
On the Maximality of Languages with Combined Types
of Code Properties

Lila Karia, Stavros Konstantinidisb, Steffen Kopeckia

aThe University of Western Ontario, London, Ontario, Canada
bSt. Mary’s University, Halifax, Nova Scotia, Canada

Abstract

We consider the decision problem of whether or not a given regular language
is maximal with respect to certain combined types of code properties. In the
recent past, there have been a few formal methods for defining code properties,
such as trajectory-based codes and transducer-based codes, that allow one to
decide the maximality problem, including the case where maximality is tested
with respect to combined properties within these formal methods. The property
of “decoding delay 1” is not known to be definable with these methods, but it
is known that the maximality of this property alone is decidable for regular
languages. Here, we consider the problem of deciding maximality of a regular
language with respect to decoding delay 1 and a transducer-based property, such
as suffix-free, overlap-free, and error-detection properties.

Keywords: code properties, decoding delay 1, maximal codes, syntactic
monoids

1. Introduction

The problem of deciding whether or not a given finite, or regular, language
L is maximal with respect to a certain code property has been investigated for
various fixed properties, such as prefix codes [1], bifix codes [2, 3], infix codes
[4], and finite decoding delay codes [5]. In fact, for most of these properties,
the more general embedding (or completion) problem has been solved, that is,
the problem of constructing effectively a maximal finite, or regular, language
containing L.

In the recent past, there have been a few formal methods for defining code
properties that allow one to decide the maximality problem for regular languages,
that is, the problem of whether or not a given regular language L is maximal
with respect to a given property P definable within these formal methods. More
specifically in[6], a code property Pē is defined via a trajectory-set expression ē,

Email addresses: lila@csd.uwo.ca (Lila Kari), s.konstantinidis@smu.ca (Stavros
Konstantinidis), steffen@csd.uwo.ca (Steffen Kopecki)

Preprint submitted to Elsevier August 6, 2013

that is a regular expression ē over {0, 1} which can be used to effectively provide
the property as input to a decision algorithm. The method of [7] considers
transducer-based properties. Thus, a code property Pt is defined via a certain
kind of transducer t which can be used to effectively provide the property as
input to a decision algorithm. We note that the transducer-based approach
stems from the ideas in [8] where a code property is defined via a language
equation involving a word operation.

The formal methods in [6] and [7] can also decide the maximality problem
of two combined properties provided that both of these properties are defin-
able within these formal methods. In this work, we make a first attempt to
decide the maximality problem for combined types of properties, where one of
the properties is not known to be definable with the above formal methods.
More specifically, we consider the decidability of maximality of a given regular
language L with respect to the “decoding delay 1” property and a property Pt,
where t is any given input-preserving transducer ; see Section 2. Our approach
also allows to decide maximality of these combined code properties within a
maximum regular language M ; see [7]. Maximality over an alphabet Σ is ob-
tained when M = Σ∗, but in general M can be any regular language.

We note that input-preserving transducers can be used to define many
known (code) properties such as prefix, suffix, bifix, outfix, infix, hypercode,
overlap-free, and error-detection properties [7]. We also note that the problem
of whether or not a given regular language L is maximal with decoding delay d,
for any non-negative integer d, has already been solved in [5] using deep results
from the theory of codes; see [1] for a more recent presentation. However, our
objective here is to investigate the decidability of maximality of L with respect
to the decoding delay 1 property and some input-preserving transducer property
Pt. Finally, we note that every trajectory property is also an input-preserving
transducer property [7].

A code L with decoding delay d (DD-d) has the property that when decoding
a message w and after reading a prefix u0u1 · · ·ud of w with ui ∈ L, the decoding
of w has to start with u0. The codes satisfying DD-0 are the prefix codes, a
property that can be defined by an input-preserving transducer. The property
DD-1, however, is not known to be definable by an input-preserving transducer.
Note that every property Pt which defines a subclass of the prefix codes, such as
infix, bifix, and hypercodes, also defines a subclass of DD-1 codes; furthermore,
for such a property, a code is maximal with respect to Pt and DD-1 if and
only if it is maximal with respect to Pt. Properties that are of interest in our
context include suffix-freeness (SF), overlap-freeness (OF: no two distinct words
ux, xv ∈ L with u, v, x non-empty), or k-substitution error detecting (SUB-k:
no two distinct words in L with Hamming distance ≤ k). Note that OF and
SUB-k do not imply the code property.

Example 1. The code L1 = 00 + 01+ has the combined property DD-1 and
SF, but it is not maximal with the combined property DD-1 and SF as the word
0010 can be added to L1.

Example 2. The code L2 = 00 + 11011 is not maximal with respect to DD-1,

2

as 11 can be added, nor with respect to OF, as 1 can be added. However, L2 is
maximal with respect to the combined property DD-1 and OF: If a word w /∈ L2

is added to the language and |w| ≥ 2, then its first letter overlaps with the last
letter of 00 or 11011. If w = 0 or w = 1, the language L2 ∪ w does not satisfy
DD-1 since ww is a prefix of 00 or 11011.

Example 3. The code L3 = (00)+1+ + 01 is neither maximal within M =
0+1+ + 1+0+ with respect to DD-1, as 011 can be added, nor with respect to
SUB-1, as 10 can be added. However, L3 is maximal within M with respect to
the combined property DD-1 and SUB-1: A word w = 1i0j /∈ L3 for i, j ≥ 1
cannot be added to L3 without violating DD-1 because (001)(1i0j) ∈ L3w is
a prefix of (001i+1)(02j1) ∈ L2

3. A word w ∈ 0i1j with i, j ≥ 1 which does
not belong to L3 (i. e., i = 2k + 1 for k ∈ N) cannot be added to L without
violating SUB-1. Indeed, if k ≥ 1, then w has Hamming distance 1 to the word
(00)k1j+1 ∈ L3; otherwise, i = 1, j ≥ 2, and w has Hamming distance 1 to
001j−1 ∈ L3.

Our approach to answer the desired decision question, for a given regular lan-
guage L, a maximum regular language M , and transducer property Pt, reduces
to whether or not a certain system of seven language equations (corresponding
to the decoding delay 1 aspect of maximality) has a solution that belongs to
Rt ∩M (a regular language corresponding to the Pt-property aspect of max-
imality). In effect, this question is equivalent to whether the intersection of
eight, not necessarily regular, languages is empty or not:

L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 ∩ L6 ∩ L7 ∩Rt ∩M
?
= ∅

where each Li is the solution set of the i-th equation; see Section 3. This
question turns out to be non-trivial. We succeed in answering the question as
follows.

1.) We solve explicitly four of the equations with solutions L1, L3, L5, L6, show-
ing that these are effectively regular languages, and we give a clear charac-
terization of the non-regular language L7.

2.) We show that L3∩L4 = L3 and that there is, effectively, a regular language
L2.1 such that L1 ∩ L2 = L1 ∩ L2.1. Thus, we have that the language

K = L1 ∩ L2.1 ∩ L3 ∩ L5 ∩ L6

is an effectively regular language.

3.) We show that the emptiness problem

K ∩ L7 ∩R
?
= ∅

where R is an arbitrary regular language, is equivalent to the emptiness of
a regular language that is computable when L is effectively given.

3

We also show that deciding if K ∩ L7 = ∅ is equivalent to deciding if K = ∅,
which is decidable as K is effectively regular. Thus, our approach also provides
an alternate method of deciding maximality of decoding delay 1 for regular
languages.

While the system of equations we consider is quite specific, we believe that
the reductions mentioned in 2.) and 3.) could lead to similar future reductions
in attempting to decide solution existence of similar systems of equations. The
tools we use to establish the above results involve concepts from combinatorics
on words and the theory of syntactic monoids.

We note that, contrary to the fact that most natural problems about fixed
properties of regular languages are decidable, one cannot say the same about
decision problems involving types of properties as opposed to fixed properties.
For example, in [9] the authors show that if properties are described via mul-
tiple sets of trajectories, then already the satisfaction problem (given a regular
languauge and such a property, does the language satisfy the property?) is
undecidable.

The paper is organized as follows. In the next section, we introduce some
basic notation and background about languages, finite monoids, and combina-
torics on words. In Section 3, we phrase the maximality decision problem with
respect to the decoding delay 1 property as a solution existence problem for a
system of seven language equations, which is then reduced to various empti-
ness problems of the intersection of certain languages. In Section 4, we address
the maximality problem with respect to the combined types of properties men-
tioned above, by considering the concept of solution existence with a restriction,
and we obtain the desired decidability result. Finally, Section 5 contains a few
concluding remarks.”

2. Notation and Preliminaries

We assume the reader to be familiar with the fundamental concepts of lan-
guage theory; see e. g., [10, 11]. Let Σ be a finite set of letters, the alphabet;
Σ∗ be the set of all words over Σ; and ε denote the empty word. A subset L
of Σ∗ is a language over Σ. For a length bound m ∈ N we let Σ≤m denote the
set of words whose length is at most m, i. e., Σ≤m =

⋃
i≤m Σi. Analogously, we

define Σ<m =
⋃

i<m Σi, Σ≥m =
⋃

i≥m Σi, and Σ>m =
⋃

i>m Σi. Throughout
this paper, we consider languages over the fixed alphabet Σ only. Because the
investigation of codes over unary alphabets is trivial, we presume |Σ| ≥ 2.

Let w ∈ Σ∗ be a word. Unless confusion arises, by w we also denote the
singleton language {w}. The length of w is denoted by |w|. If w = xyz for some
x, y, z ∈ Σ∗, then x, y, and z are called prefix, infix (or factor), and suffix of w,
respectively. If x 6= w (resp., y 6= w or z 6= w) it is called a proper prefix (resp.,
proper infix or proper suffix) of w. By x ≤p w (resp., x <p w) we denote the pre-
fix relationship (resp., proper prefix relationship). For a language L ⊆ Σ∗, the
set Pref(L) = {x ∈ Σ∗ | ∃y ∈ Σ∗ : xy ∈ L} denotes the language containing all
prefixes of words in L. The language L is said to be prefix-closed if L = Pref(L).

4

Analogously, we define the languages Inf(L) = {y ∈ Σ∗ | ∃x, z ∈ Σ∗ : xyz ∈ L}
and Suff(L) = {y ∈ Σ∗ | ∃x ∈ Σ∗ : xy ∈ L} which contain the infixes and suf-
fixes of words in L, respectively.

A transducer t is a non-deterministic finite state automaton with output; see
e. g., [12]. For a word w, the set t(w) contains all possible outputs of t on input
w. The domain of t is the set of all words w such that t(w) 6= ∅. A transducer t
is called input-preserving if w ∈ t(w) for every word w in the domain of t. The
transducer t−1 is the inverse of t, that is, v ∈ t−1(u) if and only if u ∈ t(v) for
all words u, v.

The property Pt defined by an input-preserving transducer t is the set of all
languages L satisfying

∀u ∈ L : t(u) ∩ (L \ u) = ∅.

For example, any transducer ti such that ti(w) = Inf(w) can be used to define
the infix code property. Indeed, a language L is an infix code if no word of L is
an infix of another word of L.

2.1. Regular Languages and Finite Monoids

Let L ⊆ Σ∗ be a language, let (M, ·) be a monoid, and h : Σ∗ →M be a mor-
phism. The morphism h is said to recognize the language L if h−1(h(L)) = L.
We also say the monoid (M, ·) recognizes L if a morphism h : Σ∗ →M recog-
nizing L exists. Throughout this paper, we only consider monoids (M, ·) with
multiplication operator ‘ · ’ and, for the ease of notation, we call the underlying
setM a monoid. By the inverse morphism h−1 every element of X ∈M defines
an equivalence class on Σ∗ such that for words u, v ∈ h−1(X) and x, y ∈ Σ∗ we
have xuy ∈ L if and only if xvy ∈ L. In other words, if h(u) = h(v) and u is a
factor of some word w, then u can be replaced by v in w without changing w’s
membership with respect to L.

A monoid recognizing L which divides every other monoid recognizing L is
called syntactic monoid of L. It is well-known that L is a regular language if and
only if its syntactic monoid is finite. When considering regular languages, the
syntactic monoid of L is the smallest monoid recognizing L. Let R1, . . . , Rk be
regular and letM1, . . . ,Mk be their syntactic monoids; there is a finite monoid
M which recognizes every language Ri for 1 ≤ i ≤ k, e. g., the Cartesian product
monoid M = M1 × . . . ×Mk. A profound introduction on recognizability of
languages by monoids (or semigroups) and syntactic equivalency is given in [13].
One of the well-known pumping lemmas for regular languages is:

Lemma 1 (Pumping). Let M be a finite monoid of size m = |M| and let
h : Σ∗ → M be a morphism. For a word u with length |u| ≥ m there exists a
factorization u = u1u2u3 such that u2 6= ε, |u1u2| ≤ m, and h(u1) = h(u1u2).

2.2. Preliminaries

Most of the lemmas in this section are folklore or based on well-known tech-
niques in language theory. For words u, v, w ∈ Σ∗ such that w = uv, we let

5

u−1w = v and wv−1 = u. For languages K,L the quotient languages are de-
fined as

K−1L = {v ∈ Σ∗ | ∃u ∈ K : uv ∈ L} , LK−1 = {u ∈ Σ∗ | ∃v ∈ K : uv ∈ L} .

Note that quotients are not associative with catenation, i. e., (X−1Y)Z 6=
X−1(Y Z) in general; however, X−1Y Z−1 = (X−1Y)Z−1 = X−1(Y Z−1) is
well defined. The following lemma is well-known; see e. g., [10].

Lemma 2. Let K,L be regular. The quotients K−1L and LK−1 are effectively
regular.

Here and in the following, by an effectively regular language we mean that
if the base languages (here, K and L) are given by their syntactic monoids (or
finite automata, regular expressions, . . .), a (syntactic) monoid recognizing the
language can be effectively constructed.

In order to solve language equations we will use the following lemma.

Lemma 3. Let L,X, Y, Z be languages.

L ∩XY Z = ∅ ⇐⇒ X−1LZ−1 ∩ Y = ∅.

Proof. Suppose there is w ∈ L ∩ XY Z, then there exist x ∈ X, y ∈ Y ,
and z ∈ Z such that w = xyz. Therefore, x−1wz−1 = y is well-defined and
y ∈ X−1LZ−1 ∩ Y .

Conversely, consider y ∈ X−1LZ−1∩Y . For some x ∈ X and z ∈ Z we have
xyz ∈ L. Clearly, xyz ∈ L ∩XY Z. 2

The square-root of a language L ⊆ Σ∗ is defined as 2
√
L = {x ∈ Σ∗ | xx ∈ L}.

Square-roots of regular languages are effectively regular, as proven in [13]. Since
this lemma is less known, we will present its short proof.

Lemma 4. If L is regular, then 2
√
L is effectively regular.

Proof. LetM be a finite monoid and h : Σ∗ →M be a morphism recognizing
L. Let X =

{
X ∈M

∣∣ h−1(X)h−1(X) ⊆ L
}

. We claim that 2
√
L = h−1(X).

Firstly, consider X ∈ X and x ∈ h−1(X). By definition of X we see that
xx ∈ h−1(X)h−1(X) ⊆ L and, therefore, x ∈ 2

√
L.

Secondly, let x ∈ 2
√
L and X = h(x) which implies xx ∈ L and hence

h−1(X)h−1(X) ⊆ L. We conclude X ∈ X and x ∈ h−1(X). 2

We will use some basic facts about combinatorics on words; see e. g., [14].
We start with the well-known Fine and Wilf’s Theorem.

Theorem 5 (Fine and Wilf’s [15]). Let v, w be words. Suppose vk and w`,
for some k, ` ∈ N, have a common prefix of length |v|+ |w|−gcd(|v| , |w|). Then
there exists a word u of length gcd(|v| , |w|) such that v, w ∈ u∗.

Moreover, |v|+|w|−gcd(|v| , |w|) is the smallest value that makes the theorem
true.

6

A word u is called primitive if there is no word v and i ≥ 2 such that u = vi.
The primitive root (not to be confused with the square root) of a word w 6= ε is
the unique primitive word u such that w = ui for some i ≥ 1. For primitive u,
if xuy ∈ u+, then x and y belong to u∗.

Two words u, v are conjugates of each other if u can be factorized u = xy
such that v = x−1ux = yx; this implies u = y−1vy. As a direct consequence of
Fine and Wilf’s Theorem, we obtain:

Corollary 6. Let v, w be words. If v|w| is an infix of the word w|v|+1, then the
primitive roots of v and w are conjugates of each other.

We need one more preliminary observation:

Lemma 7. Let v, w be words. If vw is an infix of a word in v+, then w is a
prefix of a word in v+.

Proof. Let u be the primitive root of v. Clearly, uw ∈ Inf(u+) and xuwy ∈ u+

for some words x, y. Therefore, wy ∈ u∗ and w is in Pref(u+) = Pref(v+). 2

3. Equations for Decoding Delay 1

A language L has decoding delay d, for a non-negative integer d, if

∀u ∈ L : uLdΣ∗ ∩ (L \ u)LdΣ∗ = ∅.

Thus, when decoding a message w ∈ L+ and after reading a prefix u0u1 · · ·ud

of w, where u0, u1, . . . , ud ∈ L, we know that w ∈ u0L
∗ and that u0 is the

only word in L with that property. It is easy to verify that a language L with
decoding delay d is a code; and L has decoding delay 0 if and only if it is a
prefix code; therefore, having decoding delay 0 is a transducer-based property.

In this paper, we focus on languages with decoding delay 1. A language L
with decoding delay 1 is not maximal (with decoding delay 1) if there exists a
word w ∈ Lc such that

∀u ∈ (L ∪ w) : u(L ∪ w)Σ∗ ∩ ((L ∪ w) \ u)(L ∪ w)Σ∗ = ∅.

The above equation is equivalent to the conjunction of

wLΣ∗ ∩ LLΣ∗ = ∅, (1)

wLΣ∗ ∩ LwΣ∗ = ∅, (2)

wwΣ∗ ∩ LLΣ∗ = ∅, (3)

wwΣ∗ ∩ LwΣ∗ = ∅, (4)

∀u, v ∈ L with u 6= v : u(L ∪ w)Σ∗ ∩ v(L ∪ w)Σ∗ = ∅.

7

In the latter equation, if u is not a prefix of v and v is not a prefix of u, then
the equation is satisfied for all w. Due to symmetry, we are only interested in
the case when u is a proper prefix of v:

∀u, v ∈ L : (L ∪ w)Σ∗ ∩ (u−1v ∩ Σ+)(L ∪ w)Σ∗ = ∅
⇐⇒ (L ∪ w)Σ∗ ∩ (L−1L ∩ Σ+)(L ∪ w)Σ∗ = ∅.

This equation is equivalent to the conjunction of

LΣ∗ ∩ (L−1L ∩ Σ+)wΣ∗ = ∅, (5)

wΣ∗ ∩ (L−1L ∩ Σ+)LΣ∗ = ∅, (6)

wΣ∗ ∩ (L−1L ∩ Σ+)wΣ∗ = ∅. (7)

Note that the equation LΣ∗ ∩ (L−1L ∩ Σ+)LΣ∗ = ∅ is satisfied because L has
decoding delay 1. Let Li be the set of words w satisfying Equation (i) for
1 ≤ i ≤ 7. The language L is maximal with decoding delay 1 if and only if

Lc ∩ L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 ∩ L6 ∩ L7 = ∅. (8)

Remark 1. If w satisfies Equation (1) and hence w ∈ L1, then w /∈ L. There-
fore, we can omit Lc in Intersection (8).

We will solve the equations independently. Let us begin with the cases where
w or w2 only occurs once in the equation.

Lemma 8. L1, L3, L5, L6 are given by the effectively regular languages

L1 =
(
(LLΣ∗)(LΣ∗)−1

)c
,

L3 = 2

√
((LLΣ∗)(Σ∗)−1)

c
,

L5 =
(
(L−1L ∩ Σ+)−1(LΣ∗)(Σ∗)−1

)c
,

L6 =
((

(L−1L ∩ Σ+)LΣ∗
)

(Σ∗)−1
)c

.

Proof. By definition w ∈ L1 if and only if wLΣ∗ ∩LLΣ∗ = ∅ which is equiva-
lent to w ∩ (LLΣ∗)(LΣ∗)−1 = ∅, by Lemma 3. We conclude that w ∈ L1 if and
only if w /∈ (LLΣ∗)(LΣ∗)−1. Therefore,

L1 =
(
(LLΣ∗)(LΣ∗)−1

)c
.

We can obtain

L5 =
(
(L−1L ∩ Σ+)−1(LΣ∗)(Σ∗)−1

)c
,

L6 =
((

(L−1L ∩ Σ+)LΣ∗
)

(Σ∗)−1
)c

from (5) and (6), respectively, by using the same arguments. Furthermore, from
(3) we deduce that w ∈ L3 if and only if ww /∈ LLΣ∗(Σ∗)−1. Clearly, this leads
to

L3 = 2

√
((LLΣ∗)(Σ∗)−1)

c
.

By Lemmas 2 and 4, L1, L3, L5, and L6 are effectively regular. 2

8

The language L2 is not necessarily regular. However, we can split the lan-
guage L2 up into a regular part L2.1 and a non-regular part L2.2 such that
L2 = L2.1 ∩ L2.2. Moreover, the non-regular part can be omitted in Intersec-
tion (8) as stated in the following lemma.

Lemma 9. There exists an effectively regular language L2.1 such that L1∩L2 =
L1 ∩ L2.1.

Proof. Equation (2) is satisfied if both of the following equations are satisfied

wLΣ∗ ∩ (L ∩ Σ≥|w|)wΣ∗ = ∅, (2.1)

wLΣ∗ ∩ (L ∩ Σ<|w|)wΣ∗ = ∅. (2.2)

Let L2.1 and L2.2 be the sets of words w satisfying (2.1) and (2.2), respectively.
Clearly, L2 = L2.1 ∩ L2.2.

We will first prove that L1 ⊆ L2.2, respectively Lc
2.2 ⊆ Lc

1, whence L1∩L2 =
L1 ∩ L2.1. Consider w /∈ L2.2. There exist u1, u2 ∈ L and v1, v2 ∈ Σ∗ such that
wu1v1 = u2wv2 and u2 <p w. Next, we see that u2u2 ≤p u2wv2 and, therefore,
wu1v1 = u2wv2 ∈ wLΣ∗ ∩ LLΣ∗ and w /∈ L1.

Next, let us construct the language L2.1. By Lemma 3, Equation (2.1) is
satisfied if and only if

LΣ∗ ∩ (w−1L)wΣ∗ = ∅ ⇐⇒ (w−1L)−1(LΣ∗)(Σ∗)−1 ∩ w = ∅

is satisfied. Let M be a finite monoid, let h : Σ∗ → M be a morphism recog-
nizing the language L, and let L ⊆ M such that h−1(L) = L. For W ∈ M we
define the set XW = {X ∈M | W ·X ∈ L}; observe that h−1(XW) = w−1L for
every w ∈ h−1(W). Furthermore, we define the regular language

LW = h−1(W) \ (h−1(XW))−1(LΣ∗)(Σ∗)−1.

Clearly, if a word w belongs to a language LW , then h(w) = W . We claim that

L2.1 =
⋃

W∈W
LW .

Indeed, w ∈ L2.1 if and only if w /∈ (w−1L)−1(LΣ∗)(Σ∗)−1. For W = h(w) we
substitute w−1L by h−1(XW) and we see that w ∈ L2.1 if and only if w ∈ LW .
2

Next, we prove that L4 can be ignored in Intersection (8).

Lemma 10. We have L3 ∩ L4 = L3.

Proof. This is equivalent to L3 ⊆ L4, respectively Lc
4 ⊆ Lc

3. Consider w /∈ L4.
There exist u ∈ L and v1, v2 ∈ Σ∗ such that

wwv1 = uwv2.

We distinguish between three cases:

9

1.) u ≤p w: we have that uu ≤p uwv2 whence wwv1 = uwv2 ∈ wwΣ∗ ∩ LLΣ∗

and w /∈ L3.

2.) w <p u ≤p ww: we have that ww ≤p uw ≤p uu whence uu ∈ wwΣ∗ ∩LLΣ∗

and w /∈ L3.

3.) ww <p u: clearly, uu ∈ wwΣ∗ ∩ LLΣ∗ and w /∈ L3. 2

From Remark 1 and Lemmas 8, 9, and 10 it follows that:

Corollary 11. The language following language is effectively regular:

K = Lc ∩ L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 ∩ L6 = L1 ∩ L2.1 ∩ L3 ∩ L5 ∩ L6.

Note that L7 is not included in the intersection in Corollary 11. As we will
see next, L7 may not be regular.

Lemma 12. The complement of L7 is

Lc
7 =

⋃
u∈L−1L

Pref(u+).

Proof. Equation (7) is equivalent to

wΣ∗ ∩ (L−1L ∩ Σ+)w = ∅.

For a word w Equation (7) is not satisfied (w /∈ L7) if and only if

w ∈ Pref
(
(L−1L ∩ Σ+)w

)
.

Consider w ∈ Pref(u+) for some word u; clearly, w ≤p uw. If u ∈ L−1L ∩ Σ+,
then w ∈ Pref

(
(L−1L ∩ Σ+)w

)
and w /∈ L7. Conversely, let w /∈ L7, i. e., w ≤p

uw for some u ∈ L−1L ∩ Σ+. We have that w ≤p uw ≤p uuw ≤p · · · ≤p u|w|w.
Thus, w ∈ Pref(u+) as desired. Finally, note that

⋃
u∈L−1L∩Σ+ Pref(u+) =⋃

u∈L−1L Pref(u+). 2

Even though L7 is not regular in general, we can decide whether K ∩ L7 is
empty or not. We will show that K ∩ L7 = ∅ if and only if K = ∅ (though, in
general K ∩ L7 6= K). The case when K = ∅ is trivial, thus, we assume v ∈ K.
Furthermore, we assume that v /∈ L7; otherwise, we are done. Lemma 14 shows
that for this choice of v we find vΣ∗ ⊆ K and that there exists w ∈ vΣ∗ such
that w ∈ L7. Lemma 13 states a prerequisite property.

Lemma 13. The languages Lc
5 and Lc

6 are prefix-closed. In particular, for a
word v ∈ L5 ∩ L6, we have vΣ∗ ⊆ L5 ∩ L6.

Proof. Let w /∈ L5. There exists a witness

x ∈ LΣ∗ ∩ (L−1L ∩ Σ+)wΣ∗.

that Equation (5) is not satisfied. For all prefixes v of w we see that

x ∈ LΣ∗ ∩ (L−1L ∩ Σ+)vΣ∗.

Therefore, v /∈ L5. The arguments for the prefix closure of Lc
6 are analogue. 2

10

Lemma 14. For v ∈ K \ L7, we have

i.) vΣ∗ ⊆ K and

ii.) vΣ∗ ∩ L7 6= ∅.

Proof. By Lemma 12, we see that v ∈ Pref(u+) for some u ∈ L−1L ∩ Σ+.
Since v ∈ L6, it satisfies

vΣ∗ ∩ (L−1L ∩ Σ+)LΣ∗ = ∅,

which implies that v /∈ Pref(L−1L) and u <p v. Furthermore, from (6) we
obtain

vΣ∗ ∩ uLΣ∗ = ∅ =⇒ u−1vΣ∗ ∩ LΣ∗ = ∅ =⇒ vΣ∗ ∩ LΣ∗ = ∅.

Now, let w ∈ vΣ∗. Observe that w satisfies Equations (1) through (4);
indeed, if x were a witness such that one of the equations were not satisfied,
then v and a word from L would be prefixes of x and, therefore, x ∈ vΣ∗∩LΣ∗.
Recall from Lemma 13 that w ∈ L5∩L6, too, whence Statement i.) of the claim
holds.

For all w ∈ vΣ∗ with w /∈ L7 there exists a word y ∈ L−1L ∩ Σ+ such that
w = Pref(y+), by Lemma 12. Because v /∈ Pref(L−1L), we see that y has to be
a proper prefix of v and w ∈

⋃
y<pv

Pref(y+) =: Y . Let a, b ∈ Σ be two distinct

letters. If v ∈ a+, then we chose z = vb; otherwise, we chose z = va|v|. In both
cases, z /∈ Y and we conclude that z ∈ vΣ∗ ∩ L7. 2

By Lemma 14 and Corollary 11, we conclude:

Corollary 15. K ∩ L7 = ∅ if and only if K = ∅.

Corollary 16. It is decidable whether or not a given regular code L with de-
coding delay 1 is maximal with decoding delay 1.

4. Decoding Delay 1 and a Transducer Property

In this section, we consider the combined property “decoding delay 1 and
Pt” where Pt is the property defined by a given input-preserving transducer t.
In [7], it is shown that if a language L satisfies Pt, then L is maximal if and
only if the language Rt ∩ Lc = ∅ where

Rt = (t(L) ∪ t−1(L))c.

Moreover, Rt is effectively regular.
Following a reasoning similar to that in the beginning of Section 3, one can

verify that, if L has decoding delay 1 and satisfies Pt, then L is not maximal with
respect to these combined properties if and only if there exists a word w ∈ Lc

11

such that w ∈ Rt and equations (1)–(7) are satisfied. Then by Corollary 11, L
is maximal if and only if

K ∩ L7 ∩Rt = ∅.

When considering maximality within a maximum regular language M , we have
to decide whether or not w ∈M \L exists that satisfies the given equations [7].
Then, L is maximal within the maximum language M and with respect to these
combined properties if and only if

K ∩ L7 ∩Rt ∩M = ∅.

The following theorem states that both of the above emptiness problems are
decidable.

We say that a language equation system has a solution under restriction R,
where R is a language, if it has a solution that belongs to R.

Theorem 17. It is decidable, for given regular languages L and R, whether or
not the system of equations (1)–(7) has a solution under restriction R.

By the discussion in the beginning of this section the following holds.

Corollary 18. It is decidable, for given regular languages L, M and an input-
preserving transducer t, whether or not L is maximal within M with respect to
the combined property “decoding delay 1 and Pt”.

Next, we present the proof of Theorem 17.

Proof. The system of Equations (1)–(7) has no solution under restriction R if
and only if K∩L7∩R = ∅. Recall, from Lemma 12, that Lc

7 =
⋃

u∈L−1L Pref(u+).
If there exists a word w ∈ K ∩ L7 ∩ R, we call w a witness. We will show that
in the case when L is maximal, any potential witness w ∈ (K ∩R)\Pref(L−1L)
can be factorized w = uv such that u ∈ L−1L, v ∈ Pref(u+), and |u| < m or
|v| < m for a bound m. The test language T containing all those words uv
is regular wherefore it is decidable whether or not all potential witnesses are
included in T — thus, proving that it is decidable whether or not the system of
Equations (1)–(7) has a solution under restriction R.

Let M be a finite monoid and h : Σ∗ →M be a morphism recognizing the
languages K, R, and L−1L. The size of M is denoted by m and is the bound
mentioned above. For language Z ∈

{
K,R,L−1L

}
let LZ ⊆ M such that

h−1(LZ) = Z. Furthermore, we let

PL−1L = {P ∈M | ∃X ∈M : P ·X ∈ LL−1L}

be the set of elements fromM such that h−1(PL−1L) = Pref(L−1L). We define
the set of possible witnesses W = (LK ∩ LR) \ PL−1L. Surely, if a witness
w ∈ K ∩ L7 ∩R exists, we find w in (K ∩R) \ Pref(L−1L) = h−1(W). Let the
set U contain all pairs (U, V) ∈ M2 where U ∈ LL−1L and U · V ∈ W. For

12

(U, V) ∈ U , u ∈ h−1(U)∩Σ+, and v ∈ h−1(V) with v ≤p uv (i. e., v ∈ Pref(u+)),
we have uv /∈ L7. We define the test language

T =
⋃

u∈L−1L∩Σ<m

Pref(u+) ∪
⋃

(U,V)∈U
v∈h−1(V)∩Σ<m

vΣ+ ∩ h−1(U)v.

Due to the length restrictions of u and v in the formula, T is the finite union
of regular languages and, hence, regular itself. We claim that the system of
Equations (1)–(7) has no solution under restriction R if and only if h−1(W) ⊆ T .
Observe that every language in the union of T is a subset of Lc

7 wherefore T ⊆ Lc
7

as well. This implies that if h−1(W) ⊆ T , then K ∩L7 ∩R = h−1(W)∩L7 = ∅
— thus, proving the if-part of the claim.

As for the only-if-part, suppose that K ∩ L7 ∩ R = ∅. Let W ∈ W and
w ∈ h−1(W); we have to prove that w ∈ T . Because w ∈ K ∩ R, it cannot
belong to L7. There is a factorization w = uv such that u ∈ h−1(U) ∩ Σ+,
v ∈ h−1(V), and v <p uv for some (U, V) ∈ U with U · V = W . If |u| < m or
|v| < m, then w ∈ T and we are done. Henceforth, we suppose that |u| ≥ m
and |v| ≥ m. We distinguish between the two cases whether there exists x 6= ε
such that W · h(x) = W or not.

Firstly, suppose W ·h(x) = W for x 6= ε. By the Pumping Lemma 1, factorize
u = u1u2u3 such that u2 6= ε, |u1u2| ≤ m, and h(u1) = h(u1u2). Consider the
word w′ = u1u

k
2u3vx

` where k = |x| and ` is sufficiently large (e. g., ` = 2k · |w|).
Because w′ ∈ h−1(W) but w′ /∈ L7, there is at least one factorization w′ = u′v′

such that u′ ∈ h−1(U ′)∩Σ+, v′ ∈ h−1(V ′), and v′ <p u′v′ for some (U ′, V ′) ∈ U
with U ′ · V ′ = W . Among all those factorizations we chose the one where |u′|
is minimal. The word u′ has to be a proper prefix of u1u

k
2u3v /∈ Pref(L−1L).

Therefore, uk
2 and u′k are infixes of x` and, by Corollary 6, the primitive roots

of u2, u′, and x are conjugates of each other. This has two implications: 1.) If u′

could be factorized u′ = u1u2y, then |u′| would not be chosen minimal because

w′ ∈ Pref((u1y)+) and u1y ∈ h−1(U ′). 2.) We can pump down u
(k−1)
2 and still

have that u1u2u3vx
` ∈ Pref(u′+). We conclude u′ ∈ L−1L is a prefix of w,

|u′| ≤ m, and w ∈ Pref(u′+) ⊆ T as desired.
Now, consider the case when W · h(x) 6= W unless x = ε. This means that

for two distinct words w1, w2 ∈ h−1(W) the word w1 cannot be a prefix of w2;
otherwise, W · h(w−1

1 w2) = W . In particular, for any (U ′, V ′) ∈ U such that
U ′ ·V ′ = W no word v1 ∈ h−1(V ′) can be a prefix of another word v2 ∈ h−1(V ′).

As |v| ≥ m and in accordance to the Pumping Lemma 1, we factorize v =
v1v2v3 such that v2 6= ε, |v1v2| ≤ m, and h(v1) = h(v1v2). As v is a prefix
of w, we can write w = uv = v1v2v3x where, due to length restrictions, v1v2

is a prefix of u and v is a suffix of v3x. Consider the word w′ = v1v
k
2v3x ∈

h−1(W) where k is sufficiently large (e. g., k = 2 |w|2). Once more, we factorize
w′ = u′v′ such that u′ ∈ h−1(U ′) ∩ Σ+, v′ ∈ h−1(V ′), and v′ <p u′v′ for some
(U ′, V ′) ∈ U with U ′ · V ′ = W . If |u′| ≤ |v3x|, the primitive roots of u′ and
v2 were conjugates of each other, by Corollary 6, and v3 were in Pref(v+

2) as
v2v3 ∈ Inf(u′+) ⊆ Inf(v+

2), by Lemma 7; this would make v1v3 ∈ h−1(V) a

13

prefix of v1v2v3 ∈ h−1(V) which contradicted the fact that no word in h−1(V)
is a prefix of another word in h−1(V). Hence, we may assume v′ ≤p v1v

k
2 .

Next, suppose v′ = v1z where z ∈ Pref(vk2), then v′ ∈ h−1(V ′) were a prefix of
v1v2z ∈ h−1(V ′) — again, a contradiction. Therefore, v′ has to be a prefix of
v1, as such has a length of less than m and is a suffix of v. There is factorization
w = yv′ such that v′ ≤p yv′ and y ∈ h−1(U ′) ∩ Σ+; therefore, w ∈ T . This
concludes the proof that h−1(W) ⊆ T if and only if K ∩ L7 ∩R = ∅. 2

5. Concluding Remarks

We have considered the maximality decision problem for regular languages
with respect to the combined properties decoding delay 1 and any input-preserving
transducer property. This question was phrased conveniently as the solution ex-
istence problem for a system of equations with a restriction. We then reduced
the solution existence problem to the emptiness problem of the intersection of
several languages that are not necessarily regular, and we showed how to fur-
ther reduce this emptiness problem to an inclusion problem of regular languages
which is decidable.

While we have focused on a specific language equation system, we hope
that our approach can be used to decide solution existence of similar language
equation systems that might correspond to the maximality of other combined
types of code properties. For example, consider the comma-freeness property
for a language L, that is, whether

LL ∩ Σ+LΣ+ = ∅.

It is known that maximality for regular comma-free languages is decidable [16],
but again it is not known whether maximality of “comma-freeness” and a trans-
ducer property Pt combined is decidable. One can construct a new system of
equations similar to equations (1)–(7) in this paper, so that the given problem
is equivalent to the existence of a solution to the new system of equations

References

[1] J. Berstel, D. Perrin, C. Reutenauer, Codes and Automata, Cambridge
University Press, 2009.

[2] D. Perrin, Completing biprefix codes, in: Proceedings of 9th Intern. Col-
loquium on Automata, Languages and Programming, Vol. 140 of LNCS,
1982, pp. 397–406.

[3] L. Zhang, Z. Shen, Completion of recognizable bifix codes, Theoretical
Computer Science 145 (1995) 345–355.

[4] N. H. Lam, Finite maximal infix codes, Semigroup Forum 61 (2000) 346–
356.

14

[5] V. Bruyère, Maximal codes with bounded deciphering delay, Theoretical
Computer Science 84 (1991) 53–76.

[6] M. Domaratzki, Trajectory-based codes, Acta Informatica 40 (2004) 491–
527.

[7] K. Dudzinski, S. Konstantinidis, Formal descriptions of code properties:
decidability, complexity, implementation, International Journal of Founda-
tions of Computer Science 23:1 (2012) 67–58.

[8] L. Kari, S. Konstantinidis, Language equations, maximality and error-
detection, Journal of Computer and System Sciences 70 (2005) 157–178.

[9] M. Domaratzki, K. Salomaa, Codes defined by multiple sets of trajectories,
Theoretical Computer Science 366 (2006) 182–193.

[10] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 1979.

[11] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. I,
Springer-Verlag, Berlin, 1997.

[12] S. Yu, Regular languages, Handbook of Formal Languages 1 (1997) 41–110.

[13] J. Pin, Syntactic semigroups, Handbook of Language Theory, Vol. I (1997)
679–746.

[14] M. Lothaire, Combinatorics on words, Cambridge University Press, 1997.

[15] N. J. Fine, H. S. Wilf, Uniqueness theorems for periodic functions, Pro-
ceedings of the American Mathematical Society (1965) 109–114.

[16] N. H. Lam, Completing comma-free codes, Theoretical Computer Science
301 (2003) 399–415.

15

	Introduction
	Notation and Preliminaries
	Regular Languages and Finite Monoids
	Preliminaries

	Equations for Decoding Delay 1
	Decoding Delay 1 and a Transducer Property
	Concluding Remarks

