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Abstract: We investigate the role of nondeterminism in Winfree’s abstract Tile Assembly
Model (aTAM), in particular how its use in tile systems affects the resource requirements.
We show that for infinitely many c ∈ N, there is a finite shape S that is self-assembled by a
tile system (meaning that all of the various terminal assemblies produced by the tile system
have shape S) with c tile types, but every directed tile system that self-assembles S (i. e., has
only one terminal assembly, whose shape is S) needs more than c tile types. We extend the
technique to prove our main theorem, that the problem of finding the minimum number of
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tile types that self-assemble a given finite shape is ΣP
2 -complete. We then show an analogous

“computability theoretic” result: there is an infinite shape S that is self-assembled by a tile
system but not by any directed tile system.

1 Introduction

Tile self-assembly is an algorithmically rich model of “programmable crystal growth.” It is possible to
design molecules (square-like “tiles”) with specific binding sites so that, even subject to the chaotic nature
of molecules floating randomly in a well-mixed solution, they are guaranteed to bind so as to form a
single target shape. This is despite the number of different types of tiles possibly being much smaller than
the size of the shape and therefore having only “local information” to guide their attachment. The ability
to control nanoscale structures and machines to atomic-level precision will rely crucially on sophisticated
self-assembling systems that automatically control their own behavior where no top-down externally
controlled device could fit.

A practical implementation of self-assembling molecular tiles was proved experimentally feasible in
1982 by Seeman [42] using DNA complexes formed from artificially synthesized strands. Experimental
advances have delivered increasingly reliable assembly of algorithmic DNA tiles with error rates of
10% per tile in 2004 [38], 1.4% in 2007 [20], 0.13% in 2009 [7], and 0.05% in 2010 [17]. Erik
Winfree [49] introduced the abstract Tile Assembly Model (aTAM)—based on a constructive version
of Wang tiling [47, 48]—as a simplified mathematical model of self-assembling DNA tiles. Winfree
demonstrated the computational universality of the aTAM by showing how to simulate an arbitrary cellular
automaton with a tile assembly system. Building on these connections to computability, Rothemund
and Winfree [39] investigated a self-assembly resource bound known as tile complexity, the minimum
number of tile types needed to self-assemble a shape. They showed that for most n, the problem of
self-assembling an n×n square has tile complexity Ω(log(n)/ log log(n)), and Adleman, Cheng, Goel,
and Huang [3] exhibited a construction showing that this lower bound is asymptotically tight. We discuss
two different models of self-assembly below (unique versus strict), but both of the previous results hold
for either model. Under natural generalizations of the model [1, 5, 8, 10–14, 19, 22, 23, 32, 44, 46], tile
complexity can be reduced for tasks such as square-building and self-assembly of more general shapes.

We now briefly describe the aTAM; a formal definition is given in Section 2. A tile in the aTAM is a
unit square with a kind and strength of “glue” on each of its sides. Tiles are assumed not to rotate so that
each side has a well-defined direction: north, south, east, or west. A tile assembly system T = (T,σ ,τ)
consists of a finite set T of tile types (with infinitely many tiles of each type in T available), a seed tile
σ ∈ T , from which growth is assumed to nucleate, and a temperature τ , assumed to be 2 in this paper.
Self-assembly proceeds from the seed tile σ , with tiles of types in T successively attaching themselves
to the existing assembly. Two tiles placed next to each other interact if the glues on their abutting sides
match, and a tile binds to a binding site on an assembly if the total strength on all of its interacting sides
is at least τ . The choice of which binding site to attach is nondeterministic. It is possible that a single
binding site could have more than one tile type able to attach with strength τ , which is also a choice made
nondeterministically (the impossibility of this situation occurring precisely characterizes the “directed”
tile systems, described informally next and defined formally in Section 2).

Since we use the term “nondeterministic” informally in various contexts to indicate any situation
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in which more than one choice is available, to avoid ambiguity, we introduce new terms to distinguish
precisely between the two specific types of determinism we consider in this paper. We say a tile system is
directed if it is guaranteed to form one unique terminal assembly (terminal meaning that no tiles can attach
to it), where an assembly is defined not only by which positions are eventually occupied by a tile, but also
by which tile type is placed at each position. In this case, we say the tile system uniquely self-assembles
the shape (since the terminal assembly is unique). We say a tile system strictly self-assembles a shape
(and we say the tile system is strict) if all of its terminal assemblies are guaranteed to have that shape. In
the case that there is more than one terminal assembly with the same shape, these various assemblies will
have different tile types at the same position (but will be in agreement about which positions have a tile).
A strict tile system may not be directed, despite enforcing another sort of determinism by guaranteeing
what shape is to form. Figure 1 shows an example of a non-directed temperature tile system that strictly
self-assembles a 2×2 square.

seed 1
2

3
2

1
4

3
4
5 3

4

6
a)

seed 1
2

3
2

1
4

3
4
5

b)

seed 1
2

3
2

1
4

3
4

6

Figure 1: a) Example of a non-directed temperature-2 tile system that strictly self-assembles a 2×2
square. The seed tile is labeled as such, and the strength of a glue on a tile type’s side is indicated by
the number of small black squares. b) The two terminal assemblies (both having the same shape) of the
tile system. In this example, removing a single tile type (for instance, the white tile type), makes the tile
system directed without affecting its ability to strictly self-assemble a 2×2 square.

A natural analogy may be made between a non-directed tile system that strictly self-assembles some
shape and a nondeterministic Turing machine N that always produces the same output on a given input,
regardless of the nondeterministic choices made during computation. There is always a deterministic
Turing machine M computing the same function as N and using no more “resources,” according to
any common resource bound such as time complexity, space complexity, or program length. Therefore
we regard such a restricted class of nondeterministic Turing machines as no more “powerful” than
deterministic Turing machines. Based on this analogy, it might seem that strict self-assembly, while
allowing one form of nondeterminism (which tile goes where), so strongly requires another form of
determinism (which positions have a tile) that extra power cannot be gained by allowing the tile systems
to be non-directed.

More precisely, it is natural to conjecture that every infinite shape that is strictly self-assembled
by some tile system is also strictly self-assembled by some directed tile system. In the finitary case,
every finite shape is self-assembled by a directed tile system (possibly using as many tile types as there
are points in the shape), so to make the idea non-trivial we might conjecture that the tile complexity
of a finite shape is independent of whether we consider all tile systems or only those that are directed.
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Such conjectures are appealing because the algorithmic design and verification of tile systems [44] as
well as lower bounds and impossibility proofs [5, 16, 31] often rely on reasoning about directed tile
systems, which are “better behaved” in many senses than arbitrary tile systems, even those that strictly
self-assemble a shape. It would be helpful to begin such arguments with the phrase, “Assume without
loss of generality that the tile system is directed.”

However, these conjectures are false.

1.1 Main results of this paper

We show that for infinitely many c ∈ N there is a finite shape S that is strictly self-assembled by a tile
system with c tile types, but (unlike the example in Figure 1) every directed tile system that strictly
self-assembles S has more than c tile types. In fact, to strictly self-assemble the shape in a directed tile
system requires more than ≈ 3

2 c tile types. Schweller [41] has improved this by exhibiting a family of
shapes with super-linear gap between their directed and non-directed tile complexities. The issue is
discussed in more detail in Section 5. The techniques are used in the proof of our main theorem, which
shows that (the decision version of) the problem of finding the minimum number of tile types that strictly
self-assemble a given finite shape is complete for the complexity class ΣP

2 = NPNP. In contrast, the
problem of finding the minimum size directed tile system that strictly self-assembles a shape was shown
to be NP-complete by Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund [4].
(This result is discussed and compared to our own in more detail below.) That is, not only is the answer to
the question “What is the tile complexity of shape S?” different from the answer to “What is the directed
tile complexity of shape S?”, but the former question is fundamentally more difficult to answer than the
latter, barring an unlikely collapse of complexity classes.

We then show an analogous phenomenon in the infinitary case: there is an infinite shape S that is
strictly self-assembled by a tile system but not by any directed tile system. Therefore, in a “molecular
computability theoretic” sense, nondirectedness allows certain shapes to be algorithmically self-assembled
that are totally “unassemblable” (to borrow Adleman’s term analogous to “uncomputable” [2]) under the
constraint of directedness.

Based on these results, we conclude that nondeterminism in tile type placement confers extra power
to self-assemble a shape from a small tile system, but unless the polynomial hierarchy collapses, it is
computationally more difficult1 to exploit this power by finding the size of the smallest tile system,
compared to finding the size of the smallest directed tile system.

1.2 Comparison with related work

As indicated above, Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund [4]
consider the optimization problem, given a finite shape S, what is the size of the smallest tile system
that uniquely self-assembles S (i. e., smallest directed tile system that strictly self-assembles S)? We
consider the optimization problem, given a finite shape S, what is the size of the smallest tile system that
strictly self-assembles S? In other words, our optimization problem considers strictly more tile systems,
by allowing those that self-assemble more than one terminal assembly, so long as all of those assemblies

1“More difficult” in the sense of nondeterministic time complexity, although it is conceivable that both problems have the
same deterministic time complexity.
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have the same shape, whereas in [4] the optimization problem considers only directed tile systems, those
that self-assemble a unique terminal assembly. Therefore, for any given shape S, the answer to our
optimization problem will be less than or equal to the answer to the optimization problem of [4].

A related result was shown by Aggarwal, Cheng, Goldwasser, Kao, Moisset de Espanes, and
Schweller [5], who studied a different problem using the same model of shape assembly that we use
(strict self-assembly). Theirs is a verification problem: given a finite shape S and a tile system T, does
T strictly self-assemble S? They showed this problem to be coNP-complete. This is in contrast to the
equivalent verification problem for unique assembly (i. e., strict self-assembly by a directed tile system,
the model considered in [4]), which was shown in [4] to be solvable in polynomial time.

Strict self-assembly Unique self-assembly
Verification coNP-complete [5] P [4]
Optimization ΣP

2 -complete [this paper] NP-complete [4]

Table 1: Four combinatorial problems in self-assembly of shapes, based on two binary choices: 1)
verification that a given tile system self-assembles a given shape versus optimization of the number of
tile types required to self-assemble a given shape, and 2) strict self-assembly (many terminal assemblies
allowed but they must all have the same shape) versus unique self-assembly (only one terminal assembly
allowed).

These four results are outlined in Table 1. It is instructive to observe why the containments in NP
and ΣP

2 of the bottom row of Table 1 hold. In the directed case, one can nondeterministically guess a
tile system T and then use the polynomial-time algorithm of the upper-right entry of Table 1 to check
whether T is uniquely self-assembles S. In the non-directed case, we can also nondeterministically guess
a tile system T = (T,σ ,τ). The polynomial-time algorithm for unique self-assembly verification does not
work for strict self-assembly; indeed, that problem is coNP-complete as indicated in the upper-left entry
of the table. Therefore the optimization problem for strict self-assembly is not obviously contained in
NP. To prove containment in ΣP

2 , it suffices to use a universal polynomially-bounded quantifier to check
all possible sequences of tile additions to the seed of T to verify that all terminal assemblies that result
have the shape S. Since |T | ≤ |S| if T is a minimal tile system for S, the length in bits of the candidate tile
addition sequences is bounded by a polynomial in |S|.

2 Abstract Tile Assembly Model

This section gives a terse definition of the abstract Tile Assembly Model (aTAM, [49]). This is not a
tutorial; for readers unfamiliar with the aTAM, Rothemund and Winfree [39] give an excellent introduction
to the model. Doty [15] provides a high-level overview of the field, reviewing several aTAM results.

Fix an alphabet Σ. Σ∗ is the set of finite strings over Σ. Given a discrete object O, 〈O〉 denotes
a standard encoding of O as an element of Σ∗. Z, Z+, and N denote the set of integers, positive
integers, and nonnegative integers, respectively. For a set A, P(A) denotes the power set of A. Given
A⊆ Z2, the full grid graph of A is the undirected graph Gf

A = (V,E), where V = A, and for all u,v ∈V ,
{u,v} ∈ E ⇐⇒ ‖u− v‖2 = 1; i. e., iff u and v are adjacent on the integer Cartesian plane. A shape is a
set S⊆ Z2 such that Gf

S is connected. A shape ϒ is a tree if Gf
ϒ

is acyclic.
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A tile type is a tuple t ∈ (Σ∗×N)4; i. e., a unit square with four sides listed in some standardized order,
each side having a glue g ∈ Σ∗×N consisting of a finite string label and nonnegative integer strength. We
assume a finite set T of tile types, but an infinite number of copies of each tile type, each copy referred
to as a tile. An assembly is a nonempty connected arrangement of tiles on the integer lattice Z2, i. e., a
partial function α : Z2 99K T such that Gf

dom α
is connected and dom α 6=∅. The shape Sα ⊆ Z2 of α

is dom α . Two adjacent tiles in an assembly interact if the glues on their abutting sides are equal (in
both label and strength) and have positive strength. Each assembly α induces a binding graph Gb

α , a
grid graph whose vertices are positions occupied by tiles, with an edge between two vertices if the tiles
at those vertices interact.2 Given τ ∈ Z+, α is τ-stable if every cut of Gb

α has weight at least τ , where
the weight of an edge is the strength of the glue it represents. That is, α is τ-stable if at least energy τ

is required to separate α into two parts. When τ is clear from context, we say α is stable. Given two
assemblies α,β : Z2 99K T , we say α is a subassembly of β , and we write α v β , if Sα ⊆ Sβ and, for all
points p ∈ Sα , α(p) = β (p).

A tile assembly system (TAS) is a triple T = (T,σ ,τ), where T is a finite set of tile types, σ : Z2 99K T
is the finite, τ-stable seed assembly, and τ ∈ Z+ is the temperature. Given two τ-stable assemblies
α,β : Z2 99K T , we write α→T

1 β if α v β and |Sβ \Sα |= 1. In this case we say α T-produces β in one
step.3 If α→T

1 β , Sβ \Sα = {p}, and t = β (p), we write β = α +(p 7→ t). The T-frontier of α is the set

∂
T

α =
⋃

α→T
1 β

Sβ \Sα ,

the set of empty locations at which a tile could stably attach to α .
A sequence of k ∈ Z+ ∪{∞} assemblies α0,α1, . . . is a T-assembly sequence if, for all 1 ≤ i < k,

αi−1→T
1 αi. We write α →T β , and we say α T-produces β (in 0 or more steps) if there is a T-assembly

sequence α0,α1, . . . of length k = |Sβ \ Sα |+1 such that 1) α = α0, 2) Sβ =
⋃

0≤i<k Sαi , and 3) for all
0≤ i < k, αi v β . If k is finite then it is routine to verify that β = αk−1.4 We say α is T-producible if
σ →T α , and we write A[T] to denote the set of T-producible assemblies. The relation→T is a partial
order on A[T] [26, 37]. A T-assembly sequence α0,α1, . . . is fair if, for all i and all p ∈ ∂Tαi, there exists
j such that α j(p) is defined; i. e., no frontier location is “starved.”

An assembly α is T-terminal if α is τ-stable and ∂Tα =∅. We write A�[T]⊆A[T] to denote the
set of T-producible, T-terminal assemblies. A TAS T is directed (a. k. a., deterministic, confluent) if the
poset (A[T],→T) is directed; i. e., if for each α,β ∈A[T], there exists γ ∈A[T] such that α →T γ and
β →T γ .5 We say that a TAS T strictly self-assembles a shape S⊆ Z2 if, for all α ∈A�[T], Sα = S; i. e.,
if every terminal assembly produced by T has shape S. If T strictly self-assembles some shape S, we say

2For Gf
Sα

= (VSα
,ESα

) and Gb
α = (Vα ,Eα ), Gb

α is a spanning subgraph of Gf
Sα

: Vα =VSα
and Eα ⊆ ESα

.
3Intuitively α →T

1 β means that α can grow into β by the addition of a single tile; the fact that we require both α and β to
be τ-stable implies in particular that the new tile is able to bind to α with strength at least τ . It is easy to check that had we
instead required only α to be τ-stable, and required that the cut of β separating α from the new tile has strength at least τ , then
this implies that β is also τ-stable.

4If we had defined the relation →T based on only finite assembly sequences, then →T would be simply the reflexive,
transitive closure (→T

1 )
∗ of→T

1 . But this would mean that no infinite assembly could be produced from a finite assembly, even
though there is a well-defined, unique “limit assembly” of every infinite assembly sequence.

5The following two convenient characterizations of “directed” are routine to verify. T is directed if and only if |A�[T]|= 1.
T is not directed if and only if there exist α,β ∈A[T] and p ∈ Sα ∩Sβ such that α(p) 6= β (p).
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that T is strict. Note that the implication “T is directed =⇒ T is strict” holds, but the converse does not
hold. If T strictly self-assembles S and T is directed, then we say that T uniquely self-assembles S.

In this paper we will always use singly-seeded temperature-2 TAS’s, those with |Sσ |= 1 and τ = 2;
hence we will use the term seed tile for σ as well, and for the remainder of this paper we use the term
TAS to mean singly-seeded temperature-2 TAS. When T is clear from context, we may omit T from the
notation above and instead write→1,→, ∂α , frontier, assembly sequence, produces, producible, and
terminal. Since the behavior of a TAS T = (T,σ ,2) is unchanged if every glue with strength greater than
2 is changed to have strength exactly 2, we assume henceforth that all glue strengths are 0, 1, or 2, and
use the terms null glue, single glue, and double glue, respectively, to refer to these three cases.6 We also
assume without loss of generality that every single glue or double glue occurring in some tile type in
some direction also occurs in some tile type in the opposite direction, i. e., there are no “effectively null”
single or double glues.7

3 Assembly of finite shapes

In this section we study the power of nondeterminism in assembling finite shapes. We first show that the
tile complexity of some shapes can be reduced using nondeterminism. The ideas in this construction will
be useful in proving the main theorem of this section, which shows that the minimum tile set problem is
ΣP
2 -complete.

Recall that all of the TAS’s we study are assumed singly-seeded. Let S ⊆ Z2 be a shape. The
(temperature-2) tile complexity of S is

Ctc(S) = min{|T | | T = (T,σ ,2) is a TAS and T strictly self-assembles S} ,

with the convention min∅= ∞. The (temperature-2) directed tile complexity of S is

Cdtc(S) = min{|T | | T = (T,σ ,2) is a directed TAS and T strictly self-assembles S} .

Using the terminology of the introduction, Ctc(S) is the minimum number of tile types required to
strictly self-assemble S, and Cdtc(S) is the minimum number of tile types required to unique self-assemble
S.

The temperature parameter τ = 2 means that we distinguish two energy levels of bonds, “strong”
(strength 2, which can bind on their own) and “weak” (strength 1, which require two cooperating bonds
to bind). Higher temperatures mean more discrete energy levels available, which potentially leads to
more precise control over tile placement. It is worth mentioning that the temperature potentially affects
the tile complexity of a shape. Seki and Okuno [43] considered, for an arbitrary constant τ ∈ Z+, the
directed temperature-at-most-τ tile complexity of S, denoted by

Cdtc
τ (S) = min

{
|T |
∣∣ T = (T,σ ,τ ′) is a directed TAS, τ

′ ≤ τ , and T strictly self-assembles S
}
.

6We use null bond, single bond, and double bond similarly to refer to the interaction of two tiles.
7Thus the existence of a tile with a double glue facing empty space implies that the empty space is part of the frontier. Many

of our arguments use the contrapositive that if a shape S is strictly self-assembled by a tile system and a side of a tile faces a
point p 6∈ S, then the tile cannot have a double glue on that side.
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They proved that for any temperature τ ≥ 2, there is a finite shape S with Cdtc
τ (S)< Cdtc

τ−1(S). In practice,
only temperature-2 self-assembly has been experimentally implemented [7, 20, 38]. Therefore, in this
paper we focus on temperature-2 TASs. Our main theorems hold even if we use an arbitrary positive
constant temperature τ > 2 in place of 2.

We are interested in the problems, given a finite shape, what is its tile complexity, and what is its
directed tile complexity? We define two decision problems that are equivalent to these optimization
problems. Let FS⊂ P(Z2) denote the set of all finite shapes. The minimum tile set problem is

MINTILESET =
{
〈S,c〉

∣∣ S ∈ FS, c ∈ Z+, and Ctc(S)≤ c
}
,

and the minimum directed tile set problem is

MINDIRECTEDTILESET =
{
〈S,c〉

∣∣ S ∈ FS, c ∈ Z+, and Cdtc(S)≤ c
}
.

Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund [4] showed that the problem
MINDIRECTEDTILESET is NP-complete. In Section 3.2 we show that MINTILESET is ΣP

2 -complete,
where ΣP

2 = NPNP. See [6] for a discussion of these complexity classes.

3.1 A finite shape for which nondeterminism reduces tile complexity

Although the main result of Section 3, Theorem 3.2, together with the (widely-believed) assumption that
NP 6= ΣP

2 and the fact proven in [4] that MINDIRECTEDTILESET ∈ NP, implies Theorem 3.1 of this
subsection, we prove Theorem 3.1 explicitly in order to illustrate some of the reasoning used in the proof
of Theorem 3.2.

Given a shape S (possibly a subshape of a larger shape we wish to self-assemble), we say some tile
types hard-code S to mean that there are |S| unique tile types, each one specific to a position in S, using
double glues between tile types of all adjacent positions in S.

Given a shape S with a subshape S′ ⊂ S, we say S′ is an isolated subshape of S if there is a point
p ∈ S′ such that every path from a point in S′ to a point in S\S′ includes p. In this case, we say p is the
root of the subshape. If S′ is a tree, we say it is an isolated subtree of S. We say that an isolated subshape
S′ of S is singly-connected if there is precisely one point in S\S′ adjacent to the root of S′.

Theorem 3.1. There is a finite shape S⊂ Z2 such that Ctc(S)< Cdtc(S).

Proof. As such a shape S, we propose the shape illustrated in Figure 2. The shape S consists of two
copies of a subshape S′, which is in a labeling box in the figure, and a bridge that connects one of the 6
bottom positions of the grey scaffolds of a copy of S′ with the corresponding position of the other copy.
The shape S′ contains a subshape called the loop L that consists of L0,L1, . . . ,Lh, L′0,L

′
1, . . . ,L

′
h, the tile

between Lh and L′h, and the tile between L0 and L′0. The height h is left as a variable parameter; increasing
h increases the gap between Ctc(S) and Cdtc(S).

First we establish that Ctc(S)≤ 2h+30 (actually with equality, but we only require and hence prove
an upper bound). A TAS T that strictly self-assembles S is designed in the following manner. Its seed is
placed somewhere on the connecting bridge of S, and the bridge is hardcoded using 13 tile types. The
hardcoding allows T to put tiles of the same type at the leftmost and rightmost positions of the bridge, to
the north of which the two copies of S′ can assemble by reusing other (2h+16) tile types. By having T
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h

L A B

L0

L1

Lh

L'0

L'1

L'h

A0

A1

Ah

B0

B1

Bh

p

S'

Figure 2: A finite shape S for which Ctc(S)<Cdtc(S). Nondeterminism is forced to occur at the two-color
top-middle position of the loop L, since any minimal tile set must reuse the tile types from subtrees A and
B to create L.

reuse h tile types for A0, . . . ,Ah and for L0, . . . ,Lh and other h tile types for B0, . . . ,Bh and for L′0, . . . ,L
′
h,

T can assemble a copy of S′ using 2h+ 16 tile types. Note that this TAS is not directed because the
top-middle position of the loop could receive either a tile from A or a tile from B. Furthermore, these
must be different tile types, because the top-right tile type in A must have a double glue on its west but
cannot have a double glue on any other side, whereas the top-left tile type of B must have a double glue
on its east but not on any other side.

We now show that this nondeterminism is necessary to achieve the minimum tile complexity by
showing that Cdtc(S)≥ 3h. Let T′ be a directed TAS that strictly self-assembles S, that is, it admits the
unique terminal assembly α with Sα = S. Its seed is placed either on one of the two copies of S′ or on the
connecting bridge, and this means that the other copy of S′ grows from the position where the bridge is
connected. We will see that the subprocess to assemble the seed-free copy of S′ costs 3h tile types, which
implies Cdtc(S)≥ 3h.

Let ST be the tree which consists of the subtrees A,B and the three tiles connecting them. In order to
assemble the ST of the seed-free copy of S′, T′ needs 2h+7 tile types due to Theorem 4.3 in [4]. Now we
will prove that the loop L of the copy costs T′ h tile types more. Depending on how this loop is assembled,
we have two cases to be examined. First we consider the case when the loop is assembled so as for every
pair of adjacent tiles on it to be bound via double glue. Then, it is possible for T′ to assemble the left
pillar upward as L1→ L2→ ··· → Lh. Being doubly-bonded with its right neighbor, the tile that T′ puts
on the top-middle position of the loop L should be different from the one on the end of the subtree A. This
means that the left pillar cannot reuse the tiles on A. If the left pillar reused any tile type on B instead,
then a tile would stick out to the left of the left pillar.

The other case is when some of adjacent tiles on the loop L are not bound via double glue. Note that
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at most 2 such weak bonds can appear on the loop, and furthermore, they must be incident on a single tile.
Thus, we assume without loss of generality that such a weak bond does not occur on the left pillar. If L′h
and the tile on the top-middle of L are bonded by double glue, then all tiles on the positions L0,L1, . . . ,Lh
as well as the top-middle and L′h are bounded by double glue and, hence, the process of assembling α can
proceed upward from L0 to L′h. This process should not reuse any tile type on the subtree A in order to
prevent the tile type α(L′h) from filling the gap between the subtrees A and B. Clearly, it cannot borrow
any tile type from the subtree B, either. If the bond is weak, the right pillar must grow upward. Hence, this
pillar cannot reuse any tile type on the subtree B because otherwise T′ would produce another terminal
assembly in which the tile on the top-middle position of L is bonded with its right neighbor by double
glue. As mentioned above, it is almost trivial that the right pillar cannot reuse any tile type on the subtree
A.

3.2 The Minimum Tile Set problem is ΣP
2 -complete

The following is the main theorem of this paper.

Theorem 3.2. MINTILESET is ΣP
2 -complete.

Proof. To show that MINTILESET ∈ ΣP
2 , define the verification language

MINTILESETV =

〈S,c,T,~α〉
∣∣∣∣∣∣

S ∈ FS, c ∈ Z+, T = (T,σ ,2) is a TAS with
|T | ≤ c, ~α = (σ ,α2,α3, . . . ,αk) is a T-assembly
sequence with Sαk = S, and αk is T-terminal

 .

Clearly MINTILESETV ∈ P. MINTILESET ∈ ΣP
2 because 〈S,c〉 ∈ MINTILESET if and only if there

exists T = (T,σ ,2) with |T | ≤ c such that for all T-assembly sequences ~α = (σ ,α2, . . . ,αk) of length
k = |S|, 〈S,c,T,~α〉 ∈MINTILESETV , with |〈T〉| and |〈~α〉| bounded by O(| 〈S,c〉 |2).

To show that MINTILESET is ΣP
2 -hard, we show that ∃∀CNF-UNSAT is polynomial-time many-one

reducible to MINTILESET, where ∃∀CNF-UNSAT is the ΣP
2 -complete language [40, 45, 50]

∃∀CNF-UNSAT =

〈ϕ〉
∣∣∣∣∣∣

ϕ is a true quantified Boolean formula ϕ = ∃x∀y¬φ(x,y),
where φ is an unquantified CNF formula with n+m input
bits x = x1, . . . ,xn and y = y1, . . . ,ym

 .

We follow a similar strategy to the reduction of 3SAT to MINDIRECTEDTILESET shown in [4]. The
reduction 〈ϕ〉 7→ 〈S,c〉 works as follows. First, we compute a tree ϒ∈ FS that “represents” ϕ with subtree
gadgets that encode possible variable assignments and their effect on clauses. We then process ϒ with the
polynomial-time algorithm described in [4] that computes the minimum number of tile types needed to
strictly self-assemble a tree. Let T = (T,σ ,2) be this minimal TAS that strictly self-assembles ϒ, and let
c = |T |. We then compute a shape S ∈ FS such that ϒ⊂ S with the property that, if ϕ is true, then the
tile types in T can be modified, solely through changing some null glues to be single or double glues,
producing a TAS T′ = (T ′,σ ,2) with |T ′| = |T | = c such that T′ strictly self-assembles S, and if ϕ is
false, then no TAS with at most c tile types can strictly self-assemble S. The shape S is shown in Figure 3.
In Figure 3, the height of pillars is set to a number bigger than 20`, where ` is the number of variables in
ϕ .8

8Actually, it is enough to set the height of pillars to any number bigger than the width of the clause-variable matrix.
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Figure 3: The shape S of the reduction 〈ϕ〉 7→ 〈S,c〉 showing ∃∀CNF-UNSAT is polynomial-time many-
one reducible to MINTILESET. In this example, the quantified negated CNF formula ϕ = ∃x∀y¬φ(x,y)
has clauses C1,C2 and C3, ∃-variables x1,x2, and x3, and ∀-variables y1 and y2. The “matrix” of gadgets
at the top left has a row of gadgets for each clause and a column of gadgets for each variable. The matrix
sits atop a group of “pillars” that, when tiled by actual tiles, will represent a variable assignment to φ

(along with one taller left-boundary pillar to help initiate cooperative binding of gadgets to assemble the
matrix). The tree ϒ is S without the matrix and pillars beneath it. In the zoom-in, the two yellow lines
above the yellow X represent strength-1 glues that cooperate to place the gray gadget once (enough of)
the black gadgets to its west and south are in place. The yellow X shows “backward growth” of the gray
gadget that is blocked before it can grow down far enough to form a new copy of the bottom row of S.

Informal description of how the shape S relates to the formula ϕ Informally, the shape S encodes
the formula ϕ as follows. Each of the gadgets shown in Figure 4 corresponds to a specific variable-clause
pair. The “matrix” in Figure 3 is self-assembled by these gadgets, whose purpose is to evaluate the
formula clause-by-clause by its own self-assembly. Each row in the matrix of the shape S corresponds
to a clause, and each column to a variable. In Figure 3, there are three rows and five columns in the
matrix, so a total of fifteen gadgets are used in the matrix. We imagine the matrix assembling one row
at a time (although multiple rows could grow in parallel, but for one row to complete, the row below it
must complete). The type of gadget at position (i, j) used depends on whether a previous variable (one
with index < i) satisfied the jth clause, and if not, whether the truth assignment to the ith variable now
satisfies the jth clause. For the formula to be satisfied, all clauses must be satisfied, so every gadget in
the rightmost column (corresponding to the last variable) must be of type “satisfied,” and if so, the black
part of the shape to the right of the matrix (appearing like a three-rung ladder in Figure 3) will not form.
The presence of at least one gadget in the rightmost column of type “unsatisfied” will form the ladder. In
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Figure 4: Six main varieties of “information-bearing” tree gadgets used in the reduction. The position
(i, j) where the gadget is intended to go in the matrix is encoded in binary. Gadgets intended for the top
row are missing the top “T/F” bumps, and gadgets intended for the right column are different on the right
depending on whether the clause is satisfied or not, as shown in Figure 3.

other words, the S will be strictly self-assembled if and only if the variable assignment chosen (how this
is done is described below) does not satisfy φ .

The way that variables are assigned to do this evaluation of the formula is as follows. The choice
of assignments to the ∃-variables is done by design of the tile set, by choosing appropriate glues to
make one of each of the two types of red “pillars” from the right side of S grow on the left side of S
to start the assembly of the matrix. The choice of assignments to ∀-variables is not controlled by the
design of the tile set. Rather, to grow the matrix (from a minimal number of tile types), one is forced
to choose glues so as to allow both types of green pillars to assemble under the matrix, two for each
column corresponding to a ∀-variable. Therefore the two green pillars (one representing True and the
other False) nondeterministically compete to assign a value to that variable. This is the primary way
nondeterminism is used in assembling the shape: all possible assignments to the ∀-variables are possible
to choose, and if and only if all of them fail to satisfy the formula is the shape S assembled properly (each
possible assignment to the ∀-variables corresponds to a different terminal assembly, but they all have the
shape S if they all make φ evaluate to False). It is this ability to “try out” different assignments to the
∀-variables, which lead to different assemblies, so long as they all form the same shape, that confers the
extra power on non-directed assembly of the shape. The ability manifests in adding an extra ∀ quantifier
to the Boolean formula, which makes it a ΣP

2 -formula.

Formal description of reduction We now describe the reduction more formally.
Suppose that φ has k clauses C1, . . . ,Ck and `= n+m input variables v1, . . . ,v`, where v1, . . . ,vn =

x1, . . . ,xn are the ∃-variables of ϕ and vn+1 . . . ,v` = y1, . . . ,ym are the ∀-variables of ϕ . A clause C is
satisfied by variable v if C contains literal v and v is true, or if C contains literal ¬v and v is false. For
each 1≤ i≤ k and 1≤ j ≤ `, define the following six gadgets:

SST i j: Ci is satisfied by vp for some 1≤ p < j, and v j is true.

SSF i j: Ci is satisfied by vp for some 1≤ p < j, and v j is false.
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UUT i j: Ci is unsatisfied by vp for every 1≤ p≤ j, and v j is true.

UUF i j: Ci is unsatisfied by vp for every 1≤ p≤ j, and v j is false.

UST i j: Ci is unsatisfied by vp for every 1≤ p < j, Ci is satisfied by v j, and v j is true.

USF i j: Ci is unsatisfied by vp for every 1≤ p < j, Ci is satisfied by v j, and v j is false.

Each of these six main varieties of “information-bearing” gadgets is shown in Figure 4. Each gadget is
designed to minimize the amount of “potential unwanted cooperative strength-1 binding” when they are
placed next to each other in the “matrix” of gadgets in the upper left of Figure 3.9 Each gadget encodes
the integers i and j, as well as encoding the information about the clause Ci and variable v j as described
above. Some of the “boundary case” gadgets are shaped slightly differently than those in Figure 4. If
i = k (a “top gadget”), the top of the gadget will not encode information about the truth value of the
variable vi. If j = ` (a “right gadget”), the right side of the gadget will still encode whether the clause is
satisfied, but the gadget will have a different shape than for 1≤ j < `. These special boundary shapes are
shown in Figure 3.

Not all six varieties of gadgets are created for each (i, j); the only gadgets created are those that are
logically consistent with some variable assignment to φ . The matrix and pillars portion of S (i. e., S\ϒ)
depends only on the number of ∃-variables, the number of ∀-variables, and the number of clauses. The
remainder of the information about ϕ is encoded in the following choices about which gadgets to create
in ϒ. In the case of j = 1, the gadgets SSTi1 and SSFi1 are not created. For any clause Ci in which the
literal v j (resp. ¬v j) does not appear, the gadget USTi j (resp. USFi j) is not created. Similarly, for any
clause Ci in which no literal vp (resp. ¬vp) appears for any 1≤ p < j, the gadget SSTi j (resp. SSFi j) is
not created. Finally, for any clause Ci in which the literal v j (resp. ¬v j) does appear, the gadget UUTi j

(resp. UUFi j) is not created.
The tree ϒ is S without the “matrix” on the top left and the “pillars” beneath it that connect it to the

bottom row. Let c = Ctc(ϒ). We assume that the seed is placed on the rightmost position of the bottom
row, for both the shapes ϒ and S. At the end of the proof we show how to modify the shapes to enforce
this restriction. The steps needed to complete the proof are divided into several lemmas. These lemmas
are proven after the current proof. Lemmas 3.3 and 3.6 establish each direction of the claim that ϕ is true
⇐⇒ Ctc(S)≤ c. Intuitively, since ϒ is a “tree-like” subshape of S (despite the leftmost tiles intersecting
cycles in S), any tile system that strictly self-assembles S must place tiles in the bottom row that do not
appear anywhere else in ϒ. ϕ is true =⇒ Ctc(S)≤ c because we can modify the null glues of tiles in the
left half of the bottom row of ϒ to be double glues matching those tile types from the pillars on the right
to grow the pillars on the left. In the case of the ∃-variables x we choose an assignment by our choice of
double glues. In the case of ∀-variables y we have no choice; we must allow both the “false” and “true”
pillars to grow and nondeterministically compete to assign a bit to each yi. We can then modify null glues
in the gadgets and pillars to be single glues that propagate information about the neighbors of a gadget to
allow a new gadget encoding the proper information to be placed in the matrix. Therefore the assembly

9Strength-1 glues can only have an effect on growth of gadgets in the matrix when they are on tiles on the gray positions r,
s, and t in Figure 4, if the tile types used to assemble those gadgets in the matrix are the same as those used to assemble the
gadgets in ϒ. This is useful in proving the converse direction of the reduction by showing that if a tile assembly system with ≤ c
tile types strictly self-assembles S, then ϕ must be true.
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of the matrix “evaluates φ(x,y)” and if it is false, strictly self-assembles S. The reverse direction is more
tedious to establish. Again, since ϒ is a “tree-like” subshape of S, any TAS strictly self-assembling S
already uses c tile types just to assemble the ϒ portion of S (derived from Lemma 3.4). Therefore to
assemble all of S using c tile types requires reusing these same tile types. Our gadget design, together
with the properties of minimal tile sets for trees, allow us to conclude that the only way to tile the matrix
is “using the gadgets in the way they were intended,” which means the rightmost vertical bar of the matrix
cannot form unless at least one clause is not satisfied; i. e., ϕ is true.

To handle the placement of the seed, we use the same trick as in the proof of Theorem 3.1, making
two copies of the shape connected by a bridge to enforce that at least one copy does not contain the
seed. Define a ∈ S to be the rightmost point on the bottom row of S. Make two copies of S, place one
directly above the other but without touching, and connect the copies by a width-1 “bridge” of length h
that connects to each copy of a on a’s right side. Denote this new shape by S′. It is routine to show using
techniques similar to those in the proof of Theorem 3.1 that any minimal TAS for S′ uses Ctc(S)+h tile
types, places the seed in the bridge, uses h tile types to grow the bridge and uses the tile types of a TAS T

that is minimal (subject to the restriction that T places the seed at a) for S, to assemble each copy of S.
Let c′ = c+h. Our reduction outputs 〈S′,c′〉, rather than 〈S,c〉. By the arguments above concerning S, we
have that ϕ is true ⇐⇒ Ctc(S′)≤ c′, whence ∃∀CNF-UNSAT is polynomial-time many-one reducible
to MINTILESET.

In the following lemmas, ϕ denotes an arbitrary (true or false) quantified Boolean formula of the
form ϕ = ∃x∀y¬φ(x,y), where φ is an unquantified CNF formula with n+m input bits x = x1, . . . ,xn

and y = y1, . . . ,ym. ϒ,S ∈ FS(Z2) refer to the tree and shape constructed from ϕ as in the proof of
Theorem 3.2, and c = Ctc(ϒ).

Lemma 3.3. If ϕ is true, then Ctc(S)≤ c.

Proof. Let Tϒ = (T,σ ,2) be a minimal TAS that strictly self-assembles ϒ with seed placed at position
a, the rightmost point of the bottom row of ϒ, and let α ∈ A�[Tϒ] be the unique terminal producible
assembly of Tϒ, such that Sα = ϒ. Theorem 4.3 of [4] shows that if Tϒ is a minimal TAS for ϒ, then Tϒ

puts the same tile type in two positions p1, p2 ∈ ϒ if and only if the subtrees of ϒ rooted at p1 and p2
(with the seed location considered the root of ϒ) are isomorphic and “identically entered” (meaning both
of them have their parent in the same direction). This theorem is stated for directed TAS’s but it is easy to
show that any minimal TAS for a tree must be directed. Given α and t ∈ T , define t to be singular in α if
it appears exactly once in α . Thus, all the positions at the bottom row of ϒ will receive tile types that are
singular in α .

Since ϕ is true, there is an assignment f to variables x1,x2, . . . ,xn such that any assignment to
y1,y2, . . . ,ym makes φ(x,y) false. Since all the tile types in the bottom row are unique, we can change
the north glues of the tiles at the base of the clause-variable matrix, without ruining the rest of the shape.
We change the north glues so that the blue pillar grows as the leftmost pillar and for each variable xi we
grow the red true/false pillar depending on f (xi) being true or false. For the positions corresponding to y
variables, we change the north glues so that both true and false green pillars can grow.

We will also change a number of null glues into single glues in the following way: the set of labels
with strength one will be T, F, Si, j, and Ui, j, where 1≤ i≤ k and 1≤ j ≤ `. For each gadget G, let p be
the position of its branch point in ϒ, as shown in Figure 4. Then, we change the null glue of the south side
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of α(s) to a single glue with label T if G is of type SST, UUT, or UST ; otherwise, we change the south
glue to a single glue with label F. Also, we change the north glue of α(s) to a single glue with label Si, j if
G is a gadget for the ith clause and jth variable and is of type SST or SSF ; otherwise, if G is of type
UUT, UUF, UST, or USF, the north glue of α(s) will be a single glue with label Ui, j. Note that, the tile
type α(s) is singular in α , due to the fact that its rooted subtree contains the encoding about the gadget
type, clause number, and variable number, and hence, is not isomorphic to any other subtree.

The north glue of the tile type α(r) will be changed to a strength one glue with label T if G is of type
SST, UUT, or UST ; otherwise, its label will be F. The south glue of the tile type α(t) will be changed to
a strength one glue with label Si, j+1 if G is for the ith clause and jth variable and is of type SST, SSF,
UST, or USF ; otherwise, its label will be Ui, j+1.

Applying the above-mentioned changes will give us a TAS TS with the same tile complexity as Tϒ. In
TS, a gadget can grow at the cell of the matrix corresponding to clause i and variable j using cooperation
of single glues of the bottom and left gadget if and only if its notches match the notches of the bottom and
left gadget. And, the notches of gadgets are designed in a way that they can be put together to assemble S
if and only if the truth assignment to x and y variables (presented as pillar notches at the first row of the
matrix) make φ(x,y) false. Intuitively, the gadgets grow in the matrix so as to “evaluate φ(x,y)” on inputs
x and y encoded in the pillars, with the pillars encoding y nondeterministically choosing values for each
of the yi. If we choose the proper assignment f to x such that, for all assignments to y (corresponding to
different terminal assemblies), φ(x,y) is false (such an assignment f exists since ϕ = ∃x∀y¬φ(x,y) is
true), then all of these assemblies will have at least one unsatisfied right gadget in the rightmost column
of the matrix, and the assembly will have shape S. Therefore TS strictly self-assembles S.

From here until the end of the section, assume that TS = (TS,σ ,2) is a TAS that strictly self-assembles
S with the seed placed at the rightmost position on the bottom row. Also, B represents the subshape of S
that does not have the black matrix on the left, but has the pillars beneath it, and I ⊂ Z2 denotes the set of
k× ` positions (where k is the number of clauses in φ and ` is the number of variables) marked by small
circles in Figure 3. A set I′ ⊆ I is called a staircase if the following implication holds:[

(x1,y1) ∈ I′,(x2,y2) ∈ I,x2 ≤ x1, and y2 ≤ y1
]
=⇒ (x2,y2) ∈ I′ .

Let G∗ =
⋂

G∈G G, where each element of G is a set of tile positions of a gadget created in the proof
of Theorem 3.2 (Figure 4) translated so that the branch tile is at the origin (so, G has at most k× `×6
elements).

Lemma 3.4. If |TS| ≤ c = Ctc(ϒ), then there is a TAS Tϒ = (Tϒ,σ ,2) that can be obtained from TS =
(TS,σ ,2) by only changing a number of double glues to null glues (in particular implying that |Tϒ|= |TS|),
such that Tϒ strictly self-assembles ϒ.

Proof. Let α ∈ A�[TS]. Let the subassembly of α consisting of the gray row underneath the matrix,
between the leftmost and rightmost pillars in Figure 3, be denoted by R. It suffices to show that all tile
types in R appear precisely once in α � ϒ (α restricted to ϒ), and further that they are all bound together
by double glues. This will establish that, by adjusting double glues on the north of tiles beneath the pillars
to be null glues, all of ϒ can grow from the tiles without growing any of the pillars or matrix of S\ϒ, and
without affecting the assembly of the rest of α � ϒ. Since we only change double glues to null glues, it
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is not possible to introduce new double glues adjacent to empty space that were not already present, so
nothing will grow outside of ϒ.

First we show that every adjacent pair of tiles in R is bound by a double glue. For the sake of
contradiction, let p1 ∈ ϒ and p2 ∈ ϒ be the closest positions to the seed that are adjacent to each other but
α(p1) and α(p2) do not have double glue between them. Then, they are on the bottom row below the
clause-variable matrix in S. Thus, there must be a pillar growing down from the clause-variable matrix;
consider the pillar that grows down in α earlier than the others. This pillar cannot reuse any tile type
that is used in positions to the right of p1 in ϒ; otherwise, an undesirable part of ϒ can grow to the left of
the downward pillar. Therefore, the number of tile types in TS is at least Ctc(ϒ)− x+ y, where x is the
horizontal width of the clause-variable matrix and y is the height of the pillars. This is a contradiction to
the assumption that TS uses at most Ctc(ϒ) tile types, since we set y > x in our construction. Thus every
adjacent pair of tiles in R is bound by a double glue.

We now argue that each tile type in R appears exactly once in α � ϒ. Since the portion of ϒ outside
of R is acyclic (and since we just showed tiles within R are double-bonded to each other), then all of
α � ϒ must be entirely double-bonded. Since ϒ is a tree shape, there is no possibility of the presence
of one tile in ϒ “blocking” the growth of another in ϒ, since this would introduce a cycle in the shape
being assembled and it would not be a tree. Therefore, for any two positions p1 and p2 in ϒ such that
α(p1) = α(p2), any subtree of ϒ rooted at p1 (with respect to the seed location being the root of the
whole tree) must also appear as a subtree of p2. But every subtree within ϒ of every position p1 in R
(each such subtree being simply the portion of R to the left of p1, plus the gray row to the left of that, plus
the single “notch” position just above the leftmost position on the row) does not appear anywhere else in
ϒ. This can be verified by inspection of Figure 3. Therefore the tile types in R do not appear anywhere
else in α � ϒ.

The following lemma states the “inductive step” of the proof of Lemma 3.6. Namely, if gadgets of a
minimal tile system for S grow to fill in part of the matrix “in the way we intend,” then the only way to
extend this growth to fill in an additional gadget is also “in the way we intend.”

In the following lemma, “right branch” and “top branch” refer to the two subtrees of a gadget rooted
at the branch as shown in Figure 4.

Lemma 3.5. Suppose TS has at most c = Ctc(ϒ) tile types. Let α ∈A[TS] be a producible assembly such
that

1. B⊆ Sα ⊆ S. (where B is the subshape of S that does not have the black matrix on the left, but has
the pillars beneath it),

2. Sα ∩ I is a staircase of cardinality m < |I|,

3. all tile types in α(Sα ∩ I) are branch tiles of gadgets,

4. the right and top branches rooted at tiles in Sα ∩ I are present in α , and

5. if there exists p ∈ I such that p 6∈ Sα , then Sα ∩ (p+G∗) =∅.

Then there exists an assembly β ∈A[TS] such that α→ β and requirements (1)-(5) are satisfied with “α”
replaced by “β” and “m” replaced by “m+1.”
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Proof. α cannot be a terminal assembly, since TS strictly self-assembles S 6= Sα .
Since double glues cannot be added to gadget tile types without ruining the tree shape portion of S, α

must grow by cooperation of single glues. This cooperation can happen only at F− (4,3), where

F = {p ∈ I \Sα | (Sα ∩ I)∪{p} is a staircase} .

In other words, F− (4,3) is the set of points marked s in Figure 4, which are adjacent to points marked
r and t in neighboring gadgets. Let β ′ be a minimal assembly producible from α such that Sβ ′ ∩F is
not empty. Let {p}= Sβ ′ ∩F . All paths from Sα to p in β ′ must pass through s = p− (4,3), due to the
minimality of β ′. Even if the tile type that goes in s is not taken from any gadgets, the tile type that
eventually goes to s+(1,1) must be chosen from a gadget, since it should be able to grown the zig-zag
shape only by double glues, and the zig-zag shape is used only in one of the gadgets. Thus, β ′(p) is a
branch tile type.

Since p ∈ Sβ ′ ∩ I and p 6∈ Sα ∩ I, Sβ ′ ∩ I has cardinality at least m+1. Let β be the minimal assembly
producible from β ′ in which the right and top branches of p are tiled. β (p) and β (q) for all q in the
branches of p must be tile types from the correct gadget to ensure consistency with the notches of
neighboring gadgets and consistency with the (row,column) identifier notches at the top of the right
branch.

Due to the minimality of β , it satisfies condition 5.

Lemma 3.6. If TS has at most c tile types, then ϕ is true.

Proof. First we show that B is TS-producible. According to Lemma 3.4, by changing a number of double
glues in TS to null glues, we can obtain a TAS Tϒ that strictly self-assembles ϒ. So, ϒ is TS-producible.
Moreover, as can be checked in the proof of Lemma 3.4, the null glues in Tϒ that are double glues in TS

are the north glues of the tile types that appear at the base of pillars beneath the gadget matrix. Also, all
the pillars must grow from the bottom row to the matrix, and not downward, because growing a pillar
downward requires adding a double glue to a tile type in the matrix area, which will also ruin ϒ. Thus, B,
which is ϒ together with the pillars beneath the matrix, is TS-producible. This establishes the base case.

Let f (xi) be true if the red true pillar is used to grow the pillar corresponding to xi and be false if the
red false pillar is used. Using Lemma 3.5 for the inductive case, we conclude that there is an assembly α

such that B∪ I ⊆ Sα and valid gadgets are/can be used to fill the matrix part of α . By our construction of
gadgets, this implies that the truth assignment f to x makes φ(x,y) false for every value of y. Thus ϕ is
true.

4 Assembly of infinite shapes

In this section we study the power of nondeterminism in assembling infinite shapes. The following
theorem, an infinitary analog of Theorem 3.1, is the main result of Section 4.

Theorem 4.1. There is a shape S⊂ Z2 such that some TAS strictly self-assembles S, but no directed TAS
strictly self-assembles S.
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Y N

planter
ray
TM simulation
accept signal

Figure 5: A portion of an infinite shape S that strictly self-assembles, but not by any directed TAS. The
nth ray simulates a Turing machine M on input n, and a vertical line is present under that ray if and only
if M accepts n. Y and N are points at these positions representing “yes” and “no” instances of L(M),
respectively, and elements of Y are the points where nondeterminism is forced to occur in any TAS that
strictly self-assembles S.

Proof. Let L⊂ N be a language that is computably enumerable but not decidable, and let M be a Turing
machine such that L = L(M) = {n ∈ N |M accepts n}. Let S be the shape that is strictly self-assembled
by the TAS described below, when M is encoded into the TAS as described.

A portion of the shape S is shown in Figure 5. The TAS that strictly self-assembles S is based on the
main construction of Lathrop, Lutz, Patitz, and Summers [25]. In that paper, the authors show that for
each Turing machine M, an encoding of the language L(M)⊆ N accepted by M “weakly self-assembles”
on the x-axis. More precisely, for a “reasonably simple” function f : N→ N, a special tile type is placed
at position ( f (n),0) if and only if n ∈ L(M). The nth “ray” in Figure 5 begins growth just before ( f (n),0),
and grows independently of the other rays, controlling an adjacent simulation of M(n) in parallel with all
the other rays. The slope of each ray is just a bit smaller than the previous, with the slope approaching
2 as n→ ∞. The simulation executes one transition of M on input n every ≈ 2n rows of the ray. Since
M can use no more than k tape cells after k transitions, this slowed simulation ensures that each ray has
enough space to allow a potentially unbounded simulation of M on each n, without “crashing” into the
next adjacent ray, even in the worst case that M moves its tape head right on every transition.
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What is needed from this construction for our purpose is:

1. f is computable.10

2. The simulation of M(n), carried out adjacent to the nth ray, sends a “signal” crawling down the
right side of the simulation if and only if M accepts n, placing a special tile just above the “planter”
(the group of tiles growing below each of the rays).

We modify the signal so that, rather than growing all the way to the planter, for input n, the signal grows
to distance n north of the planter and then grows a width-1 vertical line n positions down to the planter,
using the same tile type with equal north and south double glues to “crash” into the planter. To ensure that
the downward-growing vertical lines do not obstruct the operation of the planter, the planter is modified
so that it is guaranteed to grow horizontally a sufficient number of tiles before laying out the input for
the M, so as to guarantee that there is something present for a “controlled crash.” The space for the
downward-growing line of length n to drop after the input is accepted is created by having the Turing
machine simulations begin not immediately above the planter, but at height n on input n. This is why the
nth ray grows straight up for n rows before beginning its sloped growth. Under every simulation, a “notch”
tile is placed above the planter using a double glue, which is horizontally lined up with where the vertical
line will grow if M accepts. The actions of the ray, planter and Turing machine simulation are otherwise
similar to the mechanisms used in [25]. We note that this particular TAS is not directed since the “notch”
tiles compete nondeterministically with the vertical line tiles at positions where M accepts.

It remains to show that no directed TAS strictly self-assembles S. Intuitively, we show that at points
of the form ( f (n),0), any directed TAS must place tiles that “know” whether there will eventually
be a vertical line above the point, implying the ability to decide L since vertical lines appear above
exactly those positions ( f (n),0) such that n ∈ L. Assume for the sake of contradiction that there is a
directed TAS T = (T,σ ,2) that strictly self-assembles S, and let α ∈A�[T] be its uniquely producible,
terminal assembly. Since the heights of the vertical “bases” of each ray below the sloped portion are
strictly increasing, there is some n0 ∈ N such that, for all n > n0, the distance from ( f (n),1) to the
ray above it is at least |T |+ 1. Let Y = {( f (n),0) | n ∈ L and n > n0} be the bottommost points of
the vertical lines adjacent to rays corresponding to (sufficiently large) “yes” instances of L, and let
N = {( f (n),0) | n 6∈ L and n > n0} represent the positions of the “notches” corresponding to (sufficiently
large) “no” instances. Y and N are shown in Figure 5. Let TY = α(Y ) and TN = α(N) be the set of tile
types that appear at “yes” and “no” instance points, respectively. Since S has empty space immediately
north of positions in N, no tile type in TN has a north double glue.

We claim that TY ∩TN =∅. For the sake of contradiction, suppose otherwise, let t ∈ TY ∩TN , and let
p ∈ Y be a point where α(p) = t. Since t ∈ TN , t has no north double glue, so the vertical line above p
must grow downward using north and south double glues. Let q = p+(0,1) be the point just above p.
By our choice of n0, the vertical line must repeat a tile type before reaching the point q, so all tile types

10 [25] defines the roughly quadratic function

f (n) =
(

n+1
2

)
+(n+1)blognc+6n−21+blognc+2 .

Our version of this function will grow just a bit faster, to make room for a vertical line to form between two adjacent rays
without “touching” the rest of the shape except at the endpoints of the line, but retains computability.
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in the repetition period have a north and a south double glue, including the tile type t ′ = α(q). Let t ′′

be the tile type appearing beneath t ′ after the previous occurrence of t ′ in the vertical line. Since t ′′ has
a north double glue, t ′′ 6∈ TN , so t ′′ 6= t. Because t binds to the rest of α only through its south double
glue, there can be no precedence relationship enforcing that p must contain a tile before q (or any other
point) receives a tile. In other words, there exists a producible assembly β ∈A[T] such that β (q) = t ′

and β (p) is undefined. This implies that t ′′ can bind to β at position p to create β ′ = β +(p 7→ t ′′),
contradicting the directedness of T since β ′,α ∈A[T] but β ′(p) = t ′′ 6= t = α(p). This verifies the claim
that TY ∩TN =∅.

For all n ∈ N, let pn = ( f (n),0). Since TY ∩TN =∅, for all n > n0,

n ∈ L ⇐⇒ pn ∈ Y ⇐⇒ α(pn) ∈ TY , and n 6∈ L ⇐⇒ pn ∈ N ⇐⇒ α(pn) ∈ TN .

Using this fact, we describe an algorithm to decide L, contradicting its undecidability and completing
the proof. On input n ∈ N, if n ≤ n0, use a constant lookup table to decide n. Otherwise, compute
pn = ( f (n),0). Simulate the assembly of T with a fair assembly sequence, maintaining a first-in, first-out
queue of frontier locations to enforce fairness, until a tile is placed at position pn. Since this assembly
sequence is fair, the simulation will eventually place a tile type α(pn) at pn, and α(pn)’s membership in
TY or TN will indicate whether to accept or reject n.

We have implemented the tile assembly system that strictly self-assembles S:

http://www.dna.caltech.edu/~ddoty/pnsa/

It can be simulated using Matthew Patitz’s ISU TAS simulator [36] available here:

http://www.cs.iastate.edu/~lnsa/software.html

The purpose of the implementation is not to quantitatively analyze the construction, since we make
no quantitative claims about either the shape being assembled or the TAS that strictly self-assembles
the shape. Furthermore, the bulk of the intellectual effort in the proof of Theorem 4.1 is proving the
negative result that no directed TAS strictly self-assembles the shape, which is something that cannot
be established through a simulation. We provide the simulation primarily to help the interested reader
understand the details of the construction and help to convince oneself that the shape really can be strictly
self-assembled and to directly observe how the TAS accomplishes this task.

5 Conclusion

We have investigated the power of nondeterminism for the strict self-assembly of shapes in the abstract
Tile Assembly Model. We showed that for both the infinite and finite cases, even when the shape is
required to be strictly self-assembled, nondeterminism can help to assemble the shape, by making strict
self-assembly possible in the infinite case, and reducing tile complexity in the finite case. Furthermore,
the problem of finding the minimum tile set to strictly self-assemble a shape is strictly harder (in the
sense of nondeterministic time complexity) than that of finding the minimum directed tile set that does so,
unless NP = ΣP

2 .
There are some interesting questions that remain open:
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1. What is the fastest growing function f : N→ N for which one could prove a statement of the form
“For infinitely many n ∈N, there is a finite shape S⊂ Z2 such that Ctc(S)≤ n and Cdtc(S)≥ f (n)”?
The proof of Theorem 3.1 of the present paper establishes this statement for f (n) = 1.4999n. Can
f (n) be made, for example, n2 or 2n? What is an upper bound for f above which such a statement
is false? Note that Theorem 4.1 establishes such a statement for all functions f : N→N if the shape
is allowed to be infinite. However, when designing complex tile systems, a common challenge is
to direct a group of tiles to stop growing,11 so it would be interesting to identify a family of finite
shapes with a fast-growing gap between the two tile complexity measures. This would imply that
sometimes it really helps to employ nondeterminism.

2. We have showed that the optimization problem of finding precisely the smallest number of tile
types to strictly self-assemble a shape is ΣP

2 -hard. Can it be shown that for some α > 1, the solution
is ΣP

2 -hard to approximate within multiplicative factor α? This may be related to Question 1.

3. Is there an α > 1 such that it is NP-hard to find an α-approximate solution to the minimum directed
tile set problem?

4. Shape-building is one common goal of self-assembly; pattern-painting is another. In particular, it
is possible to assemble some patterns, such as disconnected sets, if we change the definition of
what is interpreted as the assembled object. We say that a TAS T = (T,σ ,2) weakly self-assembles
a set S ⊆ Z2 if there is a subset B ⊆ T (the tile types that are “painted black”) such that, for all
α ∈A�[T], α−1(B) = S. In other words, the set of positions with a black tile is guaranteed to be S.
In the case B = T , this definition is equivalent to strict self-assembly, but for B ( T the shape is
allowed to grow outside the desired pattern using tile types from T \B to allow “extra computation
room” for painting the pattern using tile types from B. Such a definition is appropriate for modeling
practical goals such as self-assembled circuit layouts [24, 28, 33–35, 51] or placement of guides for
walking molecular robots [29]; see [25, 26] for more discussion of the theoretical issues of weak
self-assembly. It remains open to prove or disprove analogs of Theorems 4.1 and 3.1, with “weakly”
substituted for “strictly.” In other words, is it possible to uniquely paint an infinite (resp. finite)
pattern with a tile system, but every tile system that does so (resp. that does so with no extra tile
types) is not directed?

5. It remains open to prove or disprove analogs of Theorems 4.1 and 3.1, with “weakly” substituted
for “strictly” and with “strict” substituted for “directed.” In other words, is it possible to uniquely
paint an infinite (resp. finite) pattern with a tile system, but every tile system that does so (resp. that
does so with no extra tile types) must self-assemble more than one shape on which this pattern is
painted?

6. What is the status of the optimization problem of determining the minimum number of tile types to
weakly self-assemble a finite pattern? Let F(Z2)⊂ P(Z2) denote the set of all finite subsets of Z2.

11For example, Ctc(S)≈ Cdtc(S) = O(logn/ log logn) for S an n× k rectangle with n≥ k ≥ logn/ log logn, but Ctc(S) and
Cdtc(S) increase steadily towards n as k decreases from logn/ log logn to 1; “counting” to the length of the rectangle and then
stopping becomes more difficult as the rectangle’s width decreases.
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Define

MINWEAKTILESET =

{
〈S,c〉

∣∣∣∣ S ∈ F(Z2), c ∈ Z+, and (∃T = (T,σ ,2)) |T | ≤ c,
and T weakly self-assembles S

}
.

In contrast to the case for strict self-assembly, it can be shown that MINWEAKTILESET is unde-
cidable. This follows from a “Berry’s paradox” argument, similar to the one used to show that
Kolmogorov complexity is uncomputable, together with the fact that arbitrary algorithms may
be simulated in a tile assembly system. Briefly, assuming this quantity is computable, define
a Turing machine M that on input c ∈ Z+ enumerates finite sets of points lying entirely on the
positive x-axis until a set S(c) is found whose “weak self-assembly tile complexity” exceeds c.
Then for each c ∈ Z+ define a tile system T that simulates M(c) in the second quadrant, using its
output to place black tiles precisely on points in S(c). Since T requires only logc+O(1) tile types,
for sufficiently large c this contradicts the tile complexity of S(c). It is not difficult to show that
MINWEAKTILESET ∈ Π0

2. Is it complete for Π0
2?

7. MINDIRECTEDWEAKTILESET is defined similarly to MINWEAKTILESET but also requiring T

to be directed. It is not difficult to show that MINDIRECTEDWEAKTILESET ∈∆0
2. Can be be

shown that MINDIRECTEDWEAKTILESET 6∈ Σ0
1∪Π0

1?

8. The previous two problems have “bounded” variants:

MINBDDWEAKTILESET =

〈S,c,0n〉

∣∣∣∣∣∣
S ∈ F(Z2), c ∈ Z+, and (∃T = (T,σ ,2)) |T | ≤ c
and T weakly self-assembles S and (∀α ∈ A�[T])
Sα ⊆ {0, . . . ,n−1}2

 ,

and define MINBDDDIRECTEDWEAKTILESET similarly for the directed case. It is easy to
show that MINBDDWEAKTILESET ∈ ΣP

2 and MINBDDDIRECTEDWEAKTILESET ∈ NP using
the same techniques used for strict self-assembly. Can it be shown that they are complete for these
classes? This seems more difficult than the case of strict self-assembly, since the “bounding box”
is now constrained to be a square, so that it is no longer possible to use the technique of forcing
certain subshapes to be trees (whose tilings by minimal tile sets are well-characterized).

9. In [4] the authors show that for the special cases of tree and square shapes, the minimum directed
tile set problem is in P. For trees, it is straightforward to verify that the minimum tile set is always
directed, so the answer is the same whether or not we restrict attention to directed tile sets. What
is the complexity of the minimum tile set problem restricted to squares? The polynomial-time
algorithm given in [4] crucially depends on the existence of a polynomial-time algorithm for
the directed shape verification problem of determining whether a given tile system strictly self-
assembles a given shape and is directed. Removing the directed constraint on this shape verification
problem, even when restricted to the case of squares, makes the problem coNP-complete [5,21,27].
Perhaps this means that the minimum tile set problem restricted to squares is hard as well. On
the other hand, since this problem is sparse,12 Fortune’s Theorem [18] implies that it cannot be
coNP-hard (nor NP-hard by Mahaney’s Theorem [30]) unless P = NP.

12More precisely, if one takes a bit of care in encoding the problem, then it can be assumed sparse. Assume that each square S
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