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A (non-circular) de Bruijn sequence w of order n is a word such that every word of length

n appears exactly once in w as a factor. In this paper, we generalize the concept to
different settings: the multi-shift de Bruijn sequence and the pseudo de Bruijn sequence.

An m-shift de Bruijn sequence of order n is a word such that every word of length n

appears exactly once in w as a factor that starts at a position im + 1 for some integer
i ≥ 0. A pseudo de Bruijn sequence of order n with respect to an antimorphic involution θ

is a word such that for every word u of length n the total number of appearances of u and
θ(u) as a factor is one. We show that the number of m-shift de Bruijn sequences of order

n is an!a(m−n)(an−1) for 1 ≤ n ≤ m and is (am!)an−m
for 1 ≤ m ≤ n, where a is the

size of the alphabet. We provide two algorithms for generating a multi-shift de Bruijn

sequence. The multi-shift de Bruijn sequence is important for solving the Frobenius
problem in a free monoid. We show that the existence of pseudo de Bruijn sequences

depends on the given alphabet and antimorphic involution, and obtain formulas for the

number of such sequences in some particular settings.

1. Introduction

If a word w can be written as w = xyz, then the words x, y, and z are called the
prefix, factor, and suffix of w, respectively. A word w over Σ is called a de Bruijn
sequence of order n if each word in Σn appears exactly once in w as a factor. For
example, 00110 is a binary de Bruijn sequence of order 2 since each binary word
of length two appears in it exactly once as a factor: 00110 = (00)110 = 0(01)10 =
00(11)0 = 001(10). The de Bruijn sequence can be understood by the following
game. Suppose there is an infinite supply of balls, each of which is labeled by a
letter in Σ, and suppose there is a glass pipe that can hold balls in a vertical line.
On the top of that pipe is an opening, through which one can drop balls into that
pipe, and on the bottom is a trap-door, which can support the weight of at most n
balls. When there are more than n balls in the pipe, the trap-door opens and those
balls at the bottom drop off until only n balls remain. If we put balls with letters
in the order as appeared exactly in a de Bruijn sequence of order n on the alphabet
Σ, then every n ball sequence will appear exactly once in the pipe. It is easy to
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see that a de-Bruijn sequence of order n, if it exists, is of length |Σ |n + n− 1 and
its suffix of length n − 1 is identical to its prefix of length n − 1. So, sometimes a
de-Bruijn sequence is written in a circular form by omitting the last n− 1 letters.

The de Bruijn sequence is also called the de Bruijn-Good sequence, named af-
ter de Bruijn [2] and Good [10] who independently studied the existence of such
words over the binary alphabet; the former also calculated the formula 22n−1

for
the total number of those words of order n. The study of the de Bruijn sequence,
however, dates back at least to 1894, when Flye Sainte-Marie [6] studied the words
and provided the same formula 22n−1

. For an arbitrary alphabet Σ, van Aardenne-
Ehrenfest and de Bruijn [1] provided the formula (|Σ |!)|Σ |n−1

for the total number
of de Bruijn sequences of order n. Besides the total number of de Bruijn sequences,
another interesting topic is how to generate a de Bruijn sequence (arbitrary one,
lexicographically least one, lexicographically largest one). For generating de Bruijn
sequences, see the surveys [7, 17]. The de Bruijn sequence is sometime called the full
cycle [7], and has connections to the following concepts: feedback shift registers [9],
normal words [10], generating random binary sequences [15], primitive polynomials
over a Galois field [18], Lyndon words and necklaces [8], Euler tours and spanning
trees [1]. There are generalizations of the de Bruijn sequences from various aspects,
such as the de Bruijn torus (two-dimensional generalization). Usually, the de Bruijn
sequences are represented by their circular counterparts.

In this paper, we consider two generalizations of the de Bruijn sequence, namely
the multi-shift de Bruijn sequence and the pseudo de Bruijn sequence. To under-
stand the concept of multi-shift de Bruijn sequence, let us return to the glass pipe
game presented at the beginning. Now the trap-door can support more weight.
When there are n + m or more balls in the pipe, the trap-door opens and the
balls drop off until there are only n balls in the pipe. Is there an arrangement of
putting the balls such that every n ball sequence appears exactly once in the pipe?
The answer is “Yes” for arbitrary positive integers m,n. The solution represents a
multi-shift de Bruijn sequence. We will discuss the existence of multi-shift de Bruijn
sequences, the total number of multi-shift de Bruijn sequences, generating a multi-
shift de Bruijn sequence, and the application of the multi-shift de Bruijn sequence
to the Frobenius problem in a free monoid. To understand the concept of pseudo
de Bruijn sequence, we first let the mirror image be the chosen antimorphic invo-
lution, where the concept of antimorphic involution is of particular interest in the
study of bioinformation. Now if every n ball sequence either appears in the normal
order or in a reversed order in the pipe and appears exactly once in this way, then
the solution represents a pseudo de Bruijn sequence. No pseudo de Bruijn sequence
exist for certain alphabets and antimorphic involutions. We will discuss the total
number of pseudo de Bruijn sequences in particular settings.
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2. Multi-Shift Generalization of the de Bruijn Sequence

Let Σ ⊆ { 0, 1, . . . } be the alphabet and let w = a1a2 · · · an be a word over Σ.
The length of w is denoted by |w | = n and the factor ai · · · aj of w is denoted by
w[i .. j]. If u = w[im+ 1 .. im+ n] for some non-negative integer i, we say the factor
u appears in w at a modulo m position. The set of all words of length n is denoted
by Σn and the set of all finite words is denoted by Σ∗ = { ε }∪Σ∪Σ2 · · · , where ε is
the empty word. The concatenation of two words u, v is denoted by u · v, or simply
uv.

Multi-shift de Bruijn sequences are implicitly defined and used in the second
author’s paper [11] in solving the Frobenius problem in a free monoid. The precise
definition of the multi-shift de Bruijn sequence is given below.

Definition 1. A word w over Σ is a multi-shift de Bruijn sequence τ(m,n) of shift
m and order n if each word in Σn appears exactly once in w as a factor at a modulo
m position.

For example, one of the 2-shift de Bruijn sequences of order 3 is

00010011100110110,

which can be verified as follows:

00010011100110110 = (000)10011100110110 = 00(010)011100110110

= 0001(001)1100110110 = 000100(111)00110110 = 00010011(100)110110

= 0001001110(011)0110 = 000100111001(101)10 = 00010011100110(110).

The multi-shift de Bruijn sequence generalizes the de Bruijn sequence in the sense
that de Bruijn sequences are exactly 1-shift de Bruijn sequences of the same order.
It is easy to see that the length of each m-shift de Bruijn sequence of order n, if it
exists, is equal to m|Σ |n + (n−m).

A (non-strict) directed graph, or digraph for short, is a triple G = (V,A, ψ)
consisting of a set V of vertices, a set A of arcs, and an incidence function ψ : A→
V × V . Here we do not take the convention A ⊆ V × V , since we allow a digraph
to contain self-loops on a single vertex and multiple arcs between the same pair of
vertices. When ψ(a) = (u, v), we say the arc a joins u to v, where vertex u = tail(a)
and vertex v = head(a) are called tail and head, respectively. The indegree δ−(v)
(outdegree δ+(v), respectively) of a vertex v is the number of arcs with v being
the head (the tail, respectively). A walk in G is a sequence a1, a2, . . . , ak such that
head(ai) = tail(ai+1) for each 1 ≤ i < k. The walk is closed, if head(ak) = tail(a0).
Two closed walks are regarded as identical if one is the circular shift of the other. An
Euler tour is a closed walk that traverses each arc exactly once. A Hamilton cycle
is a closed walk that traverses each vertex exactly once. An (spanning) arborescence
is a digraph with a particular vertex, called the root, such that it contains every
vertex of G, its number of arcs is exactly one less than the number of vertices, and
there is exactly one walk from the root to any other vertex. For a digraph G, we
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denote the total number of Euler tours, Hamilton cycles, and arborescences with
a given root v by |G |E , |G |H , and |G |vA, respectively. In an Eulerian graph Ga

we have that |G |vA = |G |wA for any two nodes v, w ∈ V , and we will denote this
quantity by |G |A.

An (undirected) graph is defined as a digraph such that for any pair of vertices
v1, v2, there is an arc a, ψ(a) = (v1, v2), if and only if there is a corresponding arc
a′, ψ(a′) = (v2, v1). In this case, we write δ−(v) = δ+(v) = δ(v) and a spanning
arborescence is just a spanning tree.

The line-graph L(G) of G = (V,A, ψ) is defined as (A,C, ϕ) such that for every
pair of arcs a1, a2 ∈ A, head(a1) = tail(a2), there is an arc c ∈ C, ϕ(c) = (a1, a2)
and those arcs are the only arcs in C. Euler tours exist in a graph G if and only if
Hamilton cycles exist in the line-graph L(G).

We define the word graph G(m,n) by (Σn,Σn+m, ψ), where ψ(w) = (u, v) for
u = w[1 .. n], v = w[m+ 1 ..m+ n]. Then by definition, the following lemmas are
straightforward.

Lemma 2. The digraph L(G(m,n)) is the digraph G(m,n+m).

Proof. By definition, G(m,n) = (Σn,Σn+m, ψ′), G(m,n +
m) = (Σn+m,Σn+2m, ψ′′), where tail′(w) = w[1 .. n],head′(w) = w[m+ 1 ..m+ n],
and tail′′(w) = w[1 ..m+ n],head′′(w) = w[m+ 1 .. 2m+ n]. So for every pair
of arcs a1, a2 ∈ Σn+m of G(m,n) with head′(a1) = tail′(a2), there is an arc
a1 · a2[n+ 1 .. n+m] ∈ Σn+2m of G(m,n + m); and for every arc w ∈ Σn+2m

of G(m,n + m), head′(tail′′(w)) = w[m+ 1 ..m+ n] = tail′(head′′(w)). Hence, by
definition, G(m,n+m) is the line-graph of G(m,n).

Lemma 3. Suppose m ≤ n. (1) There is a |Σ |n-to-1 mapping from the set of m-
shift de Bruijn sequences of order n onto the set of Hamilton cycles in G(m,n). (2)
There is a |Σ |n-to-1 mapping from the set of m-shift de Bruijn sequences of order
n onto the set of Euler tours in G(m,n−m).

Proof. Let l = |Σ |n. (1) Notice that any Hamilton cycle a1, a2, . . . , al together
with a starting arc a1 uniquely determines one m-shift de Bruijn sequences of order
n specified by

a1[1 .. n]a1[n+ 1 .. n+m]a2[n+ 1 .. n+m] · · · al−1[n+ 1 .. n+m],

and vice versa. So the l-to-1 mapping exists. (2) Applying Lemma 2, this part
follows from (1). Notice that any Euler tour a1, a2, . . . , al together with a starting
arc a1 uniquely determines one τ(m,n) as

a1a2[n−m+ 1 .. n] · · · al[n−m+ 1 .. n],

aAn Eulerian graph is a directed graph that has an Eulerian tour. A graph is Eulerian if and only

if it is connected and the indegree is equal to the outdegree at every vertex.
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and vice versa.

Theorem 4. For any alphabet Σ, positive integers m,n, some m-shift de Bruijn
sequences of order n over Σ exist.

Proof. First we assume m ≥ n. Let u1, u2, . . . , ul be any permutation of the
words in Σn for l = |Σ |n. Then the word u10m−nu20m−n · · · 0m−nul is one m-
shift de Bruijn sequence of order n over Σ.

Now we assume m < n and prove there exists an Euler tour in G(m,n −m).
Then by Lemma 3, the existence of m-shift de Bruijn sequences of order n over
Σ is ensured. To show the existence of an Euler tour, we only need to verify that
G(m,n−m) is connected and that δ−(v) = δ+(v) for every vertex v, both of which
are straightforward: for every vertex v in G(m,n−m), v is connected to the vertex
0n−m in both directions and δ−(v) = δ+(v) = |Σ |m.

2.1. Counting the Number of Multi-Shift de Bruijn Sequences

Since m-shift de Bruijn sequences of order n exist, in this section we discuss the
total number of different m-shift de Bruijn sequences of order n, and we denote the
number by #(m,n). First, we study the degenerate case.

Lemma 5. For 1 ≤ n ≤ m, #(m,n) = an!a(m−n)(an−1), where a = |Σ |.

Proof. Let a = |Σ |. By the definition of the multi-shift de Bruijn sequence, in the
case 1 ≤ n ≤ m, m-shift de Bruijn sequences of order n are exactly those of the
form u1Σm−nu2Σm−n · · ·Σm−nul, where l = an and u1, u2, . . . , ul is a permutation
of all words in Σn. Therefore, the total number of such words is an!a(m−n)(an−1).

To study the case 1 ≤ m ≤ n, we need a theorem by van Aardenne-Ehrenfest
and de Bruijn [1], which describes the relation between the number of Euler tours
in a particular type of digraph and the number of Euler tours in its line-graph.

Theorem 6 (van Aardenne-Ehrenfest and de Bruijn) Let G = (V,A, ψ) be
a digraph such that a = δ−(v) = δ+(v) for every v ∈ V . Then |L(G) |E =
a−1(a!)|V |(a−1)|G |E.

The digraph G(m,n) satisfies the conditions in Theorem 6 with a = |Σ |m. So,
by the relation between the multi-shift de Bruijn sequences and the Euler tours in
the word graph G(m,n), we have the following recursive expression on #(m,n).

Lemma 7. For m ≥ 1, n ≥ 2m, #(m,n) = (am!)an−m−ar

#(m,m + r), where
a = |Σ |, r = n mod m.
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Proof. Let a = |Σ |, r = n mod m. By Lemma 3,

#(m,n) = an|G(m,n−m) |E
= an−m(am!)an−2m(am−1)|G(m,n− 2m) |E
= (am!)an−2m(am−1)#(m,n−m)

= (am!)an−2m(am−1)(am!)an−3m(am−1)#(m,n− 2m)

= . . .

= (am!)an−2m(am−1)(am!)an−3m(am−1) · · · (am!)ar(am−1)#(m,m+ r)

= (am!)an−m−ar

#(m,m+ r).

To finish the last step of obtaining #(m,n) for 1 ≤ m ≤ n, we again need two
theorems, the BEST theorem [19, 1] and Kirchhoff’s matrix tree theorem [14], which
are often used in the literature to count the number of Euler tours in various types
of digraphs.

Theorem 8 (BEST theorem) In an Eulerian digraph G = (V,A, ψ) the num-
ber of Euler tours and the number of arborescences satisfy |G |E = |G |A ·∏

v∈V (δ+(v)− 1)!.

Theorem 9 (Kirchhoff’s matrix tree theorem) In a graph G = (V,A, ψ), for
any v ∈ V , the number of spanning trees rooted at v is equal to any cofactor of the
Laplacian matrix of G (the diagonal degree matrix minus the adjacency matrix).

Lemma 10. For 1 ≤ m ≤ n ≤ 2m, #(m,n) = (am!)an−m

, where a = |Σ |.

Proof. Let r = n − m and a = |Σ |. Then 0 ≤ r ≤ m. By definition, G =
G(m,n−m) = (Σr,Σm, ψ). So from any vertex to any vertex, there are am−r-many
arcs in G. We convert G into an undirected graph G′ by omitting all self-loops;
there are am−r-many of them for each vertex. Since for every pair of vertices v1, v2
there are am−r-many arcs that all join v1 to v2 and correspondingly there are am−r-
many arcs that all join v2 to v1, the graph G′ is indeed an undirected graph by our
definition. Each vertex in G′ is of degree am − am−r. Then the Laplacian matrix of
G′ is

L =


am − am−r −am−r · · · −am−r

−am−r am − am−r · · · −am−r

...
...

. . .
...

−am−r −am−r · · · am − am−r

 .

By Theorem 9, the number of arborescences |G |A = |G′ |A is equal to the cofactor of
L, which is (am)ar−2am−r = (am)ar

/an. Then by Theorem 8, the number of Euler
tours in digraph G is |G |E = |G |A · ((am − 1)!)ar

= ((am − 1)!)ar

(am)ar

/an =
(am!)ar

/an. Finally, by Lemma 3, the number of m-shift de Bruijn sequences of
order n is #(m,n) = an|G |E = (am!)ar

.
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Theorem 11. For 1 ≤ n ≤ m, #(m,n) = an!a(m−n)(an−1), and for 1 ≤ m ≤ n,
#(m,n) = (am!)an−m

, where a = |Σ |.

Proof. For 1 ≤ n ≤ m, the equality #(m,n) = an!a(m−n)(an−1) is shown in
Lemma 5. Now we assume 1 ≤ m ≤ n. Let r = n mod m. Following Lemmas 7,10,
we have #(m,n) = (am!)an−m−ar

#(m,m+r) = (am!)an−m−ar

(am!)ar

= (am!)an−m

.

2.2. Generating Multi-Shift de Bruijn Sequences

In this section, we study the problem of generating one m-shift de Bruijn sequence
of order n for arbitrary alphabet and positive integers m,n. When 1 ≤ n ≤ m, an
m-shift de Bruijn sequence of order n is easy to construct as given in Theorem 4.
Now we consider the case 1 ≤ m < n. We will present two algorithms for generating
an m-shift de Bruijn sequence of order n.

We claim that m-shift de Bruijn sequences of order km can be generated using
the ordinary de Bruijn sequence generating algorithm, such as that described by
Fredricksen [7]. To do this, we first generate a de Bruijn sequence w of order k over
the alphabet Γ = Σm. Then we replace each letter of w in Γ by the corresponding
word of length m over Σ. It is easy to see that the new word is an m-shift de Bruijn
sequence of order km.

The first algorithm of generating multi-shift de Bruijn sequence is to generate
mi-shift de Bruijn sequences of order kimi for some ki,mi, i = 1, 2 before rear-
ranging the words to obtain an arbitrary m-shift de Bruijn sequence of order n.
Let 1 ≤ m < n be two integers, and n = km + r, where r = n mod m. The case
r = 0 is already discussed and the case |Σ | = 1 is trivial. So we assume r 6= 0 and
|Σ | ≥ 2. We definem1 = r, n1 = (k+1)r and generate w1 = τ(m1, n1)0m1 such that
τ(m1, n1) is anm1-shift de Bruijn sequence of order n1 and w1[1 .. n1] = 0n1 ; and de-
finem2 = m−r, n2 = k(m−r) and generate w2 = τ(m2, n2)0m2 such that τ(m2, n2)
is an m2-shift de Bruijn sequence of order n2 and w2[1 .. n2] = 0n2 . Let a = |Σ |,
N1 = an1 , N2 = an2 . We define ui = w1[n1 + (i− 1)m1 + 1 .. n1 + im1], u′i =
u1+(i mod (N1−1)), vi = w2[n2 + (i− 1)m2 + 1 .. n2 + im2], v′i = v1+(i−1 mod N2).
Then the following word

0n v10
m1 v2 · · · vN2−10

m1 vN2u
′
(N1−1)N2

v′1u
′
1 v

′
2u

′
2 · · · v′(N1−1)N2−1u

′
(N1−1)N2−1 (5)

is one m-shift de Bruijn sequence of order n, where vN2 = 0km and u′(N1−1)N2
= u1.

The algorithm (Algorithm 1) is illustrated in Fig. 1.

Theorem 12. Algorithm 1 correctly generates an m-shift de Bruijn sequence of
order n.

Proof. To show the correctness, we claim that every word in L1 = (0m1Σm2)k0m1
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Input: two integers m,n with 1 ≤ m < n and alphabet size a.
Output: an m-shift de Bruijn sequence of order n over {0, . . . , a− 1}.

1 Let n = km+ r, where r = n mod m ;
2 if r = 0 then return an m-shift de Bruijn sequence of order n ;
3 generate an r-shift de Bruijn sequence of order (k + 1)r ;
4 generate an (m− r)-shift de Bruijn sequence of order k(m− r) ;
5 return a word as constructed by Eq. (5)

Fig. 1. Algorithm 1 for generating a multi-shift de Bruijn sequence.

appears in

w′ = 0n v10
m1 v2 · · · vN2−10

m1

as a factor at a modulo m position exactly once. Furthermore, since gcd(N1 −
1, N2) = 1, we claim that every word in L2 = (Σm1Σm2)kΣm1 \ L1 appears in

w′′ = 0kmu1v
′
1u

′
1v

′
2u

′
2 · · · v′(N1−1)N2−1u

′
(N1−1)N2−1

as a factor at a modulom position exactly once. Both claims can be verified trivially.
Therefore, the generated word is indeed an m-shift de Bruijn sequence of order n.

Now, we will see an example. Consider generating a 2-shift de Bruijn sequence
of order 5. Then m1 = 1, n1 = 3,m2 = 1, n2 = 2 and we can obtain two words
w1 = 00011101000, which is τ(1, 3)0, and w2 = 001100, which is τ(1, 2)0. So one
2-shift de Bruijn sequence of order 5 is as follows

0000012012002002

11121112110201021112011201021102111211120102110201120112

110211021112011211020102011211121102110201121112010201,

where the subscripts 1 and 2 denote whether the letter is from the word w1 (words
ui, u

′
i) or from the word w2 (words vi, v

′
i).

Now we present the second algorithm, which uses the same idea of “prefer one”
algorithm [16] for generating ordinary de Bruijn sequences. Let m,n be two positive
integers. To generate an m-shift de Bruijn sequence w of order n, we start the
sequence w with n zeros. Then we append to the end of current sequence w the
lexicographically largest word of length m such that the suffix of length n of the new
sequence has not yet appeared as a factor at a modulo m position. We repeat this
step until no word can be appended to w. The algorithm (Algorithm 2) is illustrated
in Fig. 2.

Theorem 13. Algorithm 2 correctly generates an m-shift de Bruijn sequence of
order n.
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Input: two integers m,n with 1 ≤ m < n and alphabet size a.
Output: an m-shift de Bruijn sequence of order n over {0, . . . , a− 1}.

1 Let w := 0n ;
2 Mark all word of length n except w as unvisited ;
3 repeat
4 Find the lexicographically largest u of length m such that

w[|w | − n+m+ 1 .. |w |]u is unvisited ;
5 Then let w := wu and mark word w[|w | − n+m+ 1 .. |w |]u visited ;
6 until no such word can be found ;
7 return w

Fig. 2. Algorithm 2 for generating a multi-shift de Bruijn sequence.

Proof. To show the correctness, first we claim that when the algorithm stops, the
suffix u of length n−m of w contains only zeros. To see this, suppose u is not 0n−m.
Since no word can be added, all |Σ |m words of length n with prefix u appear in w
and thus u appears in w as a factor at a modulo m position |Σ |m+1 times. So there
are |Σ |m+1 words of length n with suffix u that appear in w at a modulom position,
which contradicts the definition of the multi-shift de Bruijn sequence. Therefore,
u = 0n−m. Furthermore, word 0n−m appears in w as a factor at a modulom position
|Σ |m+1 times and thus all words in Σm0n−m appear in w as a factor at a modulo m
position. By the algorithm, no word of length n can appear twice in w at a modulo
position. So, in order to prove the correctness of the algorithm, it remains to show
every word of length n appears in w as a factor at a modulo m position. Suppose
a word v does not appear in w at a modulo m position. Then v[m+ 1 .. n] 6= 0n−m

and the word v[m+ 1 .. n]0m does not appear in w as a factor at a modulo m

position neither; otherwise, there are |Σ |m appearances of v[m+ 1 .. n] in w at a
modulo m position, which means v appears in w as a factor at a modulo m position.
Repeat this procedure, none of the words v[m+ 1 .. n]0m, v[2m+ 1 .. n]02m, . . .,
v[bn/mcm+ 1 .. n]0bn/mcm appears in w as a factor at a modulo m position. But
for bn/mcm ≥ n−m, we proved that v[bn/mcm+ 1 .. n]0bn/mcm appears in w as a
factor at a modulo m position, a contradiction. Therefore, every word of length n

appears at a modulo m position.

Now, we use the algorithm to generate one 2-shift de Bruijn sequence of order
5. Starting from 00000, since 00011 does not appear as a factor at a modulo 2
position, we append 11 to the current sequence 00000. Repeating this procedure
and appending words 11, 11, 10, 11, . . . , finally we obtain the word:

0000011111110111010110111011001110011001

010011000100001010100010000
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2.3. Application to the Frobenius Problem in a Free Monoid

The study of multi-shift de Bruijn sequences is inspired by a problem of words,
called the Frobenius problem in a free monoid. Given k integers x1, . . . , xk, such
that gcd(x1, . . . , xk) = 1, there are only finitely many positive integers that can-
not be written as a non-negative integer linear combination of x1, . . . , xk. The in-
teger Frobenius problem is to find the largest such integer, which is denoted by
g(x1, . . . , xk). For example, g(3, 5) = 7.

If words x1, . . . , xk, instead of integers, are given such that there are only
finitely many words that cannot be written as concatenation of words from the
set {x1, . . . , xk }, the Frobenius problem in a free monoid [11] is to find the longest
such words. If all x1, . . . , xk are of length either m or n, 0 < m < n, there is an up-
per bound: the length of the longest word that cannot be written as concatenation
of words from the set {x1, . . . , xk } is less than or equal to g(m, l) = ml −m − l,
where l = m|Σ|n−m + n−m, [11]. Furthermore, the upper bound is tight and the
construction is based on the multi-shift de Bruijn sequences. We denote the set of
all words that can be written as the concatenation of words in S, including the
empty word, by S∗.

Theorem 14. [11] There exists S ⊆ Σm ∪ Σn, 0 < m < n, such that Σ∗ \ S∗ is
finite and the longest words in Σ∗ \ S∗ constitute exactly the language (τΣm)m−2τ ,
where τ is an m-shift de Bruijn sequence of order n−m.

For example, for any set of words S ⊆ U = { 0, 1 }3 ∪ { 0, 1 }7 such that
{ 0, 1 }∗ \ S∗ is finite, the longest words in { 0, 1 }∗ \ S∗ are of lengths less than
or equal to g(3, 3 · 24 + 4) = g(3, 52) = 101. To construct S to reach the up-
per bound, we first choose an arbitrary 3-shift de Bruijn sequence of order 4 as
τ = 0000111111110110101101100100011011010010001001000. Then based on τ ,
we construct the set S = U \ { 0000111, 0111111, 1111110, 1110110, 0110101,
0101101, 1101100, 1100100, 0100011, 0011011, 1011010, 1010010, 0010001,
0001001, 1001000 }. We have L = { 0, 1 }∗ \S∗ = τ{ 0, 1 }3

τ and one of the longest
words in L of length exactly 101 is given below:

0000111111110110101101100100011011010010001001000

1110000111111110110101101100100011011010010001001000.

3. Pseudo de Bruijn Sequence Defined by Antimorphic Involutions

Here we discuss another generalization of the de Bruijn sequence. Let Σ ⊆
{ 0, 1, 2, . . . } be the alphabet. A function θ : Σ∗ → Σ∗ is called an involution if
θ(θ(w)) = w for w ∈ Σ∗ and called an antimorphism if θ(uv) = θ(v)θ(u) for
u, v ∈ Σ∗. We call θ an antimorphic involution if θ is both an involution and
an antimorphism. For example, the classic Watson-Crick complementarity of DNA
strands in biology is an antimorphic involution over the four-letter alphabet of DNA
nucleotides { A, T, C, G }, where θ(A) =T, θ(C) =G, and θ(ACG) =CGT. The
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mirror image, or reverse, θ(a1a2 · · · an) = an · · · a2a1 is another antimorphic involu-
tion. Let θ be an antimorphic involution. We write tr(θ) = |{ a : a ∈ Σ, θ(a) 6= a }|
and thus θ can be written as composition of tr(θ) transpositions with a mirror im-
age. The antimorphic involution is motivated by the particularities of DNA-encoded
information for the purpose of DNA computing. Several concepts in combinatorics
on words have natural counterparts in this setting, e.g., pseudo-palindromes [5], in-
volutively bordered words [13], Watson-Crick conjugate words, Watson-Crick com-
mutativity [12], pseudo-primitive words [4], and pseudo-powers of words [3]. In the
following, we define and discuss the pseudo de Bruijn sequence.

Definition 15. A word w over Σ is called a pseudo de Bruijn sequence of order
n if for every word x ∈ Σn, either x or θ(x) appears in w as a factor and the total
number of those appearances is exactly one.

For example, 0011 is a pseudo de Bruijn sequence of order 2 with respect to the
mirror image (word reverse), by the following observation:

0011 = (00)11 = 0(01)1 = 0θ(10)1 = 00(11).

As we saw in Section 2, most properties of the multi-shift de Bruijn sequence are
analogous to those of the usual de Bruijn sequence. This is not true for the pseudo
de Bruijn sequence.

3.1. Contrast Between the Usual de Bruijn Sequence and the

Pseudo de Bruijn Sequence

The length of a de Bruijn sequence of order n over Σ is an+n−1 (or an in the circular
form), where a = |Σ |. By contrast, the length of a pseudo de Bruijn sequence of
order n over Σ is N + n− 1, where N = |Σ |n − | {u : u ∈ Σn, θ(u) 6= u } |/2. More
precisely:

Proposition 16. A pseudo de Bruijn sequence of order n over Σ with respect to θ
is of length

(
an + (a− 2 · tr(θ))n mod 2abn/2c) /2 + (n− 1), where a = |Σ |.

Proof. Let S = {u : u ∈ Σn, θ(u) = u } be the set of all pseudo palindromes of
length n and let T = {u : u ∈ Σn, θ(u) 6= u }. We only need to show that

|Σ |n − |T |/2 =
(
an + (a− 2 · tr(θ))n mod 2abn/2c

)
/2.

If n is even, then |S | = an/2; otherwise, |S | = (a−2·tr(θ))abn/2c. Since |S |+|T | =
an, we can verify the length of a pseudo de Bruijn sequence.

Obviously, for a unary alphabet, we can always write a pseudo de Bruijn se-
quence in a circular form, since the last n letters are identical to the first n letters.
In general, however, not all pseudo de Bruijn sequences can be written in a circular
form.
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Proposition 17. Let Σ = { 0, 1 }, let θ be the mirror image, and let w be a binary
de Bruijn sequence of order n. Then either 1n is a prefix of w and 0n is a suffix of
w; or 0n is a prefix of w and 1n is a suffix of w.

Proof. Suppose 1n is neither prefix nor suffix of w. Then a1nb is a factor of w for
some a, b ∈ Σ. By definition, a, b 6= 1. So a, b = 0 and thus both 1n−10 and θ(1n−10)
appear in w as factors, which contradicts the definition of a pseudo de Bruijn
sequence.

As a direct result, none of the binary pseudo de Bruijn sequences can be written
in a circular form.

3.2. Counting the Number of Pseudo de Bruijn Sequences for

Special Cases

For a pseudo de Bruijn sequence of order 1, say w, the word w is just a permutation
of letters in Γ, where Γ ⊆ Σ consists of exactly the letters a with θ(a) = a and one
of the letters b, c with θ(b) = c 6= b. We have the following proposition.

Proposition 18. Let Σ be an alphabet and let θ be an antimorphic involution. Then
the pseudo de Bruijn sequences of order 1 exist and their total number is 2t(a− t)!,
where a = |Σ | and t = tr(θ).

Proof. The proof is straightforward. Each pseudo de Bruijn sequence contains a−t
distinct letters in 2t different choices. For each letter set, there are (a− t)! different
pseudo de Bruijn sequences.

Now we assume θ is the mirror image. There are two binary pseudo de Bruijn
sequences, 0011 and 1100, of order 2. To discuss de Bruijn sequence over a more
general alphabet, we need the following lemma.

Lemma 19. Let Σ be an alphabet with a = |Σ | ≥ 3 and let θ be the mirror image.
Then every pseudo de Bruijn sequence of order 2 can be written in a circular form
and there is an a(a+1)

2 to 1 mapping from the pseudo de Bruijn sequences of order
2 onto the Euler tours in Ko

a, where Ko
a is the complete graph Ka where a self-loop

is added on each vertex.

Proof. We assume each vertex in Ko
a be labeled with a letter from Σ. Let

a0a1a2 · · · an, n = (a2 + a)/2, be a pseudo de Bruijn sequence of order 2 with
respect to the mirror image over Σ. Then one can verify that the path visiting
vertices a0, a1, a2, · · · , an covers each arc in Ko

a exactly once. Since the graph is
complete and a ≥ 3, the given path must be closed. So a0, a1, a2, · · · , an is a Euler
tour and a0 = an. On the other hand, for each Euler tour and a given starting
vertex, we can construct a pseudo de Bruijn sequence in this way. Therefore, there
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is an n to 1 mapping from the pseudo de Bruijn sequences of order 2 onto the Euler
tours in Ko

a.

In contrast to the existence of ordinary de Bruijn sequence, not all pseudo
de Bruijn sequences exist. In other words, the number of such sequences can be
0.

Proposition 20. Let Σ be an alphabet with even a = |Σ | ≥ 4 and let θ be the
mirror image. Then there is no pseudo de Bruijn sequence of order 2.

Proof. Since there is no Euler tour in Ko
a for a being even and a ≥ 4, by Lemma 19,

the number of pseudo de Bruijn sequences in this setting is 0.

Discussion of the total number of Euler tours (also called Euler circuits) in a
complete graph dates back at least to the year 1859 by Reiss, about 100 years after
Euler’s work on Königsberg Bridges Problem. The following proposition shows the
relation between the number of pseudo de Bruijn sequences of order 2 over an odd
alphabet with respect to the mirror image and the number of Euler tours in a
complete graph.

Proposition 21. Let Σ be an alphabet with odd a = |Σ | ≥ 3 and let θ be the
mirror image. Then the pseudo de Bruijn sequences of order 2 exist and their total
number is (a−1)aa(a+1)

2a+1 Ea, where Ea is the total number of Euler tours in Ka.

Proof. The difference between an Euler tour in Ko
a and an Euler tour in Ka is

that each vertex in the former is visited exactly one more time than in the latter
due to the extra self-loop on every vertex. In an Euler tour in Ka, each vertex is
visited (a− 1)/2 times and thus there are (a− 1)/2 distinct ways to add the extra
self-loop to obtain an Euler tour in Ka. In other words, there is an (a− 1)a/2a to
1 mapping from the Euler tours in Ko

a onto the Euler tours in Ka. Let Eo
a and Ea

be the total number of Euler tours in Ko
a and Ka, respectively. By Lemma 19, the

number of pseudo de Bruijn sequences of order 2 is

a(a+ 1)/2Eo
a = a(a+ 1)/2(a− 1)a/2aEa = (a− 1)aa(a+ 1)/2a+1Ea.

4. Conclusion

In this paper, we generalized the classic de Bruijn sequence to a new multi-shift
setting and to a bioinformation-inspired setting.

A word w is an m-shift de Bruijn sequence of order n, if each word of length
n appears exactly once as a factor at a modulo m position. An ordinary de Bruijn
sequence is a 1-shift de Bruijn sequence.

We showed that the total number of distinct m-shift de Bruijn sequences of
order n is #(m,n) = (an)!a(m−n)(an−1) for 1 ≤ n ≤ m and is #(m,n) = (am!)an−m

for 1 ≤ m ≤ n, where a = |Σ |. This result generalizes the formula (a!)an−1
for the
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number of ordinary de Bruijn sequences [1]. (Here we use an ordinary, non-circular
word form; if counting the sequences in a circular form, then the number is to be
divided by an.)

We provided two algorithms for generating an m-shift de Bruijn sequence of
order n. The first algorithm is to rearrange factors from two simpler multi-shift
de Bruijn sequences, where the order is a multiple of the shift. The second is the
analogue of the “prefer one” algorithm (for example, see [7]) for generating ordinary
de Bruijn sequence.

The multi-shift de Bruijn sequence has applications to the Frobenius problem in
a free monoid by providing constructions of examples. It will be interesting to see
whether this generalized concept of the de Bruijn sequence has an impact in other
fields of theoretical computer science and discrete mathematics.

A word w is a pseudo de Bruijn sequence with respect to an antimorphic invo-
lution θ if for each word u of length n, either u or θ(u) appears as a factor and it
appears exactly once in this way.

We showed that a binary pseudo de Bruijn sequence with respect to the mirror
image does not have a circular form. We showed that a pseudo de Bruijn sequence
of order 2 with respect to the mirror image over alphabet of even size ≥ 4 does not
exist.

We showed that the number of pseudo de Bruijn sequences of order 2 with respect
to the mirror image over an alphabet of odd size ≥ 3 is (a − 1)aa(a + 1)Ea/2a+1,
where Ea is the total number of Euler tours in the complete graph Ka. The precise
formula for Ea is complicated and so far there is no closed form for Ea. We know
that the formula for the number of pseudo de Bruijn sequences is at least as hard as
that for Ea and any formula for the latter would lead to a formula for the former.

With respect to antimorphic involution other than the mirror image, no non-
trivial property on the pseudo de Bruijn sequences is known.
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