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Abstract This paper investigates properties of the binary
string and language operation overlap assembly which was
defined by Csuhaj-Varju, Petre and Vaszil as a formal model
of the linear self-assembly of DNA strands: The overlap
assembly of two strings, xy and yz, which share an “over-
lap” y, results in the string xyz. The study of overlap assem-
bly as a formal language operation is part of ongoing ef-
forts to provide a formal framework and rigorous treatment
of DNA-based information and DNA-based computation.
Other studies along these lines include theoretical explo-
rations of splicing systems, insertion/deletion systems, sub-
stitution, hairpin extension, hairpin reduction, superposition,
overlapping catenation, conditional concatenation, contex-
tual intra- and intermolecular recombinations, template-guided
recombination, as well as directed extension by PCR. In this
context, we investigate overlap assembly and its properties:
closure properties of basic language families under this op-
eration, decision problems, as well as the possible use of
iterated overlap assembly to generate combinatorial DNA
libraries.
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1 Introduction

In this paper we investigate properties of a formal language
operation that models the linear self-assembly of DNA strands
which partially “overlap”. This binary operation which, given
input the strands xy and yz (where the overlap y is non-
empty), produces the output xyz, was introduced in [7] where
it was called “(self)-assembly” of strings and languages. To
distinguish it from other types of DNA self-assembly, this
operation is herein called overlap assembly. Experimentally,
(parallel) overlap assembly of DNA strands under the action
of the DNA Polymerase enzyme was used for gene shuffling
in, e.g., [47]. In the context of experimental DNA Comput-
ing, overlap assembly was used in, e.g., [8, 13, 25, 42] for
the formation of combinatorial DNA or RNA libraries. This
operation can also be viewed as modelling a special case of
an experimental procedure called cross-pairing PCR, intro-
duced in [15] and studied in, e.g., [14, 16, 17, 35].

Conceptually, the study of overlap assembly as a formal
language operation is part of a larger effort of formalizing
DNA processes as computations, which dates back to 1987
when Tom Head proposed splicing as a formal language op-
eration that models the recombination of DNA strands un-
der the cut-and-paste action of restriction enzymes and lig-
ases. Various types of splicing systems have been defined
and their properties were studied in, e.g., [18, 19, 27, 31,
43]. Other bio-operations include insertions and deletions of
strands, which are basic processes in RNA editing in molec-
ular biology: based on these, insertion-deletion systems were
defined as formal models of computation and have been widely
studied, see, e.g., [9, 29, 30, 45, 46, 48, 49]. Another exam-
ple of a bio-inspired operation is a type of substitution op-
eration that models errors occurring in DNA-encoded in-
formation, and that was proposed in [28]. Hairpin forma-
tion is a naturally occurring phenomenon whereby a DNA
strand that is partially self-complementary attaches to it-
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self. Based on this phenomenon, the formal language op-
eration called hairpin completion as well as its inverse oper-
ation called hairpin reduction have been defined and exten-
sively studied, see [5,32,36,37]. In the context of studies of
cellular computing, the operations of contextual intra- and
inter-molecular recombinations were proposed in [26, 33],
the operations of loop, direct-repeat excision (ld), hairpin,
inverted-repeat excision/reinsertion (hi) and double loop, al-
ternating direct-repeat excision-reinsertion (dlad) were pro-
posed in [11, 44], and the template-guided recombination
was introduced in [2], as models for gene assembly in cil-
iates. Lastly, in [12], a language operation called directed
extension was proposed, that models the enzymatic activity
of the DNA Polymerase enzyme. The activity of DNA Poly-
merase presupposes the existence of a DNA single strand
called template, and of a second short DNA strand called
primer, that is Watson-Crick complementary to the template
and binds to it. Given a supply of individual nucleotides,
DNA polymerase then extends the primer, at one of its ends
only, by adding invididual nucleotides complementary to the
template nucleotides, one by one, until the end of the tem-
plate is reached. Experimentally, the iteration of this process
is used to obtain an exponential replication of DNA strands,
in a protocol called Polymerase Chain Reaction (PCR).

Among operations related to overlap assembly we cite
the superposition operation, which was studied in [3, 38].
Superposition extends DNA strands in both directions, as-
suming the existence of Okazaki fragments in the solution.
Another related operation, called overlapping concatenation
was introduced as part of a study of tissue P systems, [39],
that was designed to solve the shortest common superstring
problem efficiently [34]. The overlapping concatenation be-
tween two words returns the longer word if it contains the
other word as an infix, and otherwise returns the shortest
string which contains the first word as a prefix and the sec-
ond word as a suffix. Lastly, an operation called conditional
concatenation was introduced in [10]: the conditional con-
catenation of two words returns their concatenation only when
among their substrings (scattered substrings, of various forms)
one can find a pair in a given control set.

This paper, which is a theoretical analysis of overlap as-
sembly as a formal language operation, is organized as fol-
lows. Section 2 contains definitions and notations, including
the definition of overlap assembly. In Sections 3, 4 we prove
closure properties of various language classes under over-
lap assembly and investigate related decision problems. In
Section 5, we investigate the iterated overlap assembly and
demonstrate that, in theory, it can be an effective tool to gen-
erate a DNA combinatorial library.

2 Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ ∗ de-
notes the set of all words over Σ , including the empty word
λ . Σ+ is the set of all non-empty words over Σ . For words
w,x,y,z such that w = xyz we call the subwords x, y, and z
prefix, infix, and suffix of w, respectively. The sets Pref (w),
Inf (w), and Suff (w) contain, respectively, all proper pre-
fixes, infixes, and suffixes of w. By proper, we mean that
the sets do not include the word w itself. This notation is
extended to languages as follows: Suff (L) =

⋃
w∈L Suff (w).

The complement of a language L⊆ Σ ∗ is Lc = Σ ∗\L.
An involution is a function θ : Σ ∗→ Σ ∗ with the prop-

erty that θ 2 is the identity. θ is called an antimorphism if
θ(uv) = θ(v)θ(u). Traditionally, the Watson-Crick comple-
mentarity of DNA strands has been modeled as an antimor-
phic involution over the DNA alphabet ∆ = {A,C,G,T}.

Fig. 1 (a) The two input DNA single-strands, uv and θ(w)θ(v) bind to
each other through their complementary segments v and θ(v), forming
a partially double-stranded DNA complex. (b) DNA Polymerase ex-
tends the 3’ end of the strand uv. (c) DNA polymerase extends the 3’
end of the other strand. The resulting DNA double strand is considered
to be the output of the overlap assembly of the two input single strands.

Using the convention that a word x over this alphabet
represents the DNA single strand x in the 5’ to 3’ direction,
the overlap assembly of a strand uv with a strand θ(w)θ(v)
first forms a partially double-stranded DNA molecule with
v in uv and θ(v) in θ(w)θ(v) attached to each other, see
Figure 1(a). The DNA Polymerase enzyme will extend the
3’ end of uv with the strand w, see Figure 1(b). Similarly,
the 3’ end of θ(w)θ(v) will be extended, resulting in a full
double strand whose upper strand is uvw, see Figure 1(c).
Formally, the overlap assembly between uv and θ(w)θ(v)
is uvw. Assuming that all involved DNA strands are ini-
tially double-stranded, that is, whenever the strand x is avail-
able, its Watson-Crick complement θ(x) is also available,
this model can be simplified as follows: Given two words
x,y over an alphabet Σ , the overlap assembly of x with y is
defined as, [7],

x�y= {z∈Σ
+ | ∃u,w∈Σ

∗,∃v∈Σ
+ : x= uv,y= vw;z= uvw}

The definition of overlap assembly can be extended to lan-
guages in the natural way. Note that, for a realistic model, we
would need additional restrictions such as the fact that the
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“overlap” v should be of a sufficient length for the Watson-
Crick pairing to happen, and should also not appear as a
substring in other strings involved. In this paper, however,
we do not invoke any of these restrictions.

A similar operation, the superposition, has been pro-
posed by Bottoni et al. [3]. The result of the superposition
operation between words x,y∈Σ+, denoted by x�y, consists
of the set of all words z∈ Σ+ obtained by any of the four fol-
lowing cases ( denotes the morphic complement, i.e., is a
mapping such that uv = uv and u = u for all words u,v):

1. If there exist u,v ∈ Σ ∗,w ∈ Σ+ such that x = uw,y = wv,
then z = uwv ∈ x�1 y.

2. If there exist u,v ∈ Σ ∗ such that x = uyv, then z = uyv ∈
x�2 y.

3. If there exist u,v ∈ Σ ∗,w ∈ Σ+ such that x = wv,y = uw,
then z = uwv ∈ x�3 y.

4. If there exist u,v ∈ Σ ∗ such that y = uxv, then z = uxv ∈
x�4 y.

As before, the superposition is naturally extended to lan-
guages. The superposition operation and the overlap assem-
bly are closely related. In particular, when we replace the
complement by the identity, then case 1 is identical to the
overlap assembly x�y = x�1 y; case 3 is symmetrical to the
overlap assembly x� y = y �3 x; furthermore, cases 2 and 4
give x�2 y = y�4 x = x if y is an infix of x. From this obser-
vation, it easily follows that when we consider the overlap
assembly of one language L by itself, we have L�L = L�L.
However, in the general case of two languages or when we
consider a “real” complement function, the overlap assem-
bly Lx�Ly does not give the same result as the superposition
Lx �Ly.

We will use the following notations: NPDA for nonde-
terministic pushdown automaton; DPDA for deterministic
pushdown automaton; NCA for an NPDA that uses only one
stack symbol in addition to the bottom of the stack symbol,
which is never altered; DCA for deterministic NCA; NFA
for nondeterministic finite automaton; DFA for determin-
istic finite automaton; NLBA for nondeterministic linear-
bounded automaton; DLBA for deterministic linear-bounded
automaton; NTM for nondeterministic Turing machine; DTM
for deterministic Turing machine. As is well-known, NFAs,
NPDAs, NLBAs, halting DTMs, and DTMs, accept exactly
the regular languages, context-free languages (CFLs), context-
sensitive languages (CSLs), recursive languages, and recur-
sively enumerable languages. We refer the reader to [20] for
the formal definitions of these devices.

A counter is an integer variable that can be incremented
by 1, decremented by 1, left unchanged, and tested for zero.
It starts at zero and cannot store negative values. Thus, a
counter is a pushdown stack on unary alphabet, in addition
to the bottom of the stack symbol which is never altered.

An automaton (NFA, NPDA, NCA, etc.) can be aug-
mented with a finite number of counters, where the “move”

of the machine also now depends on the status (zero or non-
zero) of the counters, and the move can update the counters.
It is well known that a DFA augmented with two counters is
equivalent to a DTM [41].

In this paper, we will restrict the augmented counter(s)
to be reversal-bounded in the sense that each counter can
only reverse (i.e., change mode from nondecreasing to non-
increasing and vice-versa) at most r times for some given
r. In particular, when r = 1, the counter reverses only once,
i.e., once it decrements, it can no longer increment. Note that
a counter that makes r reversals can be simulated by d r+1

2 e
1-reversal counters. Closure and decidable properties of var-
ious machines augmented with reversal-bounded counters
have been studied in the literature (see, e.g., [21, 22]). We
will use the notation NFCM, NPCM, NCM, etc, to denote an
NFA, NPDA, NCA, etc., augmented with reversal-bounded
counters.

Example 1. L = {xxr | x ∈ (a+ b)+, |x|a = |x|b} can be ac-
cepted by an NPCM M with two 1-reversal counters. (The
notation |x|a denotes the number of a’s in the string x.) Note
that L is not a CFL.

Briefly, M operates as follows: It scans the input and
uses the pushdown stack to check that the input is a palin-
drome (this rquires M to “guess” the middle of the string)
while using two counters C1 and C2 to store the numbers
of a’s and b’s it encounters. Then, at the end of the input,
on λ -transitions (i.e., without reading any input symbol), M
decrements C1 and C2 simultaneusly and verifies that they
become zero at the same time. Note that the counters are
1-reversal.

Example 2. Lk = {x1# · · ·#xk | xi ∈ (a+b)+,x j 6= xk for j 6=
k} can be accepted by an NFCM Mk with k(k + 1)/2 1-
reversal counters.

Mk operates as follows: It reads the input and verifies that
for 1≤ i < j ≤ k, xi and x j disagree in at least one position.
To accomplish this, while scanning xi, Mk stores in counter
Ci a “guessed” position pi of xi and records in the state the
symbol api in that location. Then later, when it is scanning
x j, Mk stores in counter C j a guessed location p j of x j and
records in the state the symbol ap j in that location. At the
end of the input, on λ -transitions, Mk checks that api 6= ap j

and pi = p j (by decrementing counters Ci and C j simulta-
neously and confirming that they become zero at the sanme
time).

3 Closure properties

In this section we study closure properties of various lan-
guage classes under overlap assembly. We begin with the
following general result.



4 Srujan Kumar Enaganti, Oscar H. Ibarra, Lila Kari, Steffen Kopecki

Theorem 1 Let A and B be two families of languages sat-
isfying the following properties, where # is a symbol not in
Σ :

1. If Lx ⊆ Σ ∗ is in A and Ly ⊆ Σ ∗ is in B, then:
L#

x = {u#v | |v|> 0,uv ∈ Lx} is in A , and
L#

y = {v#w | |v|> 0,vw ∈ Ly} is in B.
2. If L1 ⊆ Σ ∗ is in A , then L1#Σ ∗ is in A .

If L2 ⊆ Σ ∗ is in B, then Σ ∗#L2 is in B.
3. A is closed under intersection with languages in B.
4. If L ⊆ Σ ∗#Σ+#Σ ∗ is in A and h is a homomorphism

that maps # to λ (the empty word) and leaves all other
symbols unchanged, then h(L) is in A .

Then A is closed under overlap assembly with B, i.e., for
any Lx ∈A and Ly ∈B, Lx�Ly is in A .

Proof Let Lx,Ly ⊆ Σ ∗ be in A and B, respectively. Let
# be a symbol not in Σ . Then by (1), L#

x is in A and L#
y

is in B. Then by (2), L#
x#Σ ∗ is in A and Σ ∗#L#

y in B.
Since A is closed under intersection with languages in B
by (3), L#

x#Σ ∗∩Σ ∗#L#
y is in A . Finally, from (4), Lx�Ly =

h(L#
x#Σ ∗∩Σ ∗#L#

y) is in A . ut

A symmetric theorem also holds when the roles of A
and B in above theorem are switched.

Corollary 1 The families of regular languages, context-sensitive
languages, recursive languages, recursively enumerable lan-
guages, and NFCM languages are closed under overlap as-
sembly.

Proof Consider the case A = B. It is known or easily veri-
fied that the families above satisfy the properties in Theorem
1. In fact, for each family, one can effectively construct the
machines satisfying the closure properties listed in the theo-
rem. See, e.g., [20, 21]. ut

Corollary 2

1. If Lx is regular (resp., context-free, context-sensitive, re-
cursive, recursively enumerable) and Ly is regular, then
is Lx�Ly is regular (resp., context-free, context-sensitive,
recursive, recursively enumerable).

2. If Lx is regular and Ly is regular (resp., context-free,
context-sensitive, recursive, recursively enumerable), then
Lx�Ly is regular (resp., context-free, context-sensitive,
recursive, recursively enumerable).

Proof Part 1 follows from Theorem 1. Part 2 follows from
the symmetric version of Theorem 1 with the roles of A and
B switched. ut

Corollary 3 If one of Lx and Ly is accepted by an NPCM
and the other is accepted by an NFCM, then Lx�Ly is ac-
cepted by an NPCM.

Proof This follows from Theorem 1 and its symmetric ver-
sion by taking A to be the class of NPCM languages and B
to be the class of NFCM languages. ut

DSPACE(S(n)) (resp., NSPACE(S(n))) denotes the fam-
ily of languages accepted by S(n) space-bounded DTMs (resp.,
NTMs). PTIME denotes the family of languages accepted
by polynomial time-bounded DTMs.

Theorem 2 Let Lx and Ly be CFLs (i.e., accepted by NPDAs).
Then

1. Lx�Ly is in DSPACE((logn)2).
2. Lx�Ly is in PTIME.

Proof Let Lx,Ly ⊆ Σ ∗ be languages. It is known that CFLs
can be accepted by DTMs in (logn)2 space, i.e., they are
in DSPACE((logn)2). So let Mx and My be (logn)2 space-
bounded DTMs that accept Lx and Ly, respectively. We con-
struct a (logn)2 space-bounded DTM M accepting Lx�Ly
as follows. Given input z of length n , M needs to determine
if there is a partition z = uvw for some u,w ∈ Σ ∗ and v ∈ Σ+

such that |v| > 0, uv ∈ Lx and vw ∈ Ly. To do this, M needs
two counters to record the positions i and j where v begins
and ends. These counters need logn space to implement on
the DTM. M can systematically examine all possible values
of 1 ≤ i ≤ j ≤ n to see if for some i ≤ j, uv is accepted by
Mx and vw is accepted by My. Clearly, M operates in (logn)2

space.
The construction for Part 2 follows from Part 1 by noting

that CFLs are in PTIME. ut

Corollary 4 If Lx and Ly are CFLs, then Lx�Ly is a DCSL
(deterministic CSL), but not necessarily a CFL.

Proof That Lx�Ly is a DCSL follows from Theorem 2 and
the observation that DSPACE((logn)2) is properly contained
in DSPACE(n)(the family of DCSLs). Now let

Lx ={#ambmcn$ | m,n≥ 1}
Ly ={#ambncm$ | m,n≥ 1}

Clearly, Lx and Ly are LCFLs. In fact, they can be accepted
by DCAs that make only one reversal on the counters. How-
ever, Lx�Ly = {#ambmcm$ | m≥ 1} is not CF. ut

The ideas in the proof of Theorem 2 can be used to show
the following:

Corollary 5 The space classes NSPACE(S) and DSPACE(S)
are each closed under overlap assembly for any space bound
S(n)≥ logn.

As stated in Corollary 1, the family of NFCM languages
is closed under overlap assembly. We give another proof be-
low as the construction is needed later. For easy reference,
since Corollary 1 includes other families, we restate the re-
sult for NFCM only, in the theorem below.
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Theorem 3 The family of languages accepted by NFCMs is
closed under overlap assembly.

Proof Let Lx and Ly be accepted by NFCMs Mx and My,
respectively. We construct an NFCM M to accept Lx�Ly as
in the proof of of Theorem 2. The only change is that when
given input z, M guesses the beginning and end locations
i and j of v in the partition z = uvw. M simulates Mx on
the prefix of z that ends in position j (i.e., on uv) and starts
simulating My starting in position i of the input z. M accepts
if both Mx and My accepts. Note that if Mx and My have k1
and k2 reversal-bounded counters, respectively, then M will
have k1 + k2 reversal-bounded counters. ut

Let N be the set of non-negative integers and k be a posi-
tive integer. A subset Q of Nk is a linear set if there exist vec-
tors v0,v1, . . . ,vn ∈Nk such that Q= {v0+ i1v1+ · · ·+ invn |
i1, . . . , in ∈ N}. A finite union of linear sets is called a semi-
linear set.

A bounded language L ⊆ w∗1 · · ·w∗k (for some k ≥ 1 and
non-null words w1, . . . ,wk) is semilinear if there is a semilin-
ear set Q⊆ Nk such that L = {wi1

1 · · ·w
ik
k | (i1, . . . , ik) ∈ Q}.

Corollary 6 The family of semilinear languages is closed
under overlap assembly.

Proof It is known that a bounded language L (i.e.,⊆w∗1 · · ·w∗k
for some k ≥ 1 and words w1, . . . ,wk ) is semilinear if and
only if it can be accepted by an NFCM [21]. The result fol-
lows from Theorem 3. ut

Corollary 7 The family of bounded languages accepted by
DFCMs (i.e., DFAs augmented with reversal-bounded coun-
ters) is closed under overlap assembly.

Proof This follows from Corollary 6 and the fact that every
NFCM accepting a bounded language can be converted to
an equivalent DFCM [23]. ut

Finally, we consider the family of languages accepted by
visibly pushdown automata. A visibly pushdown automaton
(VPDA) [1], also known as input-driven pushdown automa-
ton [40], is a restricted version of an NPDA. It is an NPDA
where the input symbol determines the (push/stack) opera-
tion of the stack. It has a distinguished symbol ⊥ at the bot-
tom of the stack which is never altered or occur anywhere
else. The input alphabet Σ is partitioned into three disjoint
alphabets: Σc, Σr, Σ`. The machine pushes a specified sym-
bol on the stack if it reads a call symbol in Σc on the input;
it pops a specified symbol if the specified symbol is at top
of the stack and it is not the bottom of the stack ⊥ (other-
wise it it does not pop ⊥) if it reads a return symbol in Σr
on the input; it does not use the (top symbol of) the stack
and can only change state if it reads a local symbol in Σ` on
the input. The partition into call, return, and local symbols
is a property that is inherent to the alphabet Σ . Therefore, if

two machines Mx and My operate on the same input alpha-
bet Σ , then they have the same set of call, return, and local
symbols, respectively.

A VPDA augmented with reversal-bounded counters is
called VPCM. We allow the machine to have ε-moves, but in
such moves, the stack is not used, only the state and counters
are used and updated. Acceptance of an input string is when
machine eventually falls off the right end of the input in an
accepting state. See [22] for a formal definition.

Theorem 4 The family of languages accepted by VPCMs is
closed under overlap assembly.

Proof The proof is similar to that of Theorem 3. In that
proof, Mx and My are VPCMs. The VPCM M constructed
from Mx and My needs only one pushdown stack, since the
operations on the stack of these two machines (being input-
driven) are synchronized, i.e., Mx pushes, pops, or leaves the
stack unchanged if and only if My pushes, pops, or leaves the
stack unchanged. ut

Clearly, if both Mx and My are VPDAs (i.e., have no
reversal-bounded counters), then so is M. Hence:

Corollary 8 The family of languages accepted by VPDAs is
closed under overlap assembly.

We summarize this section’s results regarding closure
properties of language classes in the Chomsky hierarchy (plus
finite languages) under overlap assembly in Table 1. For
two language classes X and Y , the intersection of row
X with column Y shows the language class Z from the
Chomsky hierarchy such that for all Lx ∈X and Ly ∈Y we
have Lx�Ly ∈ Z . Noting that FIN ⊆ REG ⊆CF ⊆CS ⊆
RE (modulo the condition that λ is not allowed in CS lan-
guages), all the entries in Table 1 (except for the case when
Lx and Ly are finite) follow from Corollary 1. The case when
Lx ∈ FIN and Ly ∈ FIN, the result is in FIN is obvious.

Also note that each entry in the table is the smallest class
from the Chomsky hierarchy which includes Lx�Ly for all
Lx ∈X and Ly ∈ Y . This follows from Corollary 4 and the
following observation: For a language L⊆ Σ ∗ and a symbol
$ /∈ Σ , the languages $L and L$ belong to the same classes
in the Chomsky hierarchy as L. Furthermore, L$�{$}= L$
and {$}�$L = $L.

X \Y FIN REG CF CS RE
FIN FIN REG CF CS RE
REG REG REG CF CS RE
CF CF CF CS CS RE
CS CS CS CS CS RE
RE RE RE RE RE RE

Table 1 Closure properties of language classes in the Chomsky hier-
archy under overlap assembly.
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4 Decision problems

We have seen in Corollary 4 that the families of context-free
languages (CFLs) and linear context-free languages (LCFLs)
are not closed under overlap assembly. We will show that it
is undecidable whether or not the overlap assembly of two
CFLs (resp., LCFLs) is a CFL (resp., LCFL).

An NPDA (resp., DPDA) is 1-reversal if its stack makes
only one reversal, i.e., once it pops, it can no longer push.
It is well-known that 1-reversal NPDAs accept exactly the
LCFLs. In the following theorems, “DCAs” always means
a general DCA, i.e., there is no restriction on counter rever-
sals.

Theorem 5 It is undecidable, given 1-reversal DPDAs (resp.,
DCAs) Mx and My accepting languages Lx and Ly, respec-
tively, whether Lx�Ly is a CFL or not.

Proof Let L1,L2 ⊆ Σ ∗ be accepted by 1-reversal DPDAs.
Let a,b,c,#,$ be new symbols. Define the following lan-
guages:

Lx = {#amwbmcn$ | m,n≥ 1,w ∈ L1}
Ly = {#amwbncm$ | m,n≥ 1,w ∈ L2}

It is easily verified that Lx and Ly can also be accepted by 1-
reversal DPDAs. Then L = Lx�Ly = Lx∩Ly. Clearly, L = /0
if and only if L1∩L2 = /0. Now if L = /0, then it is obviously
a CFL. If L 6= /0, we claim that it is not a CFL. For suppose
L is a CFL. Apply a homomorphism that maps all symbols
in Σ to λ (the empty word) and leaves all other symbols
unchanged. Then the resulting language, L′, must also be
context-free, since CFLs are closed under homomorphism.
We get a contradiction, since L′ = {#ambmcm$ | m ≥ 1} is
not context-free. The result now follows, since the empti-
ness of intersection of two languages accepted by 1-reversal
DPDAs is undecidable [20].

If L1,L2 ⊆ Σ ∗ are accepted by DCAs, define the lan-
guages:

Lx = {#wambmcn$ | m,n≥ 1,w ∈ L1}
Ly = {#wambncm$ | m,n≥ 1,w ∈ L2}

Note that Lx and Ly can be accepted by DCAs as well. Using
the same arguments as before, Lx�Ly is context-free if and
only if L1 ∩L2 = /0. However, the emptiness of intersection
of two languages accepted by DCAs is undecidable [21].

ut

We need the notion of Parikh map of a language in the
proof of the next result. Let Σ = {a1, . . . ,ak}. The Parikh
map of a language L⊆ Σ ∗ is defined as

{(|w|a1 , . . . , |w|ak) | w ∈ L},

where |w|ai is the number of ai’s in w.

Theorem 6 It is undecidable, given 1-reversal DPDAs (resp.,
DCAs) Mx and My accepting languages Lx and Ly, respec-
tively, whether Lx�Ly can be accepted by an NFCM.

Proof Let L1,L2 ⊆ Σ ∗ be accepted by 1-reversal DPDAs,
and a,b,c,#,$ be new symbols. Define the following lan-
guages:

Lx = {#zwczR$ | z ∈ (a+b)+,w ∈ L1}
Ly = {#zwczR$ | z ∈ (a+b)+,w ∈ L2}

It is easily verified that Lx and Ly can be accepted by 1-
reversal DPDAs. Then L = Lx�Ly = Lx∩Ly. If L = /0, then
it is obvious that it can be accepted by an NFCM. If L 6= /0
and is accepted by an NFCM, then we can construct another
NFCM that accepts the language, L′, obtained by applying a
homomorphism that maps all symbols in Σ to λ and leaves
all other symbols unchanged. Clearly, L′ = {#zczR$ | z ∈
(a+ b)+}. But it is known that L′ cannot be accepted by
an NFCM [6]. It follows that L cannot be accepted by an
NFCM. Hence, it is undecidable whether Lx�Ly can be ac-
cepted by an NFCM.

For the second part, let L1,L2⊆Σ ∗ be accepted by DCAs,
and a,b,#,$ be new symbols. Define the following languages:

Lx = {#ai1bai1+1bai2bai2+1 · · ·aik baik+1w$ |
k ≥ 1, i1, · · · , ik ≥ 1, i1 = 1,w ∈ L1}

Ly = {#a j1ba j2ba j2+1 · · ·a jk−1 ba jk−1+1ba jk w |
k ≥ 1, j1, · · · , jk ≥ 1, j1 = 1,w ∈ L2}

Then Lx�Ly = {#a1ba2ba3ba4 · · ·a2k−1ba2kw$ | k ≥ 1,w ∈
L1∩L2}. Hence, Lx�Ly = /0 if and only if L1∩L2 = /0. Sup-
pose Lx�Ly 6= /0. One can verify that the Parikh map of if
Lx � Ly 6= /0 is not a semilinear set. Since the Parikh map
of any NFCM language is semilinear [21], it follows that if
Lx� Ly 6= /0, it cannot be accepted by an NFCM. We con-
clude that Lx� Ly is accepted by an NFCM if and only if
L1∩L2 = /0, which is undecidable. ut

Another interesting decision question is to decide, whether
Lx�Ly is empty, finite, or infinite.

Theorem 7

1. It is decidable, given Lx and Ly, one of which is accepted
by an NPCM and the other by an NFCM, whether Lx�
Ly is empty, finite, or infinite.

2. It is decidable, given Lx and Ly, accepted by VPCMs,
whether Lx�Ly is empty, finite, or infinite.

Proof This follows from Corollary 3 and Theorem 4 and
the fact that it is decidable, given an NPCM, whether the
language it accepts is empty, finite, or infinite. ut
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We end this section with a discussion of a special case
of overlap assembly, when the languages Lx and Ly are the
same. More precisely, if L⊆ Σ ∗, let

L� = L�L = {uvw | v ∈ Σ
+,u,w ∈ Σ

∗,uv,vw ∈ L}.

Obviously, the positive closure and decidable results in
the previous section and this section when the class A =
class B also hold for this special case of overlap assembly
(by taking Ly = Lx). However the proofs for the non-closure
and undecidable results need to be modified.

Theorem 8 If L is accepted by a DCA, then L� need not be
a CFL.

Proof Let L = {%am#bmcn | m,n≥ 1}∪{#bmcm$ | m≥ 1}.
Clearly, L can be accepted by a DCA that makes only one
reversal on its counter.

Suppose L� is a CFL. Define the regular language L′ =
%a+#b+c+$. Then the language L′′= L�∩L′ must also be a
CFL. We get a contradiction since L′′ = {%am#bmcm$ | m≥
1} is not a CFL. ut

Theorem 9 It is undecidable, given a language L accepted
by a 1-reversal DPDA (resp., DCA) M, whether L� is a CFL.

Proof Let L1,L2 ⊆ Σ ∗ be accepted by 1-reversal DPDAs.
Define

L ={%am#bnwcm$ | m,n≥ 1,w ∈ L1}∪
{#bmwcm$$ | m≥ 1,w ∈ L2}.

It can be verified that L can be accepted by a 1-reversal
DPDA. Then by an argument similar to that in the proof of
Theorem 5, L� is a CFL if and only if L1∩L2 = /0, which is
undecidable.

Now, let L1,L2 ⊆ Σ ∗ be accepted by DCAs. Define

L ={%am#bncmw$ | m,n≥ 1,w ∈ L1}∪
{#bmcmw$$ | m≥ 1,w ∈ L2}.

It can be verified that L can be accepted by a DCA. By an
argument similar to that in the proof of Theorem 5, L� is a
CFL if and only if L1∩L2 = /0, which is undecidable. ut

5 Iterated overlap assembly

We define a combinatorial library of words as a set of the
form

{α1α2 · · ·αn | αi ∈ {Xi,Yi} for i = 1, . . . ,n}

where X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn ∈Σ+ are distinct sequences.
It is often required that all Xi and Yi are of the same length.
However, some experiments use the fact that Xi and Yi have
different lengths: for example, in [42] all Xi have the same

length which is shorter than the length of all Yi, thus allow-
ing to use gel electrophoresis to separate the strings from
this library by how many Xi they contain.

Combinatorial libraries of DNA strands have applica-
tions in many areas, including DNA computing where, e.g.,
a mix-and-split procedure was used to generate the solu-
tion space (a combinatorial library of binary numbers) for
a chess problem, [13]. A similar technique was used to gen-
erate the pool of solutions to a 20-variable solution of the 3-
SAT problem, [4], the largest experiment to date that solved
a computational problem with a DNA algorithm. Efficient
generation of combinatorial libraries of this type, obtained
by using XPCR, was initially proposed in [14], and further
investigated in [16].

In this section we formally prove that the iterated overlap
assembly can theoretically generate this library with some
restrictions on the words Xi, Yi. We consider the following
library where an additional symbol $ is inserted between ev-
ery pair of Xi/Yi and Xi+1/Yi+1:

{α1$α2$ · · ·αn$ | αi ∈ {Xi,Yi} for i = 1 . . . ,n}. (1)

For simplicity, we view $ as an additional letter that does
not appear inside any of the words Xi or Yi. The purpose of
introducing the letters $ is that each letter $ has to match the
position of another letter $ during overlap assembly (i.e., no
proper suffix of αi$ is identical to a proper prefix of α j$). If
one prefers to avoid the introduction of this additional letter
in the strings (e.g., for practical purposes), it is sufficient to
design the set of strings

C = {X1, . . . ,Xn,Y1, . . . ,Yn}

such that either C contains only equal-length words that are
overlap-free or, less restrictive, C is a solid code (i.e., overlap-
and infix-free), see e.g., [24]. In this case, the symbols $ in
the library (1) become markers (of width 0) which match
during overlap assembly because of the design of the set C.

We start by generalizing the definition of L� = L�L .
The iterated overlap assembly of a language L, [7], is de-
fined as follows:

µ0(L) = L µi+1(L) = µi(L)�µi(L)

µ∗(L) =
⋃
i≥0

µi(L)

In particular µ1(L) = L�L = L�. Since w ∈ w�w for any
nonempty word w, from the definition it easily follows that
µi(L)⊆ µi+1(L) for L∈ Σ+. It can be shown (using intersec-
tions with appropriate regular languages) that Theorems 8
and 9 also hold for iterated overlap assembly.

We will now show that we can generate the combinato-
rial library (1) by (i) starting with a set of strands

{αk$αk+1$ | 1≤ k ≤ n−1,αi ∈ {Xi,Yi} for i = 1, . . . ,n},
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(ii) iteratedly applying overlap assembly until no new strands
are produced anymore (Theorem 11), and (iii) extracting the
longest strands from the result. We will also show (Theorem
10) that the number of steps of this process is logarithmic in
the size of the input.

Definition 1 A string x ∈ L is said to be terminal with re-
spect to language L if x�L = L� x = {x}.

Definition 2 A set of strings T (L)⊆ L is said to be the max-
imal terminating set of L if every w ∈ T (L) is terminal with
respect to L and for all w ∈ L\T (L), w is not terminal with
respect to L, that is,

T (L) = {w ∈ L | w�L = L�w = {w}}

Lemma 1 If t ∈ T (L), then t ∈ T (µ1(L)). More generally,
if t ∈ T (L), then t ∈ T (µ∗(L))

Proof We prove the contrapositive: if t /∈ T (L� L), then
t /∈ T (L). There exists w ∈ µ1(L) and u 6= t such that ei-
ther u ∈ w� t or u ∈ t �w. If w ∈ L, then t /∈ T (L). Thus,
w∈ µ1(L)\L. There are w1,w3 ∈ Σ ∗,w2 ∈ Σ+ such that w =

w1w2w3 ∈w1w2�w2w3 where w1w2,w2w3 ∈ L. If u∈ t�w,
there are u1,u3 ∈ Σ ∗,u2 ∈ Σ+ such that u = u1u2u3, where
u = u1u2 and w = u2u3 = w1w2w3. There are two cases pos-
sible: (A) either u2 is a proper prefix of w1w2, or (B) w1w2
is a prefix of u2.

Fig. 2 Illustration of cases (A) and (B) from the proof of Lemma 1.

In case (A), there is u1w1w2 6= t in t �w1w2 ⊆ t � L and
therefore t /∈ T (L). In case (B), there is u ∈ t�w2w3 ⊆ t�L
and therefore t /∈ T (L) because w2 6= ε . We can similarly
prove that t /∈ T (L) when w ∈ µ1(L) and u 6= t exists such
that u ∈ w� t. Hence, we prove that t ∈ T (L) implies t ∈
T (µ1(L)). By applying this result recursively, we can simi-
larly prove that if t ∈ T (L), then t ∈ T (µ∗(L)). ut

Definition 3 We define zk1,k2 for any k1 ≤ k2 as follows.

zk1,k2 = {αk1$αk1+1$ · · ·αk2$ | αi ∈ {Xi,Yi},k1 ≤ i≤ k2]}

zk1,k2 is not defined for k1 > k2.

Informally, zk1,k2 is the set of words consisting of the
catenation of k2− k1 +1 consecutive words α , separated by
dollar signs. Note that, with this notation, z1,n represents the
required combinatorial library.

Definition 4 We define Z(m,n) for all m≥ 2 as equal to the
union of all zk1,k2 such that 1 ≤ k2− k1 < m for m ≤ n, and
equal to Z(n,n) for m > n:

Z(m,n)=
{⋃

p=1,...,m−1
⋃

k1=1,...,n−p zk1,k1+p if 2≤ m≤ n
Z(n,n) if m > n.

Informally, Z(m,n) is the set of all strands consisting of
at most m consecutive words α (separated by dollar signs),
where 2 ≤ m ≤ n. With this notation, Z(2,n) represents the
initial starting set, and Z(n,n) contains all strands consisting
of catenations of consecutive words α , with the minimum
number of consecutive words α in such a catenation being
2, and the maximum number being n. Note that Z(n,n) con-
tains the desired library z1,n as a subset.

Lemma 2 Let x=αk1$ · · ·αk2$ and y= βl1$ · · ·βl2$ be words
where αi,βi ∈ {Xi,Yi} and 1 ≤ k1,k2, l1, l2 ≤ n. If k1 ≤ l1 ≤
k2 ≤ l2 and αi = βi for i = l1, l1 +1, . . . ,k2, then

x� y = {αk1$αk1+1$ · · ·αk2$βk2+1$βk2+2$ · · ·βl2$}.

Otherwise, x� y = /0.

Proof It is easy to see that

αk1$αk1+1$ · · ·αk2$βk2+1$βk2+2$ · · ·βl2$ ∈ x� y

if k1 ≤ l1 ≤ k2 ≤ l2 and αi = βi for i = l1, l1 +1, . . . ,k2, be-
cause αl1$αl1+1$ · · ·αk2$ = βl1$βl1+1$ · · ·βk2$ can serve as
overlap of x and y.

The words x and y cannot overlap in any other way since
the symbols $ have to match up in both words and all words
X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn are distinct. In particular, when
one of the conditions k1 ≤ l1 ≤ k2 ≤ l2 and αi = βi for i =
l1, l1+1, . . . ,k2 is not satisfied, the two words x and y cannot
form an overlap at all and, therefore, x� y = /0. ut

Lemma 3 If 2 ≤ m1,m2 ≤ n, then Z(m1,n)� Z(m2,n) =
Z(m1 +m2−1,n).

Proof Let x ∈ Z(m1,n), y ∈ Z(m2,n) and w ∈ x�y. Clearly,
we have x = αk1$αk1+1$ · · ·αk2$ and y = βl1$βl1+1$ · · ·βl2$
where 1 ≤ k1,k2, l1, l2 ≤ n, k2− k1 < m1, and l2− l1 < m2.
From Lemma 2 we obtain that w ∈ x� y is only possible
if l1 ≤ k2 and w = αk1$αk1+1$ . . .αk2$βk2+1$βk2+2$ . . .βl2$.
This implies that l2− k1 ≤ l2− l1 + k2− k1 < m1 +m2− 1;
note that we also have l2−k1 < n. We conclude w ∈ Z(m1+

m2−1,n) and, more general, Z(m1,n)�Z(m2,n)⊆ Z(m1 +

m2−1,n).
Conversely, consider a word w=αk$αk+1 · · ·αl$∈Z(m1+

m2− 1,n) where 1 ≤ k, l ≤ n, 1 ≤ l− k < min(m1 +m2−
1,n), and αi ∈ {Xi,Yi}. If l − k < m1, then w ∈ Z(m1,n)
and y = αl−1$αl$ ∈ Z(m2,n); this implies that w ∈ w� y⊆
Z(m1,n)� Z(m2,n). Otherwise, we let j = k+m1− 1 and
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note that x = αk$αk+1 · · ·α j$ ∈ Z(m1,n). Furthermore, be-
cause l−k < m1 +m2−1, we have that l− j = l−k−m1 +

1 < m2 which implies that y = α j$α j+1 · · ·αl$ ∈ Z(m2,n).
By Lemma 2, we have w ∈ x�y⊆ Z(m1,n)�Z(m2,n). ut

The following theorem shows that, starting from an ini-
tial set Z(2,n) we will obtain, after dlog2(n− 1)e or more
overlap catenations, the set Z(n,n) which is a superset of
the combinatorial library z1,n.

Theorem 10 For L = Z(2,n) and k ≥ 0, we have µk(L) =
Z(2k +1,n). Moreover, µ∗(L) = Z(n,n).

Proof We prove the statement by induction. Clearly, the state-
ment holds for the base case where k = 0 as µ0(L) = L =

Z(2,n).
Using the induction hypothesis µk(L) = Z(2k +1,n) and

Lemma 3, we obtain that

µk+1(L) = µk(L)�µk(L) = Z(2k +1,n)�Z(2k +1,n)

= Z(2 · (2k +1)−1,n) = Z(2k+1 +1,n).

Because Z(m,n) ⊆ Z(n,n) for all m ∈ N, we obtain the
second statement µ∗(L) = Z(n,n). ut

Next, we prove the main result of this section, namely
that the maximal terminal set of µ∗(L) = µk(L) is the desired
combinatorial library z1,n.

Theorem 11 For L = Z(2,n) we have T (µ∗(L)) = z1,n.

Proof From Theorem 10, we know that µ∗(L) = Z(n,n).
First, note that for every word w = α1$α2$ · · ·αn$ ∈ z1,n ⊆
Z(n,n) there does not exist any word v ∈ Z(n,n) such that w
is a proper prefix or proper suffix of v. Therefore, we must
have w�Z(n,n) = Z(n,n)�w = {w}. Thus, z1,n only con-
tains words which are terminal with respect to µ∗(L).

Next, consider a word

w = αk1$αk1+1$ . . .αk2$ ∈ Z(n,n)\z1,n

where αi ∈ {Xi,Yi}, 1 ≤ k1 < k2 ≤ n, and k1 > 1 or k2 < n.
If k1 > 1, then it is easy to see that

w 6=Xk1−1$αk1 $αk1+1 · · ·αk2$∈Xk1−1$αk1$�w⊆Z(n,n)�w.

Otherwise, k2 < n, and we have

w 6=αk1$αk1+1$ · · ·αk2$Xk2+1$∈w�αk2$Xk2+1$⊆w�Z(n,n).

In either case, w is not terminal with respect to µ∗(L). We
conclude that T (µ∗(L)) = z1,n. ut

Observe that the result of iterated overlap assembly ap-
plied to the initial set Z(2,n) produces the set Z(n,n) that
contains the required library z1,n, but it contains also other
intermediate strings. One can use various techniques to ex-
tract the library z1,n from this solution. For example, gel
electrophoresis can be used to separate strands by length,
and the longest strands, which are the desired combinatorial
library strands, can then be extracted.

6 Conclusions

This paper studies properties of the operation of overlap as-
sembly, a formal language operation that models the pro-
cess of linear overlap assembly of DNA strands: Two DNA
strands that partially “overlap”, in the sense that the suffix of
one is the Watson-Crick complement of a prefix of another,
can be concatenated with the aid of the DNA Polymerase
enzyme. We obtain closure properties of various language
classes under this operation, and discuss various decision
problems. We also investigate the iterated overlap assembly
and demonstrate that, under some simplifying assumptions,
it can be used to generate a DNA combinatorial library.
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46. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New
Computing Paradigms. Springer-Verlag New York, Inc. (2006)

47. Stemmer, W.P.: DNA shuffling by random fragmentation and re-
assembly: in vitro recombination for molecular evolution. Pro-
ceedings of the National Academy of Sciences 91(22), 10,747–
10,751 (1994)

48. Takahara, A., Yokomori, T.: On the computational power of
insertion-deletion systems. Natural Computing 2(4), 321–336
(2003)

49. Yong, M., Xiao-Gang, J., Xian-Chuang, S., Bo, P.: Minimizing of
the only-insertion insdel systems. Journal of Zhejiang University
Science A 6(10), 1021–1025 (2005)


	Introduction
	Basic definitions and notations
	Closure properties
	Decision problems
	Iterated overlap assembly
	Conclusions

