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This is a rather interesting operation with strings. We extend it to languages inthe natural way and investigate the closure properties of families of languages underthis new operation.

Figure 1: Balanced cut by an exonuclease�5030 5030??NN NN�5030 5030??NNNN NNNN�5030 5030??Bal3INNNN NN NNNNNN�5030 5030

2 Language Theory PrerequisitesWe mainly introduce here the notations which we shall use in the sequel; for furtherdetails of formal language theory we refer to [6].For an alphabet V we denote by V � the free monoid generated by V underthe operation of concatenation; the empty string is denoted by � and V � � f�g isdenoted by V +. The length of x 2 V � is denoted by jxj. If x = x1x2x3, then we saythat x1 is a pre�x, x2 is a substring, and x3 is a su�x of x. The sets of substrings,pre�xes, and su�xes of a string x 2 V � are denoted by Sub(x); P ref(x); Suf(x),respectively.The circular permutation of a string x 2 V � is de�ned by cp(x) = fvu j x = uv;for u; v 2 V �g. 2



The left quotient of a language L1 � V � by a language L2 � V � is L2nL1 = fx 2V � j wx 2 L1 for some w 2 L2g; the right quotient of L1 by L2 is L1=L2 = fx 2 V � jxw 2 L1 for some w 2 L2g. The left derivative of a language L � V � with respectto a string x 2 V � is de�ned by @lx(L) = fw 2 V � j xw 2 Lg; the right derivative ofL with respect to x is de�ned by @rx(L) = fw 2 V � j wx 2 Lg.A �nite automaton is given in the form A = (K;V; s0; F; P ), where K is the setof states, V is the alphabet, s0 is the initial state, F is the set of �nal states, andP is the set of transitions, presented as rewriting rules of the form sa! s0 (in thestate s, the automaton reads the symbol a and changes its state to s0).A gsm (= generalized sequential machine) is a �nite automaton with output:g = (K;V1; V2; s0; F; P ), where K is the set of states, V1; V2 are the input and theoutput alphabets, s0 is the initial state, F is the set of �nal states, and P is the setof transitions of the form sa ! xs0, for s; s0 2 K;a 2 V1; x 2 V �2 (in state s, themachine reads the symbol a, changes its state to s0 and produces the output stringx). If in all rules sa! xs0 we have x 6= �, then g is said to be �-free.A Chomsky grammar is denoted byG = (N;T; S; P ), whereN is the nonterminalalphabet, T is the terminal alphabet, S 2 N is the axiom, and P is the �nite set ofrewriting rules, given in the form x! y; with x; y 2 (N [ T )� and x containing atleast a nonterminal.Finally, by REG, LIN, CF, CS, RE we denote the families of regular, linear,context-free, context-sensitive, recursively enumerable languages, respectively. It isworth noting that all these families are closed under union, intersection with regularlanguages, restricted morphisms, left and right derivatives, and inverse morphisms;REG, CF, CS, RE are also closed under concatenation, Kleene closure, and circularpermutation, but LIN is not closed under these three operations. All families abovebut CS are closed under arbitrary gsm mappings and under left and right quotientsby regular languages; CS is closed under �-free gsm mappings only.3 The Balanced Cut OperationThe basic operation we deal with in this paper, a model of the exonuclease actionas shown in Figure 1, is de�ned as follows: for x 2 V �, we consider the set of stringsbc(x) = fx2 j x = x1x2x3; for x1; x2; x3 2 V � with jx1j = jx3jg:We extend this operation { called balanced cut { to languages in the natural way:for L � V �, bc(L) = [x2L bc(x):This operation is related to the double pre�x cut operation: for x 2 V �, we de�nedpc(x) = fx2 j x = x1x1x2; for some x1; x2 2 V �g:The relation between the two operations is speci�ed in the following lemma:3



Lemma 1. If F is a family of languages closed under double pre�x cut, circularpermutation, and �-free gsm mappings, then F is also closed under balanced cut.Proof. Let us �rst note that the closure under �-free gsm mappings also ensuresthe closure under intersection with regular languages.Consider a language L � V � and two new symbols, a; b. Consider the gsm gwhich maps any string x 2 V �, nondeterministically, into a string of the form aibyajb,for some i; j � 0 such that all transitions of g are of the form s�! �s0, where s; s0are states and � 2 V; � 2 V [ fa; bg (that is, g is �-free and if aibyajb 2 g(x), thenjxj = jyj+ i+ j + 2).We obtain the equality:bc(L) = (dpc(cp(g(L)) \ a�ba�bV �)) \ V �:Indeed, g transforms a pre�x x1 and a su�x x3 of a string x1x2x3 2 L intoaib; ajb, respectively, with jx1j = i+1; jx3j = j+1; i; j � 0; by a circular permutationfollowed by the intersection with the regular language a�ba�bV � we obtain stringsof the form aibajbx2; because no pre�x zz of such a string can strictly contain thestring aibajb, the double cut operation followed by the intersection with V � meanscutting the pre�x aibajb; the only possibility is to have i = j, that is jx1j = jx3j,which is equivalent to x2 2 bc(x). 2We now investigate the closure properties of families in the Chomsky hierarchyunder the operations bc and dpc.The family of regular languages is closed under both these operations, as aconsequence of the following result (a proof of it can be found in [7]):Lemma 2. The family of regular languages is closed under left and right quo-tients with arbitrary languages.Because we have dpc(L) = fxx j x 2 V �gnL;we obtain the closure of REG under double pre�x cut; Lemma 1 ensures that wealso have the closure of REG under balanced cut.The proof of Lemma 2 is not constructive, hence it makes sense to give a direct,e�ective proof of the closure of REG under our operations.Lemma 3. REG is e�ectively closed under the operation dpc.Proof. Let A = (K;V; s0; F; P ) be a �nite automaton. For s 2 K, let �s be a newstate and let �K = f�s j s 2 Kg.We construct the gsm g = (K 0; V; V; s0; �F ;P 0);where K 0 = K [ �K [ (K �K �K);and P 0 contains the following transitions:4



1. sa! s0, for each sa! s0 2 P ,2. sa! (s1; s1; s0), for each sa! s1 2 P ,3. (s1; s2; s3)a! (s1; s02; s03), for all s1 2 K; s2a! s02 2 P; s3a! s03 2 P ,4. (s1; s2; s3)a! �s4, for s2a! s4 2 P; s3a! s1 2 P ,5. �s1a! a�s2, for each s1a! s2 2 P .We have the equality g(L(A)) = dpc(L(A))'. Indeed, transitions of type 1 (fol-lowed by a transition of type 2) remove a pre�x x of the scanned string such thats0x =)� s1 in the automaton A, for some s1 2 K; one introduces the state (s1; s1; s0)and one continues by using transitions of type 3 (followed by one transition of type4); the state s1 is memorized and one scans a string z such that s1z =)� s4 ands0z =)� s1; therefore, also s0zz =)� s4 is a correct sequence of transitions withrespect to the automaton A; the use of transitions of type 5 follows a path in Awhich scans a string w. To summarize, zzw 2 L(A) and the output of g under inputzzw is w. Therefore, w 2 dpc(L(A)). 2Of course, also the familyRE is closed under the operations dpc, bc. In contrast,no other family in the Chomsky hierarchy is closed under these operations { withthe note that it is an open problem whether or not LIN is closed under the balancedcut operation.Lemma 4. The family CF is not closed under the bc operation.Proof. Let us consider the context-free languageL = fanbncbmam j n;m � 1g:Obviously, we havebc(L) \ a+b+cb+a+ = fan�kbncbmam�k j n;m � 1; k � 0; k < n; k < mg:This is not a context-free language.Indeed, suppose that L = L(G) for a context-free grammar G =(N; fa; b; cg; S; P ). All strings of the form an�kbncbmam�k, for all possible n;m; k,are in L. That is, substrings bn; bm; an�k; am�k can be arbitrarily large, and also thedi�erence jbnj � jan�kj = k = jbmj � jam�kj can be arbitrarily large. In order togenerate such strings, we need derivations in G of the formS =)� u1Xu2Y u3 =)� u1aiXbju2brY asu3 =)� u1x1u2x2u3 = an�kbncbmam�k;with u1; u2; u3 2 fa; b; cg�, 1 � i < j and 1 � s < r: by recurrent derivations of theform Z =)� agZbh with g � h intercalated with non-recurrent derivations (whosenumber is bounded, because N is a �nite set), we can produce only pre�xes an�kbnof strings in L with a bounded value for k; similarly for su�xes bmam�k.5



Thus, any derivation of the formS =)� u1Xu2Y u3 =)�=)� u1aihXbjhu2Y u3 =)� u1aihx1bjhu2x2u3= an�k+ihbn+jhcbmam�kis possible for each h � 1 (we have iterated the �rst subderivation and not thesecond one). Because i < j, we have (n + jh) � (n � k + ih) = (j � i)h + k 6= k,that is the obtained string is not in the language L. This contradicts the equalityL = L(G), hence L cannot be context-free. 2.Corollary 1. The family CF is not closed under the operation dpc.An upper bound for the family of languages of the form bc(L), for L 2 CF , isprovided by the family of matrix context-free languages.A matrix grammar is a construct G = (N;T; S;M), where N;T; S are as in acontext-free grammar and M is a �nite set of matrices, that is sequences (A1 ! x1;. . . ,An ! xn) of context-free rules. Using such a matrix means to apply the rulesA1 ! x1; : : : ; An ! xn one by one, in this order. The family of languages generatedby such grammars is denoted by MAT �; when only �-free rules are allowed, thesuperscript is removed. It is known that CF � MAT � CS;CF � MAT � �RE;CS � MAT � 6= ; (see [2] for details), and that each one-letter language inMAT � is regular (see [4]).Lemma 5. If L is a context-free language, then bc(L) 2MAT �.Proof. Let L � V � be a context-free language. Consider the gsm g whichtransforms strings x1x2x3 2 V � into strings of the form cix2dj, with i = jx1j; j = jx3j;c; d are new symbols. The language g(L) is context-free. LetG = (N;V [fc; dg; S; P )be a context-free grammar for g(L). Denote by h the morphism which leaves allsymbols in N [ V unchanged and maps the symbols c; d into C;D, respectively.We construct the matrix grammar G0 = (N [ fC;Dg; V; S;M), whereM = f(X ! h(x)) j X ! x 2 Pg[ f(C ! �;D ! �)g:The use of a matrix of the form (C ! �;D ! �) erases one occurrence of C andone occurrence of D. Therefore, a string C iyDj with y 2 V � (hence a from h(g(L)))is transformed into y only when i = j. Consequently, L(G0) = bc(L). 2By an easy modi�cation of the proof above, we get:Corollary 2. The family MAT � is closed under the operation bc.The above statement is not true if the operation bc is replaced by dpc. In fact, amuch stronger result is true, also proving the non-closure of LIN under the operationdpc: 6



Lemma 6. There are linear languages L such that dpc(L) =2 MAT �.Proof. Let us consider the following language:L = fai1bai2b : : : bai2k�1ca2i2k�1b : : : ba2i3ba2i2c2a2i1 jk � 1; ij � 1; for all 1 � j � 2k � 1g:Clearly, this is a linear language.Consider also the gsm g which works as follows when scanning a string in L:{ we scan the pre�x wc;w 2 fa; bg�, and we leave it unchanged,{ when scanning the substring czc2; z 2 fa; bg�, we replace one occurrence of bby bab (that is, a substring ab is inserted in an arbitrary place in z); all othersymbols are left unchanged;{ we leave the su�x a2i1 unchanged.The language g(L) is linear.Let us note that the strings in L have two \halves", separated by the centraloccurrence of c; the blocks of symbols a in the right half are of double length ascompared to the corresponding blocks in the left half; the substring c2 separatesthe last blocks of a occurrences in the right half. When generating g(L), one moreblock of a occurrences is introduced, consisting of one symbol only. In this way,the substring delimited by the occurrences of c have the same number of blocks ofsymbols a as the string placed at the left of the central occurrence of c.We have the equalitydpc(g(L)) \ ca+ = fca22n�1 j n � 1g: (�)Let us examine the way of producing a string in ca+ by a double pre�x cutoperation, starting from a string in g(L).The strings in g(L) are of the formw = ai1bai2b : : : bai2k�1ca2i2k�1b : : : ba2irbaba2ir�1 : : : ba2i2c2a2i1;for some k � 1; ij � 1; 1 � j � 2k � 1, and 3 � r � 2k � 1. In order to get thestring ca2i1, we have to cut a pre�x xcxc of w, that isx = ai1bai2b : : : bai2k�1 = a2i2k�1b : : : ba2irbaba2ir�1 : : : ba2i2:With a string w 2 g(L) with this property, we associate an undirected graph�(w) as follows:{ associate the nodes �1; : : : ; �2k�1 with the blocks ai1; : : : ; ai2k�1 and the nodes�1; : : : ; �2k with the blocks a2i2k�1; : : : ; a2ir; a; a2ir�1; : : : ; a2i2; a2i1;7



{ draw an arc (�i; �i) for each i = 1; 2; : : : ; 2k � 1; call these arcs lower arcs;they express the equality of the substrings as of w as imposed by the fact thatw = xcxcca2i1;{ draw an arc (�s; �t) for each pair (s; t); 1 � s � 2k � 1; 1 � t � 2k, such thatjt = 2is and ajt; ais are blocks which correspond to each other in the de�nitionof L; call these arcs upper arcs; they express the relation between substringsai of w placed to the left and to the right of the \central" occurrence of c, asimposed by the de�nition of L.Figure 2 presents the graph for the case of k = 3; the upper and the lower arcsare drawn in the corresponding positions.
Figure 2: The graph �(w) for k = 3�1 �2 �3 �4 �5 �6�5�4�3�2�1 ��' $� �& %& %' $' $' $& %& %Let us denote by val(�i); val(�i) the length of the substring as of w asssociatedas mentioned above with �i; �i, respectively.Several facts about the graph �(w) are useful for the subsequent reasoning:{ The node �2k has the degree 1 (one upper arc and no lower arc reaches it).{ The node �p having va; (�p) = 1 (that is, corresponding to the substringinserted by the gsm g in the strings of L) cannot be reached by an upper arc:otherwise, val(�p) has to be an even number, the double of val(�t) for some t,which is not the case. Because all nodes �1; : : : ; �2k�1 are reached by a lowerarc, it follows that �k is reached by a lower arc only, it has the degree 1.{ If �i; �j are linked by an upper arc, then val(�j) = 2 �val(�i); if they are linkedby a lower arc, then val(�i) = val(�j).{ All nodes di�erent from �2k and �p mentioned above have the degree 2: allnodes �i; 1 � i � 2k � 1, are reached both by upper and lower arcs; all nodesdi�erent from �p are reached by an upper arc, all nodes di�erent from �2p arereached by a lower arc. 8



{ There is no cycle in �(w). Indeed, this is a bi-partite graph, always nodes �iare linked by nodes �j. Assume that there is a cycle. It must contain the samenumber of nodes of type �i as nodes of type �j. Let �k1; : : : ; �ks; �l1; : : : ; �lsbe these nodes. Because of the links by lower arcs, we must have the equalityfval(�k1); : : : ; val(�ks)g = fval(�l1); : : : ; val(�ls)g. Let q be the maximum ofval(�kt); 1 � t � s. Because of the upper arcs, 2q should be an element of theset fval(�lt) j 1 � t � sg. However, 2q =2 fval(�kt) j 1 � t � sg, thereforefval(�k1); : : : ; val(�ks)g 6= fval(�l1); : : : ; val(�ls)g, a contradiction.Because �(w) contains no cycle and all nodes have the degree one or two, itfollows that it is a connected graph. According to Euler theorem (a connected graphwith nodes of even degree with the exception of two nodes contains an Eulerianpath, starting in one of the two nodes of odd degree and ending in the other nodeof odd degree), �(w) contains a path starting in �p, ending in �2k and using allarcs (an Eulerian path). As we have seen above, val(�p) = 1; val(�2k) = 2i1. Onthis path, all the 2k � 1 upper arcs are used. They relate nodes �i; �j such thatval(�j) = 2 � val(�i). Consequently, the values are doubled 2k � 1 times. We startfrom val(�p) = 1, hence val(�2k) = 22k�1 � val(�p) = 22k�1.This concludes the proof of the equality (�).The language fca22n�1 j n � 1g is not in the family MAT � (the family MAT �is closed under arbitrary morphisms and fa22n�1 j n � 1g is a one-letter non-regularlanguage). The family MAT � is also closed under intersection with regular lan-guages. Consequently, dpc(g(L)) =2 MAT �. 2Corollary 3. The families LIN and MAT � are not closed under the operationdpc.As we have mentioned above, the closure of LIN under the balanced cut oper-ation remains to be clari�ed. Note that, because LIN is not closed under circularpermutation, the non-closure of LIN under the operation bc does not imply { viaLemma 1 { the non-closure under the operation dpc.The case of the family CS is easy to be settled. The following more generalresult is true:Lemma 7. If a family F is closed under concatenation with regular sets, rightderivative, and the operation bc, then it is closed under the operation Suf, of takingsu�xes.Proof. For L � V � and c; d =2 V , we can writeSuf(L) = @rd(bc(Ldc�)):The equality can be easily checked: by a balanced cut operation, any pre�x x of astring w 2 L can be cut, as a pre�x of wdci; only when i = jxj the derivative by dis de�ned. Thus, all and exactly the su�xes of strings in L can be obtained. 2Corollary 3. The family CS is not closed under the operations dpc and bc.9



For the sake of readability, we collect the results in the previous lemmas in atheorem:Theorem 1. The closure properties in Table 1 hold.Table 1: Closure properties under operations bc and dpcREG LIN CF CS MAT � REbc YES ? NO NO YES YESdpc YES NO NO NO NO YESNote the interesting case of the familyMAT �, which is closed under the operationbc but not under the operation dpc.4 Related OperationsSeveral operations related to the previous ones can be imagined.For instance, instead of cutting a pre�x and a su�x of the same length, we can cuta pre�x and a su�x which are one the mirror image of the other (mirror balanced cut,mbc), or even identical strings (double balanced cut, dbc). All the closure propertiesproved in the previous section, with the exception of those referring to the familyLIN , remain true for these new operations with similar proofs. (For instance, inthe proof of Lemma 7 we can take V � instead of c� and we obtain the same resultfor each of mbc and dbc.) For the family of linear languages we need new proofs.Lemma 8. The family LIN is not closed under the operation mbc.Proof. Consider the linear languageL = fai1bai2b : : : baikba2ikb : : : ba2i2ba2i1ba j k � 1; ij � 1; 1 � j � kg:We obtain mbc(L) \ ba+b = fba2nb j n � 1g:Indeed, a string in ba+b is obtained by cutting from a stringw = ai1bai2b : : : baikba2ikb : : : ba2i2ba2i1baa pre�x and a su�x which are one the mirror image of the other only whenai1bai2b : : : baik = mi(a2ik�1b : : : ba2i2ba2i1ba). This implies that i1 = 1; ij = 2ij�1; 2 �j � k, which means that ik = 2k�1. Because mbc(w) \ ba+b = ba2ik , we getmbc(w) \ ba+b = ba2k . 2Lemma 9. The family LIN is not closed under the operation dbc.Proof. Consider the linear languageL = fai1bai2b : : : bai2k�1ba2i2k�1b : : : ba2i3ba2i2b2a2i1 jk � 1; ij � 1; for all 1 � j � 2k � 1g:10



We proceed as in the proof of Lemma 6. Let again be g the gsm which inserts anew substring aib in the \right half" of strings in L, namely with i = 1.We obtain dbc(g(L)) \ ba+b = fba22n�1b j n � 1g:This can be seen as in the proof of Lemma 6. For instance, the graph describing thelinks between the blocks ai of the strings in g(L) which lead by a double balancedcut to a string in ba+b looks like that in Figure 3, where we have considered thecase k = 3. Ths substring to be obtained after the double balanced cut and theintersection with ba+b is the central one, corresponding to �1 in the graph. 2
Figure 3: The graph for the proof of Lemma 9�1 �2 �3 �4 �5 �6�5�4�3�2�1 # #  ' $' $' $" !& %& %& %& %Another possibility is not to cut but to grow the strings at the two ends. Thus,we de�ne the balanced growth of x 2 V � bybg(x) = fx1xx2 j x1; x2 2 V �; jx1j = jx2jg:It is very easy to prove that REG is not closed under this operation, but all otherfamilies considered above are closed. For instance, if G = (N;T; S; P ) is a context-free grammar, the grammar with the rules P [ fS0 ! aS 0b j a; b 2 Tg [ fS 0 ! Sg,with S0 as the new axiom, generates the language bg(L(G)). This also shows thatbg(L) 2 LIN for each regular language L.Finally, instead of deleting or adding strings at the ends of a string, we canonly mark a pre�x and a su�x of the same length. More formally, we consider theoperation of balanced marking, de�ned bybm(x) = fx1cx2cx3 j x = x1x2x3; jx1j = jx3jg:(For x 2 V �, c is a symbol not in V .)Again, it is clear that REG is not closed under this operation, but CS and REare closed. Neither LIN and CF are closed: for the linear languageL = fanb2n j n � 1g11



we have bm(L) \ a+cb+cb+ = fancbncbn j n � 1g;which is a non-context-free language.However, bm(L) 2 LIN for L 2 REG: consider a �nite automaton A =(K;V; s0; F; P ) and construct the linear grammar G = (N;T; S; P 0), whereK = fSg [ f(s; s0); [s; s0] j s; s 2 Kg;and P 0 contains the following rules:1. S ! [s0; sf ], for all sf 2 F ,2. [s1; s2]! a[s3; s4]b, for all s1a! s3 2 P; s4b! s2 2 P ,3. [s1; s2]! c(s1; s2)c; for all s1; s2 2 K,4. S ! c9s0; sf)c; for all sf 2 F ,5. (s1; s2)! a(s3; s2); for all s1a! s3 2 P and s2 2 K,6. (s1; s2)! a, for s1a! s2 2 P;7. [s1; s2]! cc, for s1 = s2,8. S ! cc, if � 2 L(A).The equality L(G) = bm(L(A)) is obvious.We conclude this paper by emphasizing the fact that the biochemistry of DNAsuggests many new and interesting problems from the formal language theory pointof view. In particular, many new operations with strings and languages can be foundin this area. Such operations have already been studied for example in [5], [1], butthe investigation is by no means complete, [3].References[1] J. Dassow, V. Mitrana, On some operations suggested by genome evolu-tion, Proc. Second Paci�c Symposium on Biocomputing (R. B. Altman, A. K.Dunker, L. Hunter, T. Klein, eds.), World Scienti�c, Singapore, 1997, 97 { 108.[2] J. Dassow, Gh. P�aun, Regulated Rewriting in Formal Language Theory,Springer-Verlag, Berlin, Heidelberg, 1989.[3] J. Dassow, Gh. P�aun, Remarks on operations suggested by mutations ingenomes, Fundamenta Informaticae, 2-3 (1998), 183-200.[4] D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of matrix gram-mars, Acta Informatica, 31 (1994), 719 { 728.12
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