

Construct the right linear simple matrix grammar G = (Z, VI, . . . . V,,S, M) with 

6 = { [q, j] 1 qEQx,}, 1 < j < m, and M containing the following matrices: 
(1) (S --, cl’). 

(2) (C41911 + YIc~(qI,Yd, 11, -**> Ca,,,ml + ~mC~(qm,~m),ml), where qjEQxj> yjE{a,A), 
for some given UEC, 1 < j < m, such that yj, = yj2 = ... = yj, = a for 
xj, = xj2 = . . . = xj,., X, # xj, for s 4 {jI, . . . . jr} and yS = 1 for s $ {jr, . . . . j,}. 

(3) (C41,ll + A . . . . [qm, m] + A), where qjE Fx,, 1 < j < m. 
The determinism of the involved finite automata, the mode of derivation in right 

linear simple matrix grammars and the way of defining the matrices of G ensure the 
equality L(G) = L,&). 

The family of right linear simple matrix languages is closed under union and hence 
any multi-pattern language is a right linear simple matrix language. 

Moreover, the inclusion is proper. Consider again the language 

L = {a”b” 1 n 2 l}) 

which is a right linear simple matrix language but is not a multi-pattern language (see 
the second part of the proof of Theorem 3). q 

Corollary. Every language in MPL REG is semilinear (hence the one-letter languages in 

MPLnso are regular). 

Proof. The property holds for languages in RLSM. 0 

Corollary. The emptiness and thefiniteness of the intersection of a language in MPLsso 
with a regular language is decidable. It is also decidable whether or not a language in 
MPLREC is included in a regular language. 

Proof. The family RLSM is closed under intersection with regular sets and the 
emptiness and finiteness problems are decidable for RLSM. As L E R iff 
L n (V* - R) = 0, also the inclusion in a regular language is decidable. 0 

Remark. Consider now the particular case of the family MPL. From the preceding 
theorem we have 

MPLcCD, = ETOL, 

MPLcRLSM. 
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The properness of these inclusions follows from Theorem 3, but a stronger assertion is 
true: there are regular languages not in MPL. For example L = a*b is not in MPL: the 
language is infinite, hence patterns with at least one variable are used, therefore {a, b}* 
must be included in Sub(L) which is not true. (Here Sub(L) denotes the set of subwords 
of the words in L.) 

Some necessary conditions for a language L to be in MPL are: 
(i) The language L has to be semilinear (consequence of Theorem 3). 

(ii) If L is infinite, L c Z*, then C* c Sub(L). 
(iii) If L is infinite, L G Z*, card(C) >, 2, then L is not “slender”, that is, there is no 

constant k such that, for all n, the set of words in L of length n is of cardinal- 
ity < k. 

4. Multi-pattern and context-free languages 

In this section we investigate the interrelation between multi-pattern and context- 
free languages. Repetitions of the same variable induce a noncontext-free feature in 
pattern languages. On the other hand, very simple context-free (even regular) lan- 
guages such as a*b are not multi-pattern. 

We will prove in this section that it is in general undecidable whether or not a given 
context-free language is multi-pattern. The proof, a reduction to the Post-Corres- 
pondence Problem, has some novel features which we believe are applicable also in 
similar situations elsewhere. In particular, our context-free languages associated to 
the given instance of the Post-Correspondence Problem are somewhat unusual. 

Theorem 4. It is not decidable whether or not an arbitrary given context-free language is 
in MPL. 

Proof. Take two arbitrary n-tuples of nonempty strings over the alphabet {a, b}, 

d = (61, . . . . 6.), z = (Zl, . . . . z,,), and consider the following languages: 

LY = { br1ai1br2ai2 . . . brkaikcyik . . . yil 1 k > 3, 1 G ik < n, 1 < tj < 3, 

tj Gj(mod3), 1 <j< k} 

for YE{~, ~1, 

Ls = {w,cw,czlt,clt, 1 wl, wd,zE{u, b}*}, 

Lb,4 = {a,hc)* - ((L,{c}{a,b}*{c}~~il,)nL~,). 

(Here G2 denotes mirror image.) We just prove that L(a, z) is a context-free language 
and that it is equal to {a, b, c}* if and only if PCP(a, z) has no solution. 

Assertion I. The language L(a,7) is a context-free language. 
It is easy to observe that the language 

((L{c) {~,b)*(c)~J n Ls) 
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is a deterministic context-free language and hence the complement of this language is 
a context-free language. Therefore, it follows Assertion I. 

Now, clearly, when L(a, r) = {a, b, c}*, then L(a, r) is a multi-pattern language. 
We shall prove that, if L(o, r) # {a, b, c], then L(a, r) is not a multi-pattern language, 

and this will end the proof. 
Assume L(G, r) = Lio,b,ej(al, . . . . a,), where al, . . . , a, are patterns over {a, b, c} u I/. 
For every solution (ii, . . . , ik) of PCP(o, r), the strings: 

b&,2&,3&,&,2 . . . b’kaikcb. ,k . . . uilc8c~i”il . . . .Zi,Caikbtk . . . ailb (*) 

are not in L(o, 7). On the other hand, for all values of m, the language L(o, r) contains 
strings of the form 

(btlail . . . bikaik)“’ . . . (uikbtk . . . ai’b”)m. (**) 

In order to obtain the strings of the form (**) we need pattern a@ {a, b} u V)*, 

lalv > 0. 
Examine the possible form of these patterns. 
(1) If there is a pattern ylxy2 with y1,y2e{a,b}* then we must have 

@‘Iail . . . b’kaik)m = yIy;, (a’“b’” . . . dlb”)” = y;y2, 

for some words y;,y; in (a, b}*. For x replaced by 

(***) 

we obtain a string of the form (*) (with 6 = A), a contradiction. 
Therefore, all patterns used in generating strings of the form (**) are of the form 

Y~XY~YY~, with yl, y2~{a, b}*, x, YE V, y3c( Vu {a, b})*. Again yl, y2 must satisfy the 
condition (***). 

(2) If there is such a pattern with x # y, then we can replace x with y;c(ai, . . . Gil)mC, 

y with c(?ii, . . . ?c)“cy; and irrespective of the form of y3, we obtain a string of the type 
(*) (with an arbitrary 6), a contradiction. 

(3) In conclusion, all patterns used in generating strings of the form (**) are of the 
form Y~XY~XY~, with yl,y2,y3 as above. 

As yl,y2 are given (in a finite set of patterns) and m can be arbitrarily large, the 
string which replaces the two specified occurrences of x will contribute one to 
(bllail . . . btkaik)” and the other to (aikbtk ,.. uilb’l)m. However, the substrings b” appear 
on the left side in the order b, b2, b3, b, . . . and in the reverse order b, b3, b2, b, . . . on the 
right side. This implies that the two occurrences of x can introduce at most one 
substring b” each, if we want to obtain a string of the form (**). 

It follows that, in order to generate the strings (**), we have to essentially use the 
part y3 of the pattern, namely with y,x generating a prefix and xy2 a suffix of a string 

(**)* 
We continue now by examining the possible forms of y3. 
If it is of the forms considered in cases (l), (2) above, then we obtain a contradiction 

in the same way. 
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If it is of the form in case (3) (y3 = y3,1zy,,,zy,,,,y,,,,~~,~~{~,~~*, z~V, 
Y~E( {a, b} u I’)*) then we continue the procedure. However, this can be done only 
finitely many times (the set of patterns is finite), hence eventually we either reach one 
of the cases (l), (2) - hence a contradiction - or we find a string over {a, b}, without 
variables. In this last case, only strings (**) with a bounded m can be produced 
- a contradiction which concludes the proof. 0 

Theorem 5. It is not decidable whether or not an arbitrary given context-free language is 
in MPLREC. 

Proof. Similar to the proof of Theorem 4. 0 

Open problems: Is it decidable whether or not: (1) a regular language is in MPL? 
(2) a language in MPL is a regular (context-free) language? 

5. Hierarchies 

We will now prove that a strictly increasing hierarchy of language families is 
obtained by increasing the number of generating patterns. This holds both in the E- 
and NE-case. Observe that, in spite of the overall equality 

MPLE = MPLNE( = MPL), 

there are differences between E- and NE-cases if only a fixed number of patterns is 
allowed. For instance, (card(C))’ E-patterns are needed to generate the language 
generated by the single NE-pattern xy. 

Theorem 6. The number of patterns dejnes an injinite hierarchy: 

MPLE(n)c MPLE(n + l), n > 1, 

MPLNE(n)c MPLNE(n + l), n > 1. 

Proof. Consider the sequence of prime numbers 

p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . 

the alphabet C = {u} and the set of patterns 

,rk = {xp1,xp2 ,..., xPr}, k 2 1. 

Clearly, an + 1 is in Lz,.(nk+ 1) (replace x by a in xPr+ ‘), but up”+ 1 is not in &,(r&). 
The strings in L&Q) are either 1, up1, . . ., am or their multiples (hence nonprime 
exponents). It is easy to see that MPLE(k)cMPLE(k + l), MPLNE(k)c 
MPLNE(k + l), k 2 1, and that the inclusions are strict. 0 
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6. Closure properties 

We begin with the following simple observation. 

Theorem 7. For L E {a}*, LEMPL if and only if L is regular. 

Proof. If LEMPL, then L is regular, because the property holds for RLSM (see 
Section 3). 

If L E {a}*, L regular, then there is a finite set F and positive integers pl, . . . , pk and 
q such that 

L={a”InEForn=pi+qj,j>O,l<i<k}. 

Therefore, L = LI,)(n) for 

n={a”~n~F}u{aP*x~~l~i~k}. 0 

The closure properties of MPL are summarized in the next theorem. 

Theorem 8. Thefamily MPL is an anti-AFL, but it is closed under right/left derivatives. 
It is not closed under right/left quotients with regular sets, intersection and complement. 

Proof. The family MPL is not closed under any of the following operations: 
Union: a+EMPL, {b}EMPL but a+ v {b} $ MPL. (Note that if L1, L,EMPL and 

alph(L1) = alph(Lz), then L1 u L,EMPL, construct the union of the patterns generat- 
ing the two languages.) 

Concatenation: a+EMPL, {b}EMPL but a+(b) 4 MPL. Again, if alph(L1) = 
alph(L,), then LIL,gMPL; rename the variable of the multi-pattern of Lz and 
catenate each pattern corresponding to L1 to each pattern corresponding to Lz. 

Kleene + : {ab}EMPL, but {ab}+ $ MPL. 
Intersection with regular languages: Z*EMPL for all C; if card(Z) > 2, there are 

regular languages over C which are not in MPL. 
Morphisms: a+EMPL, but h(a+) = {ab)+ 4 MPL, for h(u) = ab. 
Znverse morphisms: {b}EMPL, but h-‘(b) = a*ba* $ MPL for h(u) = 2, h(b) = b. 
Left/right derivatives: Take al, . . . . a, patterns over C v V and BEC+. For every 

variable XE V, consider the replacement rules 

x -+ y, WC*, 0 G IYI < WI, 

x + Y-% WC*, IYI = IA. 

For every pattern ai consider all the patterns obtained by consistently applying an 
arbitrary set of such rules to ai (every occurrence of some x is replaced by the same 
string y or yx as above). We obtain in this way a set of patterns a;, . . . , a; such that 

L&l, . . . . a,) = Lp(a;, ,.., a:) and each ai is either in C* or it has every variable 
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x with a left context in C* of length at least l/II. Then clearly 

$#&r, . . . . a,)) = 4&(a~, . . . , c&J). 

which proves the closure under left derivatives. The case of the right derivatives is 
symmetric. 

Left/right quotients by regular languages. Take a = xabax, C = {a, b} and the 
regular language R = b’a+b’. Because 

-%(a) = {BaWIBE{a,b)*}, 

we have 

R-ILL(a) = {yabab’a”b’y 1 n 2 1, yE{a, b}*J 

(the prefix b2a”b2 of a string flaba/ in L,(a) must be a prefix of /I, due to the presence of 
the string aba). 

Assume that R-IL,(a) = L,(aI, . . . . a,,,) for some patterns al, . . . . a,,, over {a, 6) u V. 
In every pattern we can replace every variable with aba, hence every pattern must 

contain at least two substrings b 2. At least one pattern must contain exactly two 
strings b2, because 

a”abab2aPb2a”ER-‘L,(a), 

for all n, p > 1. 
More exactly, there are patterns of the form wIabab2w2b2w3, with wi, w2, 

W~E(VU {a})*. If all such patterns have w,~{a}*, then only finitely many strings of 
the form a”abab2aPb2a” can be obtained, for a given n. Consequently, there is a pattern 
w,abab2w2b2w3 with w2 containing a variable. Replace in this pattern all variables by 
aba. The obtained string is of the form ~Iabab2j?2bj?3b2j?4 with /II, B2, /IS, /IqE(aba, c}*, 
and such strings are not in R - 'L=(a), a contradiction. The case of the right quotients is 
symmetric. 

Intersection: Assume that: C = {a, b}, a1 = xxab, a2 = xbax. Then 

L,(al) n Lz(a2) = {/Id* 1 there are y, &C* such that /I = yyab = abaa}. 

Take the equation yyab = 6baS. It follows that either S = 6, y = b (hence 
bbabeL,(a,)n L,(a2)) or 6 = al ab, hence yyab = Glabbadlab, yy = GIabbadI. This 
implies y = dlab, y = ba&, hence &ab = badl. Therefore, 6, = (ba)kb, for k 2 0. Thus 
we obtain 6 = (ba)‘bab = (ba)k+ ‘b, y = (barbab = (ba)k+ ‘b. 

In conclusion, 

L,(a,) n L,(a2) = {(bar+‘b(ba)k+‘bab I k 2 0} u {bbab} = {(ba)kb(barbab I k 2 01. 

This language is not in MPL because, for instance, aa is not a subword of its strings. 
Complement: The language L = {a, b}*ab(a, b}* is in MPL but {a, b}* - L = b*a* 

does not contain the substring ab, hence it is not in MPL. 0 
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Theorem 9. The family MPLnso is closed under union, concatenation morphisms, 
intersection with regular languages, but not closed under Kleene + and inverse 
morphisms. 

Proof. Union: Consider two multi-patterns 

~1 = {al, . . ..aJ. =2 = {Sl, . . ..bJ 

and take 7r2 = (aI, . . . . a,fll, . . . . @,,J with the same languages Lx,,,, Lx,,. Then 

L,(%) = LZ(14 u Lzb2). 

Concatenation: Assume that x1 = (ar, . . . . a,}, x2 = { /3t, . . . . /I,,,}, replace all vari- 
ables in 7t2 with primed symbols and take rr3 = {ai/3J 11 < i G n, 1 < j < m}, with the 
same languages L,,_ and with Lx,,s, = Lx,,. We have Lz(x3) = L,(a,)L,(n,). 

Morphisms: Consider that IL = (at, . . ..a.) and h:C* + C+. Take 

44 = {h(ar), . . . . Ma,)} and G,., = h(L,,.,), 1 < i < n. Clearly, h(L,(z)) = L,(h(lc)). 
Intersection with regular languages: Let rr = {aI, . . . . a,) be a multi-pattern over 

Vu .Z with the regular languages associated to variables L,,.,, 1 < i < n, XE V. For 
R E C* a regular language, consider a deterministic finite automaton A = 
(Q,z,go,F,G). For a pattern ai=Bi,lxi,l...xi,~,Bi,~,+I,Bi,l~~*, Xi,jEf’for all i,j, 
consider all the strings of the following form 

P = Bi,l(419xi.174; )...(4~r,Xi.kt,q;i)Bi,ki+l, 

where 

41 = s(q09 Pi, lh 4j+ 1 = 6(qj9 Pi, j+ 119 l<j<ki-1, d(& 7 Bi.k,+ I)EF- 

For each such string p and for each XE V appearing in it, let M be 

M = {(s, s’) 1 (s, x, s’) appears in p} 

and define 

Z! = n (yELx/6(s,y) = s’}. 
(S.S’)EM 

Note that these languages are all regular. 
For each string p consider now the pattern obtained by replacing again all triples 

(s, x, s’) with x. (For a given ai we have more strings p, but for each p we obtain now 
only one pattern with languages Lx associated as above.) 

Denote by rr’ the set of all patterns obtained in this way. We have 
L=(x) n R = Lr(n’). 

Kleene + : The following language L = {ca”ca”c 1 n 2 l} is in MPL because L = 
Ls(cxcxc) with L, = a+. But, L+ 4 RLSM, hence L’ $ MPLREC. 

Inverse msrphisms: Assume that Z = {a, b}, a = cxcx, with Lx = (ab)+, that is 
L,(a) = (c(ab)“c(ab)” 1 n 2 11. Consider also h: (a, b,c,d) + (a, b,c)* defined by 
h(a) = ca, h(b) = ba, h(c) = bc, h(d) = ab. We obtain h-‘(L,(a)) = {ab"-'cd" 1 n 2 l}, 
which is not in MPLREG (the substrings b”- ‘, d” must be obtained using different 
variables, hence the powers cannot be related). 0 
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7. Repetition-free multi-patterns 

The study of multi-patterns is closely related to the study of word rewriting 
systems with variables (WRSV), see for instance, [lo]. In particular, questions con- 
cerning the set Red(R) of words reducible by a WRS V, R, can be expressed as questions 
concerning multi-pattern languages. For instance, the ground reducibility problem 
amounts to the problem of inclusion of a certain pattern language in a certain 
multi-pattern language. Usually, this leads to undecidable situations. However, many 
problems became decidable if the patterns involved are repetition-free, meaning that 
no variable appears twice in any given pattern. (The corresponding WRSV’s are often 
referred to as “linear”.) 

The following result is obvious. 

Theorem 10. Every repetition-free MPL is regular. 

We say that (a, . . . , a,) is a minimal representation for an MPL L = L(aI, . . . , a,,) if, for 
no i, L(aJ E uj + i L(aj). (Thus, every tli is needed.) We do not know any instances of 
regular MPL languages not having a minimal repetition-free representation. 

By Theorem 7, all decidability properties of regular languages concern also 
repetiton-free MPL languages. Particularly interesting from the point of view of 
pattern languages is the decidability ofjniteness of the complement. It is also likely that 
every regular MPL language is effectively regular. (That is, if we know that an MPL, 
L, is regular, we can construct a regular expression for L.) 

The following result is very interesting, in view of the undecidability of the inclusion 
for ordinary pattern languages. 

Theorem 11. The inclusion K E L is decidable for pairs (K, L), where K and L 
are MPL and L is regular. Hence, it is decidable for MPL pairs (K, L), where L is 
repetition-free. 

Proof. (1) By the corollary of Theorem 3, K is ETOL. Hence, K E L if and only if 
Kf-l - L = 8, where N L means the complement of L. K n - L is in ETOL, by the 
closure properties of ETOL. Hence, its emptiness is decidable. 

The next proof provides an idea of a straight algorithm for the above problem. 
(2) The proof uses the idea of ajnite test set. We prove that we can compute from 

K and L a bound B such that if every work of K, obtained by assigning to each of the 
variables a word of length < B, is in L, then also K E L. Indeed, we claim that we can 
choose B = qr, where q is the number of states in a deterministic finite automaton, 
DFA, accepting the complement of L, and p is the maximal number of occurrences of 
a single variable in one of the patterns defining K. 

We proceed indirectly and assume that this test does not work. This means that 
K Q L but we do not find out this using words in the test set. In other words, there 
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exists some string w~L(a) n w L, where u is one of the patterns in K, but in order to 
get w, we have substituted a variable x in c1 by a word u with k = JuI 2 qP + 1. We 
prove that we could as well use a shorter word U’ for x and get a word W’E L(a) n w L. 

The variable x occurs in w altogether n < p times. We are interested in the 
corresponding n occurrences of the subword u in w: 

w= . ..u...u...u... 

When reading w from left to right, we observe after each letter the state DFA 
is in. When considering the n occurrences of u, we obtain in this way the n-tuples of 
states 

(d I ,..., s;), l<i< k. 

Thus, the n-tuple (s:, . . . , sl) gives the state DFA is in after reading the last letter of each 
of the n occurrences of u. 

Since k > qp 2 q”, there are i and j, i < j, such that s! = sj, . . . . s; = ~3. This means 
that if the letters with numbers i + 1 , . . . , j (inclusive) are omitted from u, the resulting 
word u’ satisfies the requirements states above. 0 

We consider repetition-free MPL’s. The terminal words occurring in the patterns 
are finite in number but the patterns tell also the ordering of these terminal words. In 
some cases such an ordering is not necessary. We consider here the E-interpretation. 

We say that an MPL language L has ajnite subword characterization if L is defined 
by patterns of the form xwy, weC*. For example, the MPL language C*aC*bZ*, 
C = {a, b}, has the finite subword characterization C*abZ*. The MPL language 
C*aC*bZ*aZ* has no finite subword characterization. 

Theorem 12. It is decidable whether or not a given regular (hence, a given repetition- 
free) MPL language L has a finite subword characterization. 

Proof. If w i, . . . , wk are the words used in the finite subword characterization, we may 
assume that none of them is a proper subword of the other. This follows because if 
wj is a proper subword of wi, then 

LE(xwiY)c LE(xwjY) 

and thus wi can be omitted. Thus, we have to find out whether L contains infinitely 
many words with this property. This is the case iff 

LnC( w L)n( w L)C 

is infinite. For a regular L, this is a decidable property. 0 

The preceding theorem appears in [lo] in a formulation dealing with linear 
WRS y’s. 
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8. Conclusion. Ambiguity 

Numerous other aspects of multi-pattern languages remain to be investigated. Of 
particular interest and importance are issues concerning ambiguity. We hope to return 
to this topic in a forthcoming contribution. 

Ambiguity can be defined in the natural way both for patterns and multi-patterns, 
as well as for the generated languages. Thus, an NE-pattern a is unambiguous iff, for 
every word we&(a), there is a unique substitution for the variables in o! giving rise to 
w. A pattern (resp. multi-pattern) language is unambiguous iff it can be generated by an 
unambiguous pattern (resp. multi-pattern). Degrees of ambiguity can be introduced in 
the usual way. 

An NE-pattern a is unambiguous iff the language L = LNE(a) is unambiguous. This 
follows because every NE-pattern p satisfying L = L&3) results from a by a renam- 
ing of the variables. An analogous statement does not hold for E-patterns. For 
instance, the E-pattern xy is ambiguous (of degree infinity), whereas the language 
L,(xy) = LE(x) is unambiguous. 

It is easy to see that every pattern containing occurrences of a single variable is 
unambiguous. On the other hand, a pattern is ambiguous if it contains occurrences of at 
least two variables but at most one terminal, or occurrences of at least two variables, 
one of which occurs only once in the pattern. We conjecture that all problems dealing 
with the ambiguity of multi-patterns and their languages are decidable. 
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