
DCFS
2010
DCFS
2010

Descriptional Complexity of Formal Systems
(Draft) Deadline for submissions: April 25, 2010

Final versions: July 8, 2010

Ciliate Gene Unscrambling with Fewer Templates

Lila Kari(A) Afroza Rahman(B)

(A)Department of Computer Science, University of Western Ontario,
London, Ontario N6A 5B7, Canada

lila@csd.uwo.ca

(B) arahman@cs.queensu.ca

Abstract. One of the theoretical models proposed for the mechanism of
gene unscrambling in some species of ciliates is the template-guided recom-
bination (TGR) system by Prescott, Ehrenfeucht and Rozenberg which
has been generalized by Daley and McQuillan from a formal language
theory perspective. In this paper, we propose a refinement of this model
that generates regular languages using the iterated TGR system with a
finite initial language and a finite set of templates, using fewer templates
and a smaller alphabet compared to that of the Daley-McQuillan model.
To achieve Turing completeness using only finite components, i.e., a finite
initial language and a finite set of templates, we also propose an extension
of the contextual template-guided recombination system (CTGR system)
by Daley and McQuillan, by adding an extra control called permitting
contexts on the usage of templates.

Keywords: ciliates, gene unscrambling, in vivo computing, template-
guided recombination

1 Introduction

This paper proposes improvements in the descriptional complexity of two theo-
retical models of gene unscrambling in ciliates: template-guided recombination
(TGR) systems, and contextual template-guided recombination (CTGR) systems.
Ciliates are a group of unicellular eukaryotic protozoans, some of which have the
distinctive characteristic of nuclear dualism, i.e., they have two types of nuclei: a
functionally inert micronucleus and an active macronucleus. Genes in the active
macronucleus provide RNA transcripts for the maintenance of the structure and
function of the cell. Genes within the micronucleus are usually inactive and assist
only in the conjugation process. The process of “decrypting” the micronuclear
genes after conjugation, to obtain the functional macronuclear genes, is called
gene unscrambling or gene assembly.

The genes within micronuclear chromosomes are composed of protein-coding
DNA segments (also known as macronuclear destined sequences (MDSs)) in-
terspersed by numerous, short, non-protein-coding DNA segments (also called
internally eliminated sequences (IESs)). Furthermore, in some species of ciliates

This research was supported by the Natural Sciences and Engineering Research Council of
Canada Grant R2824A01, and Canada Research Chair Award to L.K.

2 L. Kari, A. Rahman

such as Oxytricha or Stylonychia, the micronuclear gene has been found to have
a highly complex structure in which MDSs are stored in a permuted order. Dur-
ing the course of macronuclear development, these IESs are eliminated from the
micronucleus by means of homologous recombination, and the permuted MDSs
are sorted, resulting in a functionally complete macronucleus with MDSs present
in the correct order. In the micronuclear sequence, each MDS is flanked by guid-
ing short sequences, 3 to 20 nucleotides long, which act as pointers in a linked
list. For instance, the nth MDS is flanked on the left by the same short sequence
which flanks the (n−1)th MDS on the right. In the process of gene unscrambling,
homologous recombination takes place between two DNA molecules that contain
the identical guiding short sequences at the correct MDS-IES junctions.

Various theoretical models have been proposed in order to model the genetic
unscrambling processes in ciliate organisms: the reversible guided recombination
model, [10, 9], based on binary inter- and intra-molecular DNA recombination
operations; the ld, hi, dlad model, [8, 7, 14], based on three unary intra-molecular
DNA recombination operations; the template-guided recombination (TGR) model,
[13], where a DNA molecule from the old macronucleus conducts inter-molecular
DNA recombination process serving as a template; the RNA-guided DNA as-
sembly model, [1], experimentally confirmed in [11], where either double-stranded
RNA or single-stranded RNA act as templates.

This paper proposes two improvements of the descriptional complexity (size
of template language, size of alphabet) of the template-guided recombination
model as studied by Daley and McQuillan [2]. In [2], it has been showed that the
Daley-McQuillan TGR system can generate all regular languages using iterated
template-guided recombination with finite initial and template languages. For
this model, the considered gene rearrangement processes take place in a stochastic
style in vivo environment. In such a biological setting, it is significant to consider
the size of the template language [6, 5], because sufficient copies of each template
must be available throughout the recombination process. This is essential to
confirm the accessibility of a template in the right place at the proper time
according to the demand. Hence, the number of the unique templates should be
as low as possible. The first aim of this paper is a reduction of the size of the
template language by introducing a new approach to generate regular languages
applying iterated TGR system with a finite initial language and a small finite set
of templates.

The second aim of this paper is the reduction of the size of the template lan-
guage (from regular to finite), in the extension of the template-guided recombi-
nation model called the contextual template-guided recombination system (CTGR
system), [3]. Recall that a CTGR is a TGR enhanced with “deletion contexts”,
the introduction of which made it possible to enhance the TGR computational
power to that of Turing machines. Our reason for wanting to achieve a reduc-
tion of the template set size is the obvious one, namely that handling an infinite
regular set of templates in a biological setting is impossible. To achieve our goal,
we employ an additional control over the templates in the form of “permitting

Gene Unscrambling with Fewer Templates 3

contexts”. We namely introduce the contextual template-guided recombination
system (CTGR system) using permitting contexts as an extension of the CTGR
system, and prove that an iterated version of this system has the computational
power of a Turing machine, but only uses a finite initial language and a finite set
of templates.

The paper is organized as follows. Section 2 introduces our new approach for
generating the family of regular languages by using iterated TGR systems with
n2 templates, compared to n3 templates in [2]. This reduction in descriptional
complexity is achieved at the expense of using a filtering set to discard unintended
results. Section 3 describes our proposed CTGR system using permitting contexts
that, unlike CTGR systems, are able to characterize the recursively enumerable
languages by using only a finite base language and a finite set of templates. This
reduction in the size of the template language is achieved by introducing an
additional control mechanism, the permitting context, to CTGR.

We end this introduction by some formal definitions and notations. An al-
phabet is a finite and nonempty set of symbols. A word or a string is a finite
sequence of symbols. Let Σ be an alphabet. By Σ∗ we denote the set of all words
over Σ that includes the empty one denoted by λ. The set of nonempty words
over Σ, i.e., Σ∗ \ {λ}, is denoted by Σ+. The length of a word x ∈ Σ∗ is denoted
by |x|. For k ∈ N, let Σ≥k = {w | w ∈ Σ∗, |w| ≥ k}.

For two alphabets Σ, ∆, a morphism is a function h : Σ∗ → ∆∗ satisfying
h(xy) = h(x)h(y) for all x, y ∈ Σ∗. A morphism h : Σ∗ → ∆∗ is called a coding
if h(a) ∈ ∆ for all a ∈ Σ and a weak coding if h(a) ∈ ∆ ∪ {λ}. We denote by
RE, CS, CF, LIN, and REG the families of languages generated by arbitrary,
context-sensitive, context-free, linear, and regular grammars, respectively. By
FIN we denote the family of finite languages. For additional formal language
theory definitions and notations the reader is referred to [15].

2 TGR systems with fewer templates

This section proposes a refinement of the template-guided recombination (TGR)
model as studied in the model by Daley and McQuillan [2], that is able to generate
the family of regular languages by using a reduced number of templates and a
smaller alphabet.

Definition 1. ([2]) A template-guided recombination system (or TGR system)
is a four tuple % = (T,Σ, n1, n2) where Σ is a finite alphabet, T ⊆ Σ∗ is the
template language, n1 is the minimum MDS length and n2 is the minimum pointer
length.

For a TGR system % = (T,Σ, n1, n2) and a language L ⊆ Σ∗, %(L) = {w ∈
Σ∗ | (x, y) `t w for some x, y ∈ L, t ∈ T} where (x, y) `t w iff x = uαβd, y =
eβγv, t = αβγ,w = uαβγv, u, v, d, e ∈ Σ∗, α, γ ∈ Σ≥n1 , β ∈ Σ≥n2 . L is sometimes
called the base, or initial language.

4 L. Kari, A. Rahman

Note that, if x is a segment of the micronuclear DNA sequence that contains
the nth MDS α, and y is a segment of the micronuclear DNA sequence that
contains the (n + 1)st MDS γ, then the recombination between x and y guided
by the template t will result in bringing the MDSs n and (n + 1) in the correct
order in the intermediate DNA sequence w, regardless of their original position in
the micronuclear sequence. A sequence of such template-guided recombinations
is thought to accomplish the gene unscrambling, and the transformation of the
micronuclear DNA sequence in the macronuclear DNA sequence in ciliates.

For a TGR system % = (T,Σ, n1, n2) and a language L ⊆ Σ∗, %∗(L) is defined
as follows:

%0(L) = L, %n+1(L) = %n(L) ∪ %(%n(L)), n ≥ 0, %∗(L) =
∞⋃

n=0

%n(L).

If L1,L2 are two language families, then t∗ (L1,L2, n1, n2) = {%∗(L) | L ∈
L1, % = (T,Σ, n1, n2), T ∈ L2} and t∗ (L1,L2) = {t∗ (L1,L2, n1, n2) | n1, n2 ∈
N}.

In [2, Prop. 15], Daley and McQuillan prove that all regular languages can be
generated using iterated template-guided recombination systems with finite initial
and template languages, i.e., every regular language is a coding of a language
in the family t∗ (FIN,FIN). The limitation of the Daley-McQuillan model [2]
is that the size of the template language and the alphabet was not meant to be
optimized. Since the size of the template language will have a great impact on this
type of model during in vivo computation, this is an important factor. Our aim
is to reduce this number of templates. We namely introduce a new approach to
generate regular languages using iterated template-guided recombination, using
a finite initial language, a finite set of templates, and a weak coding. We provide
a simpler construction than that of [2, Prop. 15], with fewer templates and a
smaller alphabet.

Proposition 2. Each regular language L ⊆ Σ∗ can be written in the form L =
h(%∗(L0)∩R), where R is a regular language, h is a weak coding homomorphism,
% = (T,Σ

′
, 1, 1) is a TGR system, T is a finite set of templates and L0 ⊆ Σ

′∗ is
a finite language.

Proof : Let L ∈ REG be generated by a regular grammar G = (N,Σ, S, P) with
the rules in P of the form X → aY , X → a | λ, for X, Y ∈ N , a ∈ Σ. We
construct a TGR system % = (T,Σ

′
, n1, n2), where n1 = n2 = 1 and the alphabet

Σ
′

= N ∪ Σ ∪ {#}. Here, # is a new symbol which assists to complete the
recombination process acting as an end marker. Then we construct a finite base
language L0 ⊆ Σ

′∗ and a template language T ⊆ Σ
′∗ as follows.

We define the finite base language by:
L1 = {Sa# | ∃ S → a ∈ P, a ∈ Σ}, L2 = {SaX | ∃ S → aX ∈ P, a ∈ Σ},
L3 = {XbY | ∃X → bY ∈ P,X, Y ∈ N, b ∈ Σ},
L4 = {XaX | ∃X → aX ∈ P,X ∈ N, a ∈ Σ}, L5 = {Xa# | ∃X → a ∈ P},

Gene Unscrambling with Fewer Templates 5

L6 = {X## | ∃X → λ ∈ P}, L0 = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6.
The finite template language is defined by:

T1 = {aXb | a, b,X, Y, Z ∈ Σ
′
,∃ Y → aX ∈ P , either ∃X → bZ ∈ P

or ∃X → b ∈ P},
T2 = {aXa | a,X ∈ Σ

′
,∃X → aX ∈ P},

T3 = {aX# | a,X, Y,# ∈ Σ
′
, ∃ Y → aX ∈ P,∃X → λ ∈ P}, T = T1 ∪ T2 ∪ T3.

Note that for example, L4 ⊆ L3, L2 ⊆ L3, and T2 ⊆ T1. However, we made
these separations for the purpose of the clarity of the proof.

In order to eliminate all non terminals and the new symbol, we consider the
weak coding h defined by h(X) = λ, for any X ∈ N, h(a) = a, for any a ∈ Σ,
h(#) = λ. Moreover, we consider the language R = {S}(ΣN)∗{#,##}, whose
purpose is to ensure that only strings of the correct form will be accepted, by
removing other unintended strings.

We claim that L = h(%∗(L0) ∩R).
For the “⊆” inclusion, in order to obtain a valid derivation in G and to con-

tinue recombinations, we consider the string SaX from group L2 as the first
string in the recombinations. At this stage, through recombination, the applica-
tion of the rules of the form X → bY ∈ P can be achieved as follows. During
the recombination, a string XbY from group L3 as the second string can be re-
combined with the string SaX, and an appropriate template aXb from group
T1, can be used to produce the string SaXbY which is of the form {S}(ΣN)∗,
with X,Y ∈ N and a, b ∈ Σ. By using only the templates from group T1, the
simulation of the rules of the form X → bY ∈ P is possible, because no other
template from group T2, T3 can be used. The simulation is as follows:

(SaX,XbY) `aXb SaXbY.

The above mentioned simulation process can be repeated an arbitrary number
of times according to the templates in group T1. Likewise, rules of the form
X → aX ∈ P can be simulated that produce the string SaXaX using a template
from T2 and considering the second string from group L4 as follows:

(SaX,XaX) `aXa SaXaX.

The application of the rules of the form X → aX ∈ P can also be sim-
ulated repeatedly. In general, for representing an intermediate recombination,
if u, v ∈ %∗(L0) illustrates derivations of G and u = u

′
aY , v = Y bv

′
, where

u
′ ∈ {S}(ΣN)∗, v

′ ∈ (NΣ)∗N , a ∈ Σ, b ∈ Σ, then the resulting recombined
string (u, v) `aY b u

′
aY bv

′
that is a string of the form {S}(ΣN)∗ can be gener-

ated which corresponds to an intermediate computation of the form S ⇒∗ δN in
G where δ ∈ Σ∗.

If a template finds more than one matching point in the first string, then the
template can attach to any of those points and a matching second string from L0

as guided by the template can be recombined with the first string. For example,
such a recombination can happen to a string of the form

Sa1X1a2X2 . . . aiXiai+1Xi+1 . . . ak−1Xk−1akXk.

6 L. Kari, A. Rahman

Along this string if aiXi = akXk for some 1 ≤ i ≤ k, then the recombination
guided by a template aiXib can take place either at the matching position aiXi

or at the matching position akXk between the above first string and the second
string of the form XibY . This recombination will produce the resulting string
either of the form Sa1X1a2X2 . . . aiXibY or of the form Sa1X1a2X2 . . .
aiXiai+1Xi+1 . . . ak−1Xk−1akXkbY , respectively. Note however that any recom-
bination that does not happen at the rightmost end of the sentential form has
only the effect of “resetting” the derivation a few steps backward. Thus, without
loss of generality, we will hereafter assume that any derivation that results in a
terminal word has an equivalent rightmost derivation. We will only discuss these
rightmost derivations.

Note also that recombinations can proceed in parallel, for example, a recom-
bination can take place between a string of the form Sa1X1a2X2 . . . aiXi and a
string of the form Xiai+1Xi+1 . . . ak−1Xk−1akXk or alternatively Xiai+1Xi+1 . . .
ak−1Xk−1ak# using an appropriate template of the form aiXiai+1 that will lead
to a resulting string of the form Sa1X1a2X2 . . . aiXiai+1Xi+1 . . . ak−1Xk−1akXk

or Sa1X1a2X2 . . . aiXiai+1Xi+1 . . . ak−1Xk−1ak#, respectively. Any such deriva-
tion, however, can be replaced by a derivation that starts from a word containing
S and proceeds unidirectionally towards a terminal word.

Let us now examine the simulation of the termination rules. Here, it is as-
sumed that a string of the form Sa1X1a2X2 . . . an−1Xn−1 ∈ {S}(ΣN)∗ is to be
considered as the first string that was produced at the previous step. Now the
application of the rules of the form Xn−1 → an ∈ P can be achieved using the
second string of the form Xn−1an# from group L5 and applying the matching
template an−1Xn−1an from group T1. After recombination, the produced string
is Sa1X1a2X2 . . . an−1Xn−1an# = w

′
which is of the form {S}(ΣN)∗{#} and

corresponds to our intended terminal word. At this point, any further recom-
bination at the right most end of this produced terminal string stops because
no matching template can be found in the finite set of templates T to guide
recombination with this string:

(Sa1X1a2X2 . . . an−1Xn−1, Xn−1an#) `an−1Xn−1an Sa1X1a2X2 . . . an−1Xn−1an#.

Moreover, for simulating a rule of the form Xn−1 → λ, the required sec-
ond string is from group L6 and the corresponding template from the group
T3. Recombination yields a string Sa1X1a2X2 . . . an−1Xn−1## of the form
{S}(ΣN)∗{##} that is the terminal string and further recombination can not
take place:

(Sa1X1a2X2 . . . an−1Xn−1, Xn−1##) `an−1Xn−1# Sa1X1a2X2 . . . an−1Xn−1##.

By construction, it is clear that each string in %∗(L0) corresponds to a deriva-
tion in G, and the simulation of a derivation is possible only by using recombina-
tions according to the corresponding template from the finite template language
T . Accordingly, each derivation in G of the form

S =⇒ a1X1 =⇒∗ . . . =⇒ a1a2 . . . akXk =⇒ a1a2 . . . akak+1Xk+1 =⇒∗ . . .

Gene Unscrambling with Fewer Templates 7

a1a2 . . . an−1Xn−1 =⇒ a1a2 . . . an = w,
where 1 ≤ k ≤ n,Xk → ak+1Xk+1 ∈ P,Xn−1 → an ∈ P, corresponds to a
computation in % of the form

(Sa1X1, X1a2X2) `a1X1a2 Sa1X1a2X2 =⇒∗ . . . Sa1X1a2X2 . . . akXkak+1Xk+1

=⇒∗ . . . Sa1X1a2X2 . . . akXkak+1Xk+1 . . . an−1Xn−1an# = w
′
, or

Sa1X1a2X2 . . . akXkak+1Xk+1 . . . an−1Xn−1## = w
′
.

Therefore, we can say from the above description that a terminal string ac-
cording to the grammar G is achievable only by starting the recombination with
a string that begins with the start symbol S (that means considering as the
first string a string containing the start symbol S at the beginning) and then
proceeding by a series of recombination processes according to the appropriate
templates from the finite template language T for an arbitrary number of times,
which end up with the end marker # and simulate a derivation according to G.
Afterwards, intersecting the language R = {S}(ΣN)∗{#,##} with the set of
generated strings, we obtain our intended terminal strings. In this way, we are
able to find a string w

′ ∈ %∗(L0)∩R and then the application of the weak coding
h(w

′
) = w ∈ Σ∗ allows us to obtain the exact string generated by a derivation in

G. Thus, every derivation in G can be simulated.
Hence, we obtain L ⊆ h(%∗(L0)∩R). The other inclusion follows because the

only recombinations that can happen according to % lead either to words that are
eliminated by the filter, or to words in L after applying the weak coding.

Let us now compare the size of the template language we obtained with
that of the Daley-McQuillan model [2]. The Daley-McQuillan model [2] re-
quires three production rules to construct a template based on their defini-
tion of the template language in the following. T = {[X, a, Y][Y, b, Z][Z, c,W]}
where [X, a, Y], [Y, b, Z], [Z, c,W] ∈ V, V is an alphabet and X → aY , Y → bZ,
Z → cW ∈ P . If the number of production rules in the grammar is |P | = n, then
based on this definition the template language has a cardinality of n3.

Our construction requires two production rules to construct a template. In
the worst case we can have n2 templates where n is the number of production rules
in the simulated grammar. In addition to the size of templates, the size of the
TGR alphabet Σ′ in our construction is small: one plus the number of terminals
and nonterminals in the simulated grammar. In the Daley-McQuillan model as
described above, the alphabet V can be much larger, and it also depends on the
number of productions of the grammar. Although we require fewer templates
and alphabet, our model has one limitation, i.e., it requires a filter to discard
unintended results, while the Daley-McQuillan model requires only the correct
recombination to occur according to the constructed matching templates.

3 CTGR systems with permitting contexts

As shown in [3, 4, 2], the finiteness of the initial language and the set of templates
restricts the computational power of a TGR system. In fact, even with a regular

8 L. Kari, A. Rahman

initial language and a regular set of templates, iterated TGR systems can generate
at most regular languages [2].

Daley and McQuillan [3] have added a new feature called “deletion context”
to enhance the computational power of template-guided recombination. Their
extension of the TGR system is called the contextual template-guided recombi-
nation system (CTGR system). In [3], it was shown that arbitrary recursively
enumerable languages can be generated by iterated CTGR with a regular set of
templates and a finite initial language, with the help of taking intersection with
the Kleene star of the terminal alphabet, and a coding. From a practical view-
point, dealing with a regular set of templates is not realistic in the sense that we
cannot manage an infinite “computer”.

To achieve the finiteness of the employed component sets while preserving the
computational power of CTGR, we impose an additional control on the templates
in order to restrict their usage. More precisely, we associate each template with
a set of “permitting contexts”: strings that must appear as subwords within
the two participating words if this particular template is to be used for their
recombination. The idea of permitting contexts has been previously used in the
context of splicing systems, a formal model of DNA recombination that uses
restriction enzymes and ligases [12].

Definition 3. A contextual template-guided recombination system (CTGR sys-
tem) using permitting contexts is a quadruple %p = (T,Σ, n1, n2), where Σ is a
finite alphabet, n1 ∈ N is the minimum MDS length and n2 ∈ N is the minimum
pointer length, T is a set of triples (templates using permitting contexts) of the
form tp = (t;C1, C2) with t = e1#αβγ#d1 being a template over Σ and C1, C2

being finite subsets of Σ∗. To such a triple tp we associate the word
τ(tp) = e1#αβγ#d1$a1& . . .&ak$b1& . . .&bm ,

where C1 = {a1, . . . , ak}, C2 = {b1, . . . , bm}, k,m ≥ 0 and $,&,# are new special
symbols not included in Σ. We define τ(T) = {τ(tp) | tp ∈ T}.

For a CTGR system using permitting contexts %p = (T,Σ, n1, n2) and a lan-
guage L ⊆ Σ∗, we define %p(L) = {w ∈ Σ∗ | (x, y) `c

tp w for some x, y ∈ L
and tp ∈ T}, where (x, y) `c

tp w if and only if x = uαβd1d, y = ee1βγv,
tp = (e1#αβγ#d1; {a1, . . . , ak}, {b1, . . . , bm}), w = uαβγv, u, v, d, e ∈ Σ∗, α, γ ∈
Σ≥n1 , β ∈ Σ≥n2 . Every element that belongs to C1 appears as a substring in x
and every element that belongs to C2 appears as a substring in y, i.e., ai ∈ sub(x)
for 1 ≤ i ≤ k, bj ∈ sub(y) for 1 ≤ j ≤ m; moreover, if C1 = {λ} or C2 = {λ},
then we assume that no constrain is imposed on x and y respectively.

For a CTGR system using permitting contexts %p = (T,Σ, n1, n2) and a lan-
guage L ⊆ Σ∗, a template language T , we can define an iterated version of %∗p(L)
similarly as for TGR systems.

The following proposition shows that iterated CTGR system using permitting
contexts can generate arbitrary recursively enumerable languages using a finite
initial language and a finite set of templates with the help of intersection with a
filter language and, at last, applying a weak coding homomorphism.

Gene Unscrambling with Fewer Templates 9

Proposition 4. Every recursively enumerable language L ⊆ Σ∗ can be written
in the form L = h(L

′ ∩ L1), where h is a weak coding homomorphism, L1 is a
regular language and L

′
= %∗p(L0) with L0 a finite language.

Proof : Consider a Chomsky type-0 grammar G = (N,Σ, S, P) in Kuroda normal
form, where L(G) = L and the production rules in P are of the forms A→ EC,
AE → CD, A → a | λ for A,C,D,E ∈ N , a ∈ Σ. Let us denote U = N ∪ Σ ∪
{B,B1, B2}, where B,B1, B2 are new symbols.

We then construct a CTGR system using permitting contexts %p = (T, V, 1, 1)
where V = N ∪ Σ ∪ {B,B1, B2, X,X

′
, Y, Z, Z

′} ∪ {Yb | b ∈ U}
and T contains the following templates using permitting contexts:

Simulate : 1. Z#cavY#uY ; {X}, {λ}, for a, c ∈ U,Z, Y ∈ V, u→ v ∈ P ,
Rotate : 2. Z#caYb#bY ; {X}, {λ}, for a, b, c ∈ U,Z, Y ∈ V ,

3. X#X
′
bde#Z; {λ}, {Yb}, for b, d, e ∈ U,Z,X ∈ V ,

4. Z#caY#Yb; {X
′}, {λ}, for Z, Y, Yb ∈ V ,

5. X
′
#Xac#Z; {λ}, {Y }, for X

′
, X, Z ∈ V,

Terminate : 6. XBB1B2#abc#Z
′
; {λ}, {Y }, for X,Z

′ ∈ V,B,B1, B2 ∈ U .
We define the following languages which are included in the initial finite language
L0 ⊆ V ∗:

L1 = {XBB1B2SY }, L2 = {ZavY | a ∈ U, u→ v ∈ P},
L3 = {ZaYb | a ∈ U}, L4 = {X ′baZ | b, a ∈ U},
L5 = {ZaY | a ∈ U}, L6 = {XaZ | a}, L7 = {abZ ′ | a, b ∈ U}.

We denote L0 = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6 ∪ L7, and L0 acts as the initial
language.

For the construction of this system, the idea we use is the well-known proof
technique, “rotate-and-simulate procedure”, which was effectively used in other
contexts [12] in order to allow the simulation of a rule that applies to a symbol
in the middle of the word by first moving that symbol to the right hand end of
the word, simulating the rule, and returning the result to its original place.

Throughout this construction we assume x and y to be, respectively, the first
word and the second word of the recombination as defined in Definition 3.

The starting of the simulation based on the derivation steps in G requires to
consider the word XBB1B2SY as the first word. Indeed, any other choice of
start word leads to derivations of words of illegal form (not in XBB1B2Σ∗Y).
Throughout the derivation steps this word is bordered by X or its variant X

′

at the left end, as well as by Y or its variant Yb, b ∈ U at the right end, X,
X
′

and Y , Yb make the left respectively right extremity of the word. Likewise,
the symbol B always signals the beginning of the word, i.e., the sentential forms
of G, which facilitates the permutation of the word and B1, B2 are included to
provide the contexts for recombination.

Note that all the templates with permitting contexts in T include symbols Z
or Z

′
that have thus to be present in one of the two words taking part in the

recombination. Furthermore, the words containing symbols Z and Z
′

are from
the initial language L0 but will not appear in the resulting word of recombination.

10 L. Kari, A. Rahman

This guarantees that each recombination has to happen between the current word
which is produced in the previous recombination and at least one word from L0.
The simulation of a derivation in G initiates with the application of template 1
to XBB1B2SY ∈ L1 and ZavY ∈ L2, where initially w = BB1B2S, S → v ∈ P
and a ∈ U . The word obtained through the recombination is XBB1B2vY :

(XBB1B2SY,ZB2vY) `tp XBB1B2vY

for tp = (Z#cavY#uY ; {X}, {λ}) = Z#B1B2vY#SY ; {X}, {λ}), where S →
v ∈ P , c, a ∈ U and w = BB1B2S.

Generally, considering a word Xx1BB1B2x2uY and u→ v ∈ P , the resulting
word will be Xx1BB1B2x2vY applying the associated templates from group 1.
Here, w = w1cau = x1BB1B2x2u. This simulates a derivation step x2ux1 =⇒
x2vx1 in G. The derivation is as follows:

(Xw1cauY, ZavY) `tp Xw1cavY

for tp = (Z#cavY#uY ; {X}, {λ}), where u→ v ∈ P , c, a ∈ U .
In this simulation step, no other templates from groups 2 - 6 can be applied

except the templates from group 1 because of imposed restriction as deletion
contexts and permitting contexts on the usage of the templates. Afterwards, we
come to the rotation process that is necessary so as to move symbols from the
right hand end of the current word to the left hand end. This rotation process
can be explained by the following steps:

Step 1 : We can start the rotation process using the corresponding template
from group 2 with a word XwbY , where b ∈ (N∪Σ)∗, w ∈ (N∪Σ)∗{BB1B2}(N∪
Σ)∗ (respectively XwbY , where b ∈ {B,B1, B2}, w ∈ (N ∪ Σ)∗). In this step,
x = XwbY = Xw1cabY , y = ZaYb ∈ L3:

(Xw1cabY, ZaYb) `tp Xw1caYb

for tp = (Z#caYb#bY ; {X}, {λ}), where wb ∈ (N ∪ Σ)∗{BB1B2}(N ∪ Σ)∗, b ∈
N ∪ Σ ∪ {B,B1, B2}.

Step 2 : After applying the template from group 2 in Step 1, we obtained the
word Xw1caYb, which we rewrite as Xdew2Yb where w = w1ca = dew2. Then
we continue the rotation process using the matching template from group 3 with
x = X

′
bdZ ∈ L4, y = Xdew2Yb:

(X
′
bdZ,Xdew2Yb) `tp X

′
bdew2Yb

for tp = (X#X
′
bde#Z; {λ}, {Yb}), where b ∈ N ∪ Σ ∪ {B,B1, B2}.

Step 3 : The resulting word from the previous step is of the form X
′
bdew2Yb,

which can be written of the form X
′
wYb = X

′
w3caYb. In this step we will apply

the matching template from group 4 where x = X
′
w3caYb, y = ZaY ∈ L5:

(X
′
w3caYb, ZaY) `tp X

′
w3caY

for tp = (Z#caY#Yb; {X
′}, {λ}) where c, a ∈ N ∪ Σ ∪ {B,B1, B2}.

Gene Unscrambling with Fewer Templates 11

Step 4 : The recombined word from Step 3 is X
′
w3caY , in general, the out-

come of step 3 is a word of the form X
′
acw4Y . Lastly, we complete the rotation

process by using a template from group 5 where x = XaZ ∈ L6, y = X
′
acw4Y :

(XaZ,X
′
acw4Y) `tp Xacw4Y

for tp = (X
′
#Xac#Z; {λ}, {Y }) where a, c ∈ N ∪ Σ ∪ {B,B1, B2}.

The above mentioned rotation-steps produced the word Xbacw4Y = XbwY
which implies that starting from the word XwbY and applying steps 1 - 4, we
achieve the word XbwY having the same end markers. In this way, we are able to
move the symbol b from the right-hand end to the left-hand end of the word that
accomplishes the rotation of the underlying sentential form. These rotation-steps
can be repeated an arbitrary number of times and thus provide every circular
permutation of the word flanked by X and Y .

Using a template from group 1 to each word of the form XwY when w ended
by the left hand part of a rule in P , it is possible to simulate the application of
all rules of P at a desired position corresponding to the sentential form of G, by
means of the four rotation steps.

It is observed that from the initial word XBB1B2SY , each produced word in
every step does not include the symbols Z, Z

′
, that is, the word is of the form

α1x1BB1B2x2α2 in which the pair (α1, α2) is one of the four pairs (X,Y), (X,Yb),
(X
′
, Yb), (X

′
, Y), b ∈ U . In fact, these symbols being present in the templates of

T serve as permitting contexts that restrict the regulation of the recombination
process of this system %p.

Now we come to the termination process. Applying the terminal template
from group 6, we can remove XBB1B2 only when Y is present and the symbols
B,B1, B2 together as a word BB1B2 is adjacent to X. Here, x = abZ

′ ∈ L7,
y = Xacw4Y = XBB1B2bcw5Y :

(abZ
′
, XBB1B2bcw5Y) `tp abcw5Y

for tp = (XBB1B2#abc#Z
′
; {λ}, {Y }), where w ∈ (N ∪ Σ)∗{BB1B2}(N ∪ Σ)∗,

b, a, c ∈ N ∪ Σ ∪ {B,B1, B2}.
Now our achieved word is of the form abcw5Y = wY = w

′ ∈ %∗p(L0), i.e.,
L
′

= %∗p(L0). The intersection operation with the language L1 = Σ∗Y will filter
out the words that are not in proper form. Furthermore, we define a weak coding
homomorphism which eliminate the right end marker Y leaving other letters
unchanged. Let us now define a weak coding homomorphism by h(a) = a , for
any a ∈ Σ, h(Y) = λ.

Thus, we obtain a word in Σ∗ by applying the weak coding homomorphism
where w ∈ h(L

′ ∩L1). Finally, from the above construction we can produce each
word in L(G) and we say that L(G) ⊆ h(%∗p(L0)∩Σ∗Y). Conversely, the opposite
inclusion is held by this system. Therefore, h(%∗p(L0) ∩ Σ∗Y) ⊆ L(G).

12 L. Kari, A. Rahman

4 Conclusions

This paper improves on the descriptional complexity (size of the template lan-
guage) from n3 to n2 in the case of template-guided recombination (TGR) sys-
tems, and from regular to finite in the case of contextual template-guided recom-
bination (CTGR) systems. These reductions are obtained at the expense of using
a filtering language in the case of TGR, and of an additional control (permitting
contexts) in the case of CTGR.

References

[1] A. Angeleska, N. Jonoska, M. Saito, and L. Landweber. RNA-guided DNA assembly.
Journal of Theoretical Biology, 248(4):706–720, 2007.

[2] M. Daley and I. McQuillan. Template guided DNA recombination. Theoretical
Computer Science, 330(2):237–250, 2005.

[3] M. Daley and I. McQuillan. On computational properties of template-guided DNA
recombination. Lecture Notes in Computer Science, 3892:27–37, 2006.

[4] M. Daley and I. McQuillan. Useful templates and iterated template-guided DNA
recombination in ciliates. Theory of Computing Systems, 39(5):619–633, 2006.

[5] M. Domaratzki. Equivalence in template-guided recombination. Natural Computing,
7(3):439–449, 2008.

[6] M. Domaratzki. Minimality in template-guided recombination. Information and
Computation, 207(11):1209–1220, 2009.

[7] T. Harju, I. Petre, and G. Rozenberg. Gene assembly in ciliates: Molecular opera-
tions. Technical Report 557, Turku Centre for Computer Science, October 2003.

[8] T. Harju and G. Rozenberg. Computational processes in living cells:gene assembly
in ciliates. Lecture Notes in Computer Science, 2450:1–20, 2003.

[9] L. Kari, J. Kari, and L. Landweber. Reversible molecular computation in ciliates.
In Jewels are Forever, Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pages 353–363, London, UK, 1999. Springer-Verlag.

[10] L. Kari and L. Landweber. Computational power of gene rearrangement. pages
207–216. 5th DIMACS Workshop on DNA Based Computers, 1999.

[11] M. Nowacki, V. Vijayan, Y. Zhou, K. Schotanus, T. Doak, and L. Landweber. RNA-
mediated epigenetic programming of a genome-rearrangement pathway. Nature,
451(7175):153–158, 2007.

[12] G. Paun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing
Paradigms. Springer, 1998.

[13] D. Prescott, A. Ehrenfeucht, and G. Rozenberg. Template-guided recombination
for IES elimination and unscrambling of genes in stichotrichous ciliates. Journal of
Theoretical Biology, 222(3):323–330, 2003.

[14] D. M. Prescott, A. Ehrenfeucht, and G. Rozenberg. Molecular operations for dna
processing in hypotrichous ciliates. Europ. J. Protistol., 37:241–260, 2001.

[15] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

