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Biocomputing, known also under the 
names of biomolecular computing, molecular 
computing and DNA computing, is a novel 
and fascinating development at the inter- 
face of computer science, mathematics, and 
molecular biology. It has emerged in recent 
years, not simply as an exciting technology 
for information processing, but also as a cat- 
alyst for knowledge transfer between infor- 
mation processing, nanotechnology, and biol- 
ogy. This area of research has the potential to 
change our understanding of the theory and 
practice of computing z. 

The main idea behind DNA computing is 
that DNA strands can be used to encode data 
and molecular biology techniques can be used 
to perform computations on that data. 

Indeed, a (single-stranded) DNA strand 
can be viewed as a linear arrangement of four 
different building blocks, or bases: adenine, 
guanine, cytosine and thymine. In other 
words, a DNA strand can be thought of as a 
word over a four-letter alphabet, {A, C, G, T} 
where two of the letters are complementary of 
the others. Indeed, A is the complement of 
T and C is the complement of G, and two 
complementary DNA single strands of op- 
posite directionality will bind to each other 
to form a double-stranded DNA strand with 

1See http://www.lcnc.nl/dna6/. 

is well-known helical shape. From the com- 
putational/informational point of view, this 
all amounts to the fact that we haw~ at our 
disposal four symbols to encode information, 
which is more than sufficient considering that 
two bits, 0 and 1, suffice for the saJme pur- 
pose on an electronic computer. As synthe- 
sising a desired DNA strand is nowadays a 
routine procedure in molecular biology, we 
could think, for example, of a fictitious en- 
coding of the letters of the English alphabet 
as A = A C A ,  B = A C C A ,  C = A C C C A ,  
D -- A C C C C A ,  the n t h  letter --  A C n A ,  and 
utilise this encoding to write any English text 
as a DNA strand. There are many reasons 
why this particular example would not work 
in practice, but it is an illustration of the fact 
that one could represent, with a suitable en- 
coding, textual, numerical and symbolical in- 
formation as DNA strands. 

After encoding the information in DNA 
strands, one can use molecular biology lab 
techniques to perform operations. The so- 
called bio-operat ions  that have so far been 
used for computations are: 

- synthesis of a desired DNA strand; 

- union: pour together the DNA (in solu- 
tion) of two test tubes into a third one; 
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- separation of DNA strands by length 
from a given heterogeneous solution by using 
a technique called gel electrophoresis; 

- "melting" of a double DNA strand into 
its constituent single strands and its oppo- 
site, "annealing" which amounts to binding 
together two complementary single strands 
with opposite orientation to form the corre- 
sponding double strand; 

- separation, from a heterogeneous solu- 
tion of DNA single strands, of those that  con- 
tain a certain pattern as a subsequence, by 
using a technique called affinity separation; 

- making copies of a given DNA strand by 
using PCR (Polymerase Chain Reaction); 

- cutting a DNA double-strand at a spe- 
cific location by using restriction enzymes; 

- pasting together DNA strands with com- 
patible "sticky-ends" by using DNA ligases; 

- "reading out" or sequencing the letters 
of a DNA strand from a homogeneous solu- 
tion, i.e. from a solution that  contains mainly 
many copies of the same strand. 

These bio-operations and combinations of 
them have been used to solve computational 
problems where the input to the problem is 
encoded as a collection of DNA strands, usu- 
ally with many copies of each strand present 
in the solution, and the computation consists 
of a sequence of bio-operations. The out- 
put is a DNA solution which is ultimately 
sequenced to find out the answer. 

The first attempt of solving a computa- 
tional problem using DNA computing was 
Len Adleman's, [1], who reported the results 
of an experiment solving a 7- node instance 
of the Directed Hamiltonian Problem using 
only bio-operations. The Directed Hamilto- 
nian Path Problem has as input a directed 
graph, and two designated nodes, "in" and 
"out". The question is whether this graph 
has a Hamiltonian Path, i.e. a path that 
starts at the "in" node, ends at the "out" 
node and enters every other node exactly 
once. Adleman's solution consisted in en- 
coding each node as a 20-letter DNA sin- 

gle strand and then encoding the directed 
edges between nodes as follows: the edge ij 
was a strand consisting of the 2nd part  of 
the strand encoding node i and the first half 
of the strand encoding node j .  By this in- 
genious encoding scheme, when putting to- 
gether in a test tube all strands that encoded 
for edges and all complement of strands en- 
coding nodes, all possible paths through the 
graph were formed by the property of an- 
nealing of complementary strands. Indeed, 
the strand encoding for the edge ij  would, 
by construction, bind to both the comple- 
ment of strand i (in its first half) and to 
the strand representing the node j (in its sec- 
ond half). After all the possible candidates 
to the Hamiltonian Path were generated by 
self-assembly of DNA strands, by using suc- 
cessively some of the above mentioned bio- 
operations, the paths that were not Hamilto- 
nian were eliminated. 

Following Adleman's experiment, other 
experiments were proposed for solving vari- 
ous computational problems with DNA. For 
example, in [17] Lipton proposed a DNA al- 
gorithm for solving the Satisfiability Prob- 
lem and other NP-complete problems. This 
started one of the directions in DNA comput- 
ing research, that of building special purpose 
computers. A special purpose computer is a 
device that serves to solve efficiently a par- 
ticular problem or class of problems. Much 
of the experimental research in DNA comput- 
ing has been of this application-oriented type. 
Experiments using DNA molecules to solve 
computational problems that  have actually 
been carried out in the laboratory include 
the Travelling Salesman Problem [1], [2], the 
Maximal Clique Problem [23], the Satisfia- 
bility Problem [18], [26], [22], the Knights' 
Problem [27], the Royal Road Problem [6], 
encryption and data security [3], etc. Each 
of these experiments is a step towards the de- 
sign of a DNA-based device that would out- 
perform its electronic counterpart for a spe- 
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cific application. 
While special purpose DNA computers 

could provide a tailor-made solution for each 
particular application, a general purpose 
computer is a more ambitious project: a uni- 
versal device capable of running any program 
and thus of solving any problem. 

Theoretical studies, [8], [11], [10], [24], 
[25], have proved that the existing formal 
models of DNA computation are equivalent 
in computational power to Turing machines 
(the widely accepted formal model of elec- 
tronic computers). This shows that, in 
principle, it is possible to design and build 
a DNA-based programmable computer, and 
that none of the existing practical obstacles 
is insurmountable. 

Experimental research also has been di- 
rected towards investigating which tools from 
the molecular biologist's tool-chest are best 
suited for computational applications. The 
search for the optimal basic instructions of a 
future high-level molecular programming lan- 
guage include DNA-based addition of binary 
numbers [7] and computing DNA tiles that  
self-assemble [301, [201 . 

Lastly, another research direction is the 
study of DNA computing in vivo. The 
model developed by Landweber and Kari in 
[16], [14] for the guided homologous recom- 
binations that take place during gene un- 
scrambling proved to have the computational 
power of a Turing machine. This indicates 
that, in principle, these unicellular organisms 
may have the capacity to perform at least 
any computation carried out by an electronic 
computer. Moreover, this opens the possibil- 
ity of envisaging a programmable cell which 
could be used for a variety of computational 
and medical purposes. 

Weiss et al. [28] present another approach 
to in vivo computation by proposing a map- 
ping from digital logic circuits to genetic reg- 
ulatory networks with the following property: 
the chemical activity of such a genetic net- 
work in vivo implements the computation 

specified by the corresponding digital circuit. 

In [29] the authors undertake a biological 
implementation of cell to cell communication. 
This work demonstrates the construction and 
testing of engineered genetic circuits which 
exhibit the ability to send a controlled sig- 
nal from one cell, diffuse that  signal through 
the intercellular medium, receive that signal 
within a second cell, and activate a remote 
transcriptional response. 

In combination with other ongoing work 
in gene circuits [5], [4], [21], [12] the approach 
in [28], [29] provides components for a biolog- 
ical substrate for expressing pattern forma- 
tion and for engineering with living organ- 
isms. 

While most approaches deal with bio- 
computations that happen in a test-tube, 
the Madison team, [18], uses a surface- 
based approach based on DNA microarrays. 
The argument for using this approach is 
that all the solution-based methods share 
problems of scale-up for a number of rea- 
sons, including poor efficiencies in the pu- 
rification and separation steps. In contrast, 
the surface-based computations manipulate 
strands that are immobilised on a surface us- 
ing chemical linkers. This implies that at 
least one of the operations used in solution- 
based computing, that  of selectively sepa- 
rating strands in different test-tubes, can- 
not be performed. As the surface-based ap- 
proach is two-dimensional rather that  three- 
dimensional, the number of DNA strands 
is limited to roughly 1012 per square cen- 
timeter, [19]. Nevertheless, this approach 
might gain in efficiency where it loses in data- 
compression, and a demonstration ot! solving 
an instance of a SAT problem has been re- 
ported in [19]. The surface-based comput- 
ing uses three basic operations, MARK, UN- 
MARK and DESTROY [19]. In the MARK 
operation, a combinatorial mixture of DNA 
corresponding to the query would be added 
to the surface and complementary strands 
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would bind: the marked strands would be 
duplexed while the unmarked ones would re- 
main single-stranded. The DESTROY oper- 
ation consists of adding an exonuclease spe- 
cific for single-stranded DNA. Thus, every 
unmarked strand is destroyed, leaving on the 
surface only the MARKED DNA molecules. 
The UNMARK operation consists of subject- 
ing the surface to conditions under which hy- 
brids dissociate into single strands. Subse- 
quent washing removes the free strands and 
regenerates the DNA modified surface. 

After each cycle, fewer molecules remain 
on the surface. Repeated queries consti- 
tute the computation process, permitting 
subsets of the initial combinatorial solution 
space to be eliminated, and leaving the de- [1] 
sired solution to the problem of interest. 
The READOUT operation consists of deter- 
mining the sequence(s) of the surface-bound 
DNA molecules that remained. Both con- 
ventional gel-electrophoresis-based sequenc- 
ing and hybridisation to word-specific ad- [3] 
dressed arrays have been studied [19]. 

The surface-based approach has recently 
been adopted also for the DNA implemen- 
tation of successive state transitions, [13] as [4] 
immobilising strands on a surface minimised 
the intermolecular reactions. 

Besides the novelty of the approach, and 
in spite of the technical difficulties that arise [5] 
from the error rates of bio-operations, there 
are several potential advantages to DNA 
computing over electronic computing. These [6] include massive parallelism, memory capac- 
ity, and power requirements [10]. 

Indeed, due to its massive parallelism, a 
DNA computer could be between a thousand 
times and a million times faster than an elec- 
tronic computer. Moreover, to encode the [7] 
same information that can be stored in a 
micro-Mole of DNA (a dilute solution that 
fits in a 1 litre milk carton) using the cur- 
rent IBM technology, one would need a sur- [8] 
face of 160 hectares. Concerning the power 
requirements, a DNA computer could be at 

least 1000 times more energy efficient than an 
electronic one. The comparisons above, while 
based on preliminary data, give a glimpse 
into why bio-molecules might be a preferred 
medium for computations in some applica- 
tions. It  is envisaged that in-vitro and in- 
vivo DNA computing research are prelimi- 
nary steps that may ultimately lead to mak- 
ing DNA computing a viable complementary 
tool for computation and provide more in- 
sight into the computational capabilities of 
living organisms. 
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