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As the fabrication of integrated circuits continues to take place on

increasingly smaller scales, we grow closer to several fundamental

limitations on electronic computers. For many classes of problems,

computing devices based on biochemical reactions present an attractive

alternative to conventional computing paradigms. We present here a

survey of the theory and implementation of biologically and biochemically

based computers.
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The search for new methods of computing is something that has engaged
humankind for as long as history has been recorded. From the abacus and
Napier’s bones (1658) to the modern electronic supercomputer, people have
continuously sought new ways to automate the task of performing
computations.

In recent decades the word ‘‘computer’’ has become synonymous with an
electronic computing machine due to the overwhelming success of this
particular paradigm. This, however, is only part of the story. Indeed, as we
build faster and faster electronic computers, we are beginning to reach
physical limits, beyond which our current technology cannot venture. There
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are fundamental limits to how fast an electron can travel through a conductor
(Lloyd, 2001).

Having recognized that the current electronic technology must reach a
plateau at some point, computer science is beginning to expand to include the
study of nontraditional methods of computation. These new paradigms may
replace electronic computing, but it is more likely they will complement it by
exploiting their unique advantages.

The basic foundations for biomolecular computing were laid out by
Bennett and Landauer in their 1985 paper ‘‘The Fundamental Physical Limits
of Computation’’ (Bennett & Landauer, 1985).

The first paper to explicitly use DNA as a computational medium was
published by Leonard Adleman in 1994 (Adleman, 1994). In this paper,
Adleman gave a description of how a combination of DNA, the correct
enzymes, and appropriate laboratory protocols can solve an instance of the
Traveling Salesman Problem (TSP). What was particularly attractive about
this paper was that, in addition to providing the theoretical framework for
such a computation, it also provided concrete results from a complete
experimental implementation of the proposed protocol. Consequently, it is
Adleman’s experiment that is generally viewed as the landmark for the
genesis of the field of biomolecular computing.

This single DNA computing experiment sparked the interest of a number
of researchers in both computer science and molecular biology, and soon
there were several competing models of DNA computing. Adleman’s choice
to solve a problem that is known to be NP-complete put exceedingly high
expectations on DNA computing and resulted in some constructive criticism
in the form a brief complexity analysis by Hartmanis (1995). In this paper,
Hartmanis shows that using Adleman’s protocol for solving a 200-node
instance of the TSP would require 24 Earth masses of DNA. While this is
clearly not feasible, subsequent work in Suyama et al. (1997) showed that
modifications of the protocol lead to realistically solving much larger TSP
instances. The objection that we raise to Hartmanis’s critique is that he
evaluated the efficiency of an experiment that was intended as a proof of
concept, and an astonishing one for that matter. Similar criticisms of early
transistor-based electronic computers would have led us to believe that they
too would never become a viable technology.

In this article we introduce and provide a high-level view of a number of
unique models and implementations of DNA computing. The results
considered have been chosen to reflect a representative sample of key
research areas within the field.

The article begins with two introductory sections on basic molecular
biology and computer science. We then continue with an exposition of
splicing systems and other theoretical models. The fifth section is devoted to
more practical, implementation-based approaches. The sixth section provides
a brief overview of the new field of in vivo computation, and the final section
presents concluding remarks.
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BASIC MOLECULAR BIOLOGY FOR DNA COMPUTING

DNA computing is based on the idea that molecular biology processes can be
used to perform arithmetic and logic operations on information encoded as
DNA strands.

A DNA single strand consists of four different types of units called bases
(Figure 1b) strung together by an oriented backbone (Figure 1a) like beads on
a wire. The bases are adenine (A), guanine (G), cytosine (C), and thymine
(T), and A can chemically bind to an opposing T on another single strand
(Figure 1c), while C can similarly bind to G (Figure 1d). Bases that can thus
bind are called Watson=Crick (W=C) complementary, and two DNA single
strands with opposite orientation and with W=C-complementary bases at each
position can bind to each other to form a DNA double strand (Figure 1) in a
process called base pairing.

To encode information using DNA, one can choose an encoding scheme
mapping the original alphabet onto strings over {A, C, G, T}, and proceed to
synthesize the obtained information-encoding strings as DNA single strands.
A computation will consists of a succession of bio-operations (Kari, 1997),
such as cutting and pasting DNA strands, separating DNA sequences by
length, extracting DNA sequences containing a given pattern, or making
copies of DNA strands. The DNA strands representing the output of the
computation can then be read out and decoded.

Herein lie a wealth of problems to be explored, stemming from the fact
that encoding information in DNA differs from encoding it electronically,
and bio-operations differ from electronic computer operations. A funda-
mental difference arises from the fact that in electronic computing data
interaction is fully controlled, while in a test-tube DNA computer, free-
floating data-encoding DNA single strands can bind because of W=C
complementarity. Another difference is that in DNA computing, a bio-
operation usually consumes both operands. This implies that if one of the
operands is either involved in an illegal binding or has been consumed by a

FIGURE 1 A DNA double strand. From Kari et al. (2001).
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previous bio-operation, it is unavailable for the desired computation. Yet
another difference is that while in electronic computing a bit is a single
individual element, in DNA experiments each submicroscopic DNA
molecule is usually present in millions of identical copies. The bio-operations
operate in a massively parallel fashion on all identical strands. However, this
process is governed by the laws of chemistry and thermodynamics, and the
output obeys statistical laws.

Differences like the ones just mentioned point to the fact that a new
approach should be employed when analyzing and processing DNA-encoded
information. These differences are starting to be tapped into by research in
DNA computing, as will become apparent in the examples presented in this
article. For more molecular biology terminology and notions the reader is
referred to Kari (1997), Watson et al. (1987), and Calladin and Drew (1999).

BASIC COMPUTER SCIENCE

Most of the existing models of DNA computing have their formal basis in the
theory of computing. Theoretical computer science is a broad area, which, at
its highest level, encompasses the abstract study of the process of
computation. We present here a brief introduction to those areas necessary
to understanding the material in the sequel; for a more thorough introduction
the reader is referred to Hopcroft et al. (2001).

The automata theory branch of computer science deals with abstract
machines that take an arbitrary string of symbols as an input and either
produce an output string, or give a ‘‘Yes=No’’ answer to the question ‘‘Is the
input string accepted by this machine?’’ By varying the way in which these
machines are allowed to operate (for example: giving them access to data
structures for use as a ‘‘scratchpad’’), we can vary their computational power.

Computational power is measured in terms of what types of functions a
given machine can perform. The most general abstract model of computing,
and the one with the greatest computational power, is known as the Turing
machine. The Turing machine was proposed by Alan Turing as an abstract
device capable of computing any computable function. Thus, to prove that a
new model of computing achieves the highest level of computational power,
it suffices to prove that it is equivalent to a Turing machine. This is the
approach taken in most of the models reviewed in this article.

A Turing machine consists of two parts: a finite-state control (which we
can think of as the program) and a data tape (which we think of as the
storage). The data tape can be thought of as an infinite series of cells, each
capable of holding a single symbol. The data tape also contains a read=write
head, which is over a particular cell at any given time in the computation.

The finite state control consists of a set of states, represented as nodes in
a graph, with a transition function that allows moving between states. A
transition function is usually represented as an edge in the state graph.
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A transition between two states s and s0, labeled by r;w;m, can be
interpreted as follows: To move from state s to state s0, if the head of the
Turing machine currently is over a cell containing the symbol r, this symbol
must then be overwritten with the symbol w, and the head is then moved in
the direction m, where m is either ‘‘Left’’, ‘‘Right’’, or ‘‘Don’t move.’’ If the
symbol r is not present under the current position of the head, this transition
from state s to state s0 cannot happen. A word is accepted by a Turing
machine if there exists a sequence of state transitions that starts with the
‘‘start state’’ and the given word on the tape and ends in a final state. The
start state and final state are given in the description of the Turing machine.
The language accepted by a Turing machine is the set of all words accepted
by the Turing machine.

In addition to measuring computational power in terms of the functions an
abstract machine can compute, we can also measure it in terms of what
languages an abstract machine (such as a Turing machine) can accept. A
language is a set of strings, and a string is an ordered set of symbols chosen
from a given finite alphabet set. Depending on the form of the strings in a
given language, we can place the language in one of several classes of formal
languages.

Languages are customarily classified according to the Chomsky hierarchy
of languages (Hopcroff et al., 2001). Inside the Chomsky hierarchy, each
class of languages represents strictly more computational power than the
previous class. The hierarchy consists of regular languages (REG) at the
bottom, followed by context-free languages (CF), context-sensitive languages
(CS), and ending with the recursively enumerable (RE) languages at the top.
Any machine that can accept, or generate, recursively enumerable languages
is equivalent to a Turing machine. Following this informal description of
computational models, we now give several definitions and notations used in
this article.

An alphabet is a finite nonempty set; its elements are called letters or
symbols. X* denotes the free monoid generated by the alphabet X under the
operation of catenation (juxtaposition). The elements of X* are called words
or strings. The empty string (the null element of X*) is denoted by l. A
language over the alphabet X is a subset of X*. For instance, if X ¼ fa; bg
then aaba; aabbb ¼ a2b3 are words over X, and the following sets are
languages over X: L1 ¼ flg; L2 ¼ fa; ba; aba; abbaag; L3 ¼ fapjp primeg.

Since languages are sets, we may define the set-theoretic operations of
union, intersection, difference, and complement in the usual fashion.

A finite language can always be defined by listing all of its words. Such a
procedure is not possible for infinite languages and therefore other devices
for the representation of infinite languages have been developed. One of them
is to introduce a generative device and define the language as consisting of all
the words generated by the device. The basic generative devices used for
specifying languages are grammars.

A generative grammar is an ordered quadruple
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G ¼ ðN; T ; S;PÞ ð1Þ

where N and T are disjoint alphabets, S 2 N, and P is a finite set of ordered
pairs (u, v) such that u, v are words over N [ T and u contains at least one
letter of N. The elements of N are called nonterminals and those of T
terminals; S is called the axiom. Elements (u, v) of P are called rewriting
rules and are written u! v. If x ¼ x1ux2; y ¼ x1vx2, and u! v 2 P, then we
write x) y and say that x derives y in the grammar G. The reflexive and
transitive closure of the derivation relation ) is denoted by )�. The
language generated by G is

LðGÞ ¼ fw 2 T�jS)� wg: ð2Þ

Intuitively, the language generated by the grammar G is the set of words over
the terminal alphabet that are derived from the axiom by repeatedly applying
the rewriting rules.

Grammars are classified by imposing restrictions on the forms of
productions. A grammar is called type-0 if no restriction (zero restrictions)
is applied to the rewriting rules, and is called regular if each rule of P is of
the form A! aB;A! a;A;B;2 N; a 2 T . The family of finite languages
will be denoted by FIN, the family or languages generated by regular
grammars by REG, and the family of languages generated by type-0
grammars by L0. L0 coincides with the family of languages accepted by
Turing machines, and therefore a generative device that generates
any language in L0 has the maximum computational power of a Turing
machine. Such a generative device, the splicing system, is described in the
next section.

SPLICING SYSTEMS

As described earlier, a DNA strand can be likened to a string over a four-
letter alphabet. Consequently, a natural way to model DNA computation is
within the framework of formal language theory, which deals with letters and
strings of letters. Perhaps this is one of the reasons why the splicing systems
introduced by Tom Head in 1987 as formal-language-based computational
systems using splicing (an abstraction of DNA recombination) as their sole
computational operation preceded the advent of DNA computing by 7 years.

The DNA recombination (a combination of cutting of DNA strands by
restriction enzymes and crosswise pasting the obtained pieces by DNA
ligases) that led to the abstract operation of splicing is illustrated by the
following example from Head (1987). The reader can consult Head (1987,
1992), Paun and Salomaa (1996), and Paun et al. (1998), as well as Head et al.
(1996) for details.

Consider the following two double strands of DNA:
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50CCCCCTCGACCCCC30 50AAAAAGCGCAAAAA30

30GGGGGAGCTGGGGG50 30TTTTTCGCGTTTTT50
ð3Þ

and two restriction enzymes (TaqI and SciNI), whose recognition sites are

50TCGA30 50GCGC30

30AGCT50 30CGCG50
ð4Þ

respectively. The effect of the enzymes on the two given DNA strands is the
cutting, by each enzyme, of the strand containing its restriction site as a
subsequence. As a result, four new DNA strands are produced:

50CCCCCT CGACCCCC30 50AAAAAG CGCAAAAA30

30GGGGGAGC TGGGGG50 30TTTTTCGC GTTTTT50
ð5Þ

Note that the sticky end of the first strand is complementary to the sticky end
of the last one, while the same thing happens with the second and third
strands. The DNA strands with compatible ends can now be ligated by DNA
ligase, the result being

50CCCCCTCGCAAAAA30 50AAAAAGCGACCCCC30

30GGGGGAGCGTTTTT50 30TTTTTCGCTGGGGG50
ð6Þ

The DNA recombination operation exemplified above has been for-
malized in Head (1987) and modified in Gatterdam (1994) as follows. Given
an alphabet X and two strings x and y over X, the splicing of x and y
according to the splicing rule r consists of two steps: (1) cut x and y at certain
positions determined by the splicing rule r, and (2) paste the resulting prefix
of x with the suffix of y, respectively the prefix of y with the suffix of x.
Using the formalism introduced in Paun (1996a), a splicing rule r over X is a
word of the form a1#b1$a2#b2, where a1; b1; a2; b2 are strings over X and £,
$ are markers not belonging to X.

We say that z and w are obtained by splicing x and y according to the
splicing rule r ¼ a1#b1$a2#b2 (Figure 2), and we write

FIGURE 2 Splicing x ¼ x1a1b1x01 and y ¼ y2a2b2y02 according to the rule

r : a1#b1 $a2#b2.
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ðx; yÞ ! ðz;wÞ ð7Þ

if and only if

x ¼ x1a1b1x01
y ¼ y2a2b2y02

and
z ¼ x1a1b2y02
w ¼ y2a2b1x01

ð8Þ

for some x1; x01; y2; y02 2 X�.
The words a1b1 and a2b2 are called sites of the splicing, while x and y are

called the terms of the splicing. The splicing rule r determines both the sites
and the positions of the cutting: between a1 and b1 for the first term and
between a2 and b2 for the second. Note that the site a1b1 can occur more
than once in x, while the site a2b2 can occur more than once in y. Whenever
this happens, the sites are chosen nondeterministically. As a consequence,
the result of splicing x and y can be a set containing more than one pair
(z;w).

The splicing operation can be used as a basic tool for building a generative
mechanism, called a splicing system. Given a set of strings (axioms) and a set
of splicing rules, the language generated by the splicing system will consist of
the strings obtained as follows: Starting from the set of axioms, we iteratively
use the splicing rules to splice strings from the set of axioms and=or strings
obtained in preceding splicing steps.

One can define and classify families of splicing languages based on the
types of language families the axiom set, respectively the set of rules belong
to. For example, H (FIN, REG) denotes the family of languages generated by
splicing systems where the set of axioms is finite and the set of rules is a
regular language. Splicing systems have been extensively studied in the
literature. For example, the generative power of different types of splicing
systems has been studied in Csuhaj-Varju, Freund et al. (1996), Culik and
Harju (1991), Freund et al. (1999), Gatterdam (1989), Head (1987), Paun
(1995, 1996a, 1996b), and Paun et al. (1996). It has been proved in Freund et
al. (1999) that splicing systems with multisets where both the set of axioms
and the set of rules are finite generate the entire class of computable
languages. (In a multiset of strings, each string has associated with it a
multiplicity that decreases when the string is used as an operand in a splicing
step and increases when the string occurs as a result of a splicing.)
Decidability problems have been tackled in Deninnghoff and Gatterdam
(1989). Moreover, other variations of the model have been considered:
splicing systems with permitting=forbidding contexts in Csuhaj-Varju,
Freund et al. (1996), linear and circular splicing systems in Head (1992),
Pixton (1995) and Yokomori et al. (1997), splicing systems on graphs in
Freund (1995), and distributed splicing systems in Csuhaj-Varju, Kari et al.
(1996) and Dassow and Mitrana (1996). For a survey of the main results on
splicing the reader is referred to Head et al. (1996), Paun and Salomaa (1996),
and Paun et al. (1998).
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An experimental implementation of a simple example of a wet splicing
system has been shown in Laun and Reddy (1997) to generate in vitro the
splicing language predicted by the corresponding theoretical splicing system.

POST-ADLEMAN FORMAL MODEL EXPLOSION

Direct Implementation

In many models of DNA computation, the authors have either devised or used
a formal model equivalent to a Turing machine, rather than a direct
implementation of a Turing machine. Rothemund (1996) proposes a model
that directly implements a Turing machine with DNA and restriction
endonucleases.

The fundamental idea behind this model is that the tape of the Turing
machine is kept as a circular strand of DNA, while the rules of the Turing
machine are implemented as transition oligonucleotides (oligo). When added
to a population of ‘‘tapes’’ (circular DNA strands) along with specific
enzymes, the appropriate transition oligo will become incorporated into the
tape, thus simulating the action of a Turing machine. In the following we
describe in detail the tape and then the transition rules.

The DNA strand encoding the Turing machine tape contains the current
contents of the abstract Turing tape as well as information about the state of
the Turing machine. In reality, then, rather than simply representing the
Turing machine, our DNA strand becomes an instantaneous description of
the Turing machine.

The instantaneous description is composed of three parts. The first consists
of the symbols currently on the Turing tape. Each symbol in the input
alphabet is assigned a unique DNA sequence to represent it. In addition, there
are two invariant symbols L and R that are appended to the left and right
sides of a symbol, respectively. The sequences used to represent the symbols
must be chosen carefully so that each generates a unique sticky and when cut.

The second part of the instantaneous description is the head of the Turing
machine represented by two adjacent symbols Inv and qa; where qa is a state
of the Turing machine. These two symbols then act as restriction sites for
enzymes, with the restriction site labeled by the state always pointing to the
current symbol on the tape.

The third part of the instantaneous description is the current state of the
Turing machine, which is actually encoded as the spacing between a
recognition site for a restriction enzyme and the current symbol. The state is
encoded in this fashion since by varying the number of bases between the
recognition site and the current symbol, we can control exactly where the
current symbol will be cut.
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If the DNA sequences used for the symbols have been chosen carefully, as
above, so that each symbol generates a unique sticky end, this property can be
used to allow for the ligation of a new transition oligonucleotide into our
DNA strand. This transition oligo encodes the new state, symbol, and
direction of the Turing machine.

Given this information, each rule in our transition table is encoded with
four transition oligos, one for each of the above-mentioned cases.

A computation step of the Turing machine consists of six distinct steps:

1. Cut the current symbol with two restriction enzymes, state and invariant.
The state enzyme will create a sticky end unique to the current state and
input symbol. The invariant enzyme, appropriately enough, cuts an L or R
invariant symbol to create a uniform other end. The result is that our DNA
tape is no longer circular, but a single strand with one unique end and one
uniform end.

2. We mix all of the transition oligos (remember that there are four for each
transition rule) with the homogenous population of DNA Turing tapes. At
this point, the unique sticky end created in Step 1 is bound to the correct
transition oligo (which will have a complementary sticky end) by DNA
ligase. Since the other end of the transition oligo will not be unique, it
is protected by a small sequence cap.

3. Now that the unique end of the transition oligo has been successfully li-
gated to the DNA tape, the cap on the other end is removed.

4. The removal of cap in the preceding step creates a sticky end, which is
now ligated into the DNA tape returning it to a circular DNA strand.

5. A symbol-excision restriction enzyme is now applied in order to cut out
the previous symbol from the tape.

6. The enzyme in Step 5 leaves two matching ends so the DNA is again
recircularized and left with the state restriction site pointing to the current
symbol.

After Step 6, a polymerase chain reaction (PCR) is run on a small sample
from the computation using the Halt sequence as a primer. In this manner,
only halted tapes would be amplified and would thus be easily detectable.

An obvious attractive feature of this model is that it directly implements a
Turing machine as the model of computation. This is clearly advantageous
over implementations that use new or less frequently used models of
computation.

Moreover, from the very beginning, Rothemund indicates the exact
reactions that will implement each of the operations. Rather than relying on
fictitious or yet-to-be-discovered biochemistries, everything in his paper is
implementable using currently available restriction enzymes and laboratory
techniques. This being said, this model is not practical for large-scale
implementation. The most difficult aspects are the prohibitively high cost of
Class IIS restriction enzymes and the relatively sparse selection available.
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Insertion=Deletion Systems

Two of the most fundamental biological operations on DNA are that of
cutting out (or deleting) a segment of DNA, and inserting a DNA sequence
into existing DNA. The existence of these operations in nature makes the
formal model of insertions and deletions given in Kari (1991) a natural
candidate for DNA computing.

Given words u and v, the insertion of v into u consists of all words that can
be obtained by inserting v in an arbitrary position of u:

u v ¼ fu1vu2ju ¼ u1u2; u1; u2 2 X�g ð9Þ

In the context of biomolecular computing, the insertion operation is too
nondeterministic to model the type of insertions occurring in DNA strands.
Consequently, a modified version, contextual insertion, was defined in Kari
and Thierrin (1996) to capture the fact that insertions of DNA strands are
context-sensitive. Given a pair of words ðx; yÞ 2 X�, called a context, the
(x,y)-contextual insertion of v into u is defined as

u ðx;yÞv ¼ fu1xvyu2ju1; u2 2 X�; u ¼ u1xyu2g ð10Þ

An insertion deletion system ID ¼ ðX; T ; I;D;oÞ is composed of an alphabet
X, a set of terminal symbols T � X, insertion ½I � ðX�Þ3� and deletion
½D � ðX�Þ3� rules, and an axiom o 2 X�. Insertion rules are given in the form
ðc1; x; c2ÞI , which means that the word x can be inserted in the current word at
a point where the context c1c2 exists. Similarly, a deletion rule ðc1; d; c2ÞD
indicates that if the substring c1dc2 exists in the current word, then d can be
deleted.

It is proven in Kari and Thierrin (1996) that linear insertion=deletion
systems have expressive power equivalent to a Turing machine.

Although an insertion=deletion system that operates on purely linear
strands of DNA is capable of universal computation, it does not capture the
important biological reality of plasmids. A plasmid is a strand of DNA that is
circular, rather than linear. In order to model plasmids as well as linear
strands, the insertion=deletion model was extended in Daley et al. (1999) to
include circular strands of DNA.

Daley et al. (1999) also contains the results of a laboratory implementation
of a small example of a circular insertion=deletion system.

Both linear and circular insertion=deletion provide computing models that
are not only universal, but based on existing fundamental biological
operations. The most positive aspect of this is that implementing these
models in a laboratory (and perhaps in vivo in the future) is possible since
the techniques involved are well understood and easily repeatable. One
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drawback, pointed out in J. Khodor (personal communication), is that there is
no obvious way to implement a deletion rule of the form (c1; x; c2) for a
specific x. Indeed, the current system will delete anything flanked by the
sequences c1 and c2.

Equality Checking

The equality checking model originally proposed by Yokomori and
Kobayashi (1997) presents an interesting alternative to current models. The
model focuses around the idea that an equality machine could be effectively
implemented in the DNA biochemical domain. Essentially, computation is
achieved by the equality machine keeping two output tapes during the course
of reading an input tape and simply checking whether or not the two output
tapes are equal at the end of the computation.

An equality machine consists of four major components: finite control, a
one-way read-only input tape, and two read-write output tapes.

In Yokomori and Kobayashi (1997) this is formalized by representing an
equality machine M as M ¼ ðQ;S;D; d; q0;FÞ where Q is a finite set of
states, S the input alphabet, D the output alphabet, d a set of transition
relations, q0 the initial state, and F the set of final states ðq0 2 Q;F � QÞ.
The finite control is represented as a transition function, mapping states and
inputs of read-only tape onto new states and associated outputs on the two
output tapes. A transition is of the form ðp; aÞ ! ðq; u; iÞ, where p and q are
states, a is an input symbol, u is an output symbol, and i refers to output tape
1 or 2.

According to Yokomori and Kobayashi (1997) their research into a DNA
implementation of this model was motivated by the result that the family of
languages accepted by nondeterministic equality machines equals the set of
recursively enumerable languages (Engelfriet & Rozenberg, 1980).

The operations presented in this particular model are classified into three
distinct categories: basic operations, test set operations, and set operations.
There is only one basic operation:

* AM (Amplify), which, given a test tube T, produces two new test tubes,
T ; T 0 with exactly the same contents as T.

There are two test set operations:

* EM (emptiness test), which, contrary to what one might expect, returns a
‘‘Yes’’ if there is a string in the given test tube and ‘‘No’’ if the given test
tube contains no strings.

* EQ (equivalence test), which takes a single test tube and returns ‘‘Yes’’ if
the test tube contains at least one complete double-stranded string and
‘‘No’’ otherwise.

Finally, there is a collection of set operations:
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From a strictly mathematical point of view, the DNA equality checking
model offers an attractive theoretical basis for computation. The number of
atomic operations required is not exceedingly high and the model itself is
simple enough (recall that Alan Turing’s goal in the creation of the Turing
machine was to design the simplest possible model of computation). The
feasibility of this DNA implementation of the model, however, is still
untested.

GETTING WET: DNA COMPUTING IMPLEMENTATIONS

The majority of models for DNA computing in the current literature are
primarily theoretical. Most have been designed by computer scientists and
mathematicians with the goal of proving that universal computation can be
achieved by DNA computing. Although this is clearly a critical property for
any successful model of DNA computing, it is not necessarily the best
starting point for practical DNA computing applications. In this section we
examine models inspired by biological techniques that lend themselves much
more readily to implementation using existing methods and technologies.

Whiplash PCR, proposed in Kiga et al. (1997) and Sakamoto et al. (2000),
is based on the classical model of a state machine. The state machine consists
of a single-stranded DNA molecule with the subsequence at the 30 end of the
molecule being considered the current state of the machine. Since the
molecule is single-stranded, it will naturally attempt to bond with another
complementary strand of DNA to form a stable double-stranded molecule. In
the absence of other molecules, and if a self-complementary subsequence
exists, the single strand will form a bond with itself, creating what is known
as a hairpin structure (Figure 3).

This allows one to encode the state machine’s transition table in the
molecule itself in the form stop–newstate–oldstate. This creates a situation
where if the 30 head of the DNA molecule (the current state) is
complementary to the sequence representing oldstate then the two will
anneal, forming a new molecule. At this point, the enzyme DNA polymerase
will attempt to extend the old state toward the new state.

Name Syntax Result

UN (union) T ¼ T1 [ T2 T1 [ T2

LC (left cut) T ¼ a=T1 fujau 2 T1g
LA (left add) T ¼ a � T1 fag � T1

EX (extract) T ¼ ExðT1;oÞ T1 \ S�fogS�
RE (replace) T ¼ ReðT1; u; vÞ fxvyjxuy 2 T1g
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Although it is possible to perform single-molecule computations with such
a system, its real power lies in the ability to have many such molecular state
machines operating in parallel. Eric Winfree (1998) presents a modification
of this system that is capable of solving some NP-complete problems in O(1)
biosteps (although, of course, the space requirements make solving large
instances impractical) using parallelization.

In contrast to whiplash PCR, which is solution-based, the model of
surface-based DNA computing emerged, which is dependent upon the DNA
strands being affixed to a physical surface. Liu et al. (2000) present a method
for solving the satisfiability problem (SAT) that involves working with
single-stranded DNA affixed to a gold surface.

The first step involves generating the entire solution set for the given
problem (with respect to the chosen encoding) and then attaching each
potential solution DNA single strand to the glass surface. We work here with
the example given in Liu et al. (2000). Each base in a given single strand
represents a single bit, A and C for 0, G and T for 1.

The algorithm for generating the solution is then implemented as an
iterated sequence composed of a combination of operations: mark ði; bÞ:
mark all strings in which bit i has value b; mark ½ði1; b1Þ; ði2; b2Þ; . . . ;
ðik; bkÞ�: extension of the mark operation to multiple bits; destroy—marked:
removed all marked strings; destroy—unmarked: removes all unmarked
strings; unmark: converts all marked strings into unmarked strings; test—
if—empty: determine if all strings have been destroyed.

Marking is accomplished by synthesizing the set of DNA strands that are
complementary to the strings in which bit i has value b and allowing these
strands to anneal to the surface-affixed strands. The destroy-marked and
destroy-unmarked operations are easily accomplished by washing the surface
with a solution containing enzymes known as exonucleases that will
specifically destroy either single-stranded or double-stranded DNA. Unmark
can be accomplished by applying distilled water to the surface. The low
salinity of the water will destabilize the double-stranded DNA and cause it to
separate into single strands again. Finally, the test for emptiness is
implemented by removing the DNA from the surface, amplifying it with
PCR, and checking for a product.

FIGURE 3 Hairpin structure.
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Liu et al. (2000) presented experimental results from an implementation of
a solution to a four variable, four-clause, 3-SAT problem using surface-based
computing and concluded that the methods they have presented lend
themselves reasonably well both to scaling to larger problems and,
potentially, to automation. The largest DNA computation to date using a
solution-based approach, presented in Braich et al. (2002), involved finding
the solution to a 20-variable instance of the 3-SAT problem.

Of necessity, formal models of DNA computing often reduce the actual
structure of the DNA molecule to an approximate abstraction in order to
remove details that are deemed irrelevant to the computational task at hand.
One of the dangers of this approach is oversimplifying the situation and thus
missing a key feature, as is the case with the three-dimensional structure of
DNA itself that could be used in computing. Recognizing the importance of
the 3D structure, such models were put forth by Winfree (1998b; Winfree,
Yang et al. 1999), which gave rise to the DNA self-assembly approach to
computation.

The general idea is to design DNA structures called tiles that are capable
of self-assembly, thus resulting in one- or two-dimensional macrostructures
when allowed to react in solution. By carefully choosing the construction of
the tiles, the assembly process becomes a single-pot computation. Examples
of implementations of the tiling approach include solving SAT (Lagoudakis
and LaBean 1999), performing XOR an addition operations (Winfree,
LaBean et al., 1999), generating the output languages of finite-visit Turing
machines (Rozenberg et al., 2001), and Horn clause computation (Hagiya et
al., 2001). Details on experimental design of DNA tiles can be found in
Winfree et al. (1998).

The results we have seen so far have one common factor tying them
together: They all use DNA as their primary information medium. In Lipton
et al. (1999) the possibility of using another information-rich biomolecule,
RNA, is explored.

Traditionally, RNA has been avoided in biomolecular computing research
due to the intrinsic difficulty in working with the molecule. RNA is far less
stable than DNA and this problem is exacerbated by the fact that the enzyme
RNA-ase (which digests RNA) is present on the skin of every human being.
Working with RNA requires stricter lab protocols and more experience than
is required to perform simple DNA experiments.

Landweber (1999) designed an RNA-computing experiment to solve the
‘‘Knights Problem’’ on a three-by-three chessboard. This problem consists of
finding all the ways of placing knights on the chessboard such that no knight
may be placed on a square that can be attacked by another knight. The
experiment generated 43 solutions, which were then verified by hand,
resulting in 42 of the solutions being declared correct.

Recently, work has been started on possibly using peptide-antibody
interactions for computing (Balan et al., 2001), and progress has been made
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also in the direction of constructing a programmable DNA-based device
(Benenson et al., 2001).

BORROWING FROM NATURE: IN VIVO COMPUTING

All of the preceding methods have been in vitro attempts to utilize molecular
biological techniques for the purpose of computing, but are these optimal
solutions? The two models presented next are instead derived from natural
biological phenomena that have evolved over billions of years of selection. It
is quite possible, and indeed likely, that nature may have developed better
solutions to the problems we face.

Bloom and Bancroft (1999) present a practical framework for biomolec-
ular computation using liposomes. A liposome is a biological membrane
composed of a lipid bilayer and used in vivo for the separation of material
within a cell. The structure of the membrane can be seen in Figure 4.

Through standard lab techniques, such membranes can be artificially
constructed and operated upon in order to allow the segmentation of a
reaction on a microscopic scale. Bloom and Bancroft (1999) exposit six basic
operations that can be performed on liposomes.

The first operation is initialization, which consists of constructing a
liposome containing the desired contents. A number of implementation
possibilities are then given for a merge=union operation, which would allow
two liposomes to aggregate into a single liposome, combining the contents of
the originals. A number of utility operations are also proposed: A filter
operation, capable of removing small solutes from a liposome while retaining
large ones; an operation for separating a population of liposomes based on
size; an operation for detecting the occurrence (or lack thereof) of a
merge=union event; and finally, the ability to lyse (break) all membranes
releasing the contents for analysis. Potential applications of this model in
DNA self-assembly (tiling) and other models were suggested by the authors,
though no implementation using these techniques has yet been attempted.
However, it seems that this construct is ideally suited to a method of

FIGURE 4 Lipid bilayer.
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computation based on membranes. Interestingly enough, a theoretical model
of computing with membranes was independently proposed by Paun (2000).
This model is being thoroughly studied by computer scientists and has had
extensions (Martin-Vide et al., 2001; Paun, 2001) and electronic simulations
(Baranda et al., 2001) proposed.

Supercell systems (or P-systems) are based on the idea of a hierarchy of
membranes, each containing various rules and substrates for those rules to
act upon. A set of standard rewriting rules (with the exception of an
additional reserved symbol d, which causes the current membrane to lyse)
is given for each membrane, along with any substrates to which the rules
can be applied. The rules are then applied, in parallel, until a state is
reached where either the membrane is lysed or no further application is
possible. In order to avoid ambiguity in cases where two or more rules may
be applicable simultaneously, an explicit priority ordering of rules is
allowed. When a rule results in a d being written, the membrane containing
the d is lysed and all rules associated with this membrane are lost. The
substrates, however, are now present in the parent membrane and are
subject to the rules present here.

One of the most exciting side effects to arise from the current interest in
the field of DNA computing is the rapid growth in the number of groups
attempting to model cellular processes as computation. In some cases, the
same formal models that have been used to describe in vitro DNA computing
systems can be modified to provide a model of actual in vivo genetics. We
briefly look here at a formal mathematical model proposed by Landweber
and Kari (1999) for the in vivo gene rearrangement process found in
hypotrichous ciliates. Recently, Petre et al. (2001) have proposed an
alternative model for the same process.

In many organisms, the genes encoding specific proteins are linear DNA
segments contained in the organism’s genome. The beginning and end of the
gene are marked with special marker sequences so that the cellular
transcription mechanism knows where to begin and end transcribing a given
gene. In certain species of ciliates, however, the encoding of genes is not
nearly as straightforward. In fact, the DNA representing the genes is actually
broken up into smaller subsections. These subsections are moreover
scrambled in nonlinear order. Thus, for these ciliates to properly transcribe
their DNA they must have some method of first reassembling the scrambled
genes into the correct order.

The DNA bio-operation that apparently accomplishes the unscrambling is
illustrated in Figure 5. Landweber and Kari showed that the contextual
guided recombination systems, which are generative mechanisms based on
the bio-operations in Figure 5, have universal computational power (i.e., they
are equivalent in power to a Turing machine). This result points to the
possibility of solving man-made computational problems by using the ciliate
system, and even to the notion of a ‘‘programmable cell.’’
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SUMMARY AND CONCLUSIONS

In this article we have presented a brief survey of several research areas in the
field of DNA computing. We presented a number of formal models as well as
implementations of biomolecular computing, where biomolecules and
biochemical reactions are used to perform specific computations. The
advantage of this mode of computation over more traditional methods (e.g.,
electronic computing) is the promise of massive parallelism that would be
unachievable in silicon. Clearly, biomolecular computing is not an appropriate
solution to every computational problem, given the amount of overhead
involved in setting up a reaction protocol. However, as laboratory techniques
mature, DNA computing may become an attractive alternative to electronic
computers for difficult problems that would benefit from a parallel approach.

In addition to the in vitro approach, more interest is now being placed on
in vivo computing. The ability to ‘‘program’’ a living cell offers not only
interesting computational possibilities, but also perhaps a new tool for
medical and biological sciences. If one could accurately utilize the genetic
mechanisms of a cell for accomplishing man-made tasks, it is
theoretically possible that a collective of such cells could be used as

FIGURE 5 Recombination operations. A linear DNA strand uxvxw in the presence of

direct repeats x will undergo recombination, resulting in a circular DNA strand *vx

and a shorter DNA strand uxw. The operation can happen also in the opposite

direction: A circular DNA strand can be inserted into a linear one, provided they share

a common sequence x.
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biological nanomachines to carry out many of the desirable medical functions
described in the current nanotechnology literature (Freitas, 2001).

In an era when the term biotechnology is used loosely by many, DNA
computing offers the possibility of true biotechnology that will allow large,
difficult computations to be performed in reasonable time; possibly the
ability to utilize cellular function at the genetic level; new tools and methods
for analyzing the overwhelming amount of genetic information that global
efforts in gene sequencing and analysis are producing; and most significantly,
a formal mathematical framework for understanding the underlying
mechanisms of cellular genetics.
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