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A. Păun, M. Păun, A. Rodŕıguez-Patón and M. Sidoroff

On a Partial Affirmative Answer for A Păun’s Conjecture 55
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A language L is called the orthogonal shuffle of the language L1 with the language L2,
along the trajectory set T if every word in L is uniquely obtained as the shuffle between
a word in L1, a word in L2 along a trajectory word in T . In this paper we investigate
properties of the orthogonal shuffle on trajectories, as well as several types of language
equations using this language operation. As a corollary, we obtain several properties of
orthogonal catenation, orthogonal literal shuffle and orthogonal insertion.

Keywords: Shuffle on trajectories; Orthogonal operation; Language equation;
Decidability.

1. Introduction

A language L is the orthogonal catenation of languages L1 and L2 if every word of

L can be written in a unique way as a catenation of a word in L1 and a word in L2.

In [3], Daley, Domaratzki, and Salomaa investigated the orthogonal catenation �⊥.

This notion can be generalized to other language operations, for example, to shuf-

fle, or shuffle on trajectories. Shuffle on trajectories was introduced by Mateescu,

Rozenberg, and Salomaa [9] in order to generalize several operations on words and

languages, and was investigated in detail by Domaratzki, e.g., see [8]. In this pa-

per, we generalize orthogonal catenation to orthogonal shuffle on trajectories, and

investigate several problems related to this operation. The paper is organized as

follows. Section 2 contains the formal definition of orthogonal operations, including

orthogonal shuffle on trajectories, as well as some general properties of this oper-

ation. Section 3 addresses several decidability questions. For example, we give a
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proof of the fact that it is decidable, given a regular set of trajectories T , and two

regular languages L1 and L2, whether or not their orthogonal catenation, or their

orthogonal shuffle on T , is defined (Theorem 8). If one of the languages is linear and

the other is regular, while the trajectory set is still regular, then the same problem

becomes undecidable (Theorem 9). We also prove that when an equation of the form

L1 ◦X = L, where ◦ denotes the orthogonal shuffle on a complete set of trajectories

T , has a solution, this solution is minimal and unique (Proposition 10, Theorem 12).

Thus, a similar result holds if ◦ denotes orthogonal catenation, orthogonal literal

shuffle, or orthogonal insertion (Corollary 13). Lastly, we prove that if the language

L is linear, the language L1 is regular, and the operation involved is orthogonal

catenation, then it is undecidable whether or not such a language equation has a

solution (Corollary 16). Section 4 presents several topics of future work. We con-

clude this introductory section with several notions and notation used in this paper.

Let Σ be a finite alphabet that is totally ordered by the ordering ≺. A sequence of

letters in Σ is called a word over Σ. The length of a word w ∈ Σ∗ is the number of

letters occurring in it, and denoted by |w|. In particular, the empty word, denoted

by λ, is the word of length zero. For a word w ∈ Σ∗ and a letter a ∈ Σ, |w|a denotes

the number of occurrences of a in w. The set of all words (all non-empty words) is

denoted by Σ∗ (resp. Σ+). Moreover, for n ≥ 0, let Σn = {w ∈ Σ∗ : |w| = n}. A

subset of Σ∗ is called a language. For a non-empty language L, let L be the set of

all shortest words in L.

A word u ∈ Σ∗ is called a prefix of a word v ∈ Σ∗ if v = ux for some x ∈ Σ∗ (in

this case, the left quotient u−1v is defined as x). By pref1(u), we denote the prefix

of u of length 1, i.e., the first letter of u. Two words u and v have always a unique

maximal common prefix, which is denoted by u∧ v. Based on that, a total ordering

of Σ∗ called lexicographic ordering is introduced, and denoted by ≺lex. The order

on Σ by ≺ is extended to Σ∗ in the following way:

u ≺lex v ⇐⇒ u−1v ∈ Σ+ or pref1((u ∧ v)−1u) ≺ pref1((u ∧ v)−1v).

A trajectory is a binary word over {0, 1}. Consider a trajectory t and two words

u = a1a2 · · · ai and v = b1b2 · · · bj for some i, j ≥ 0 and a1, . . . , ai, b1, . . . , bj ∈ Σ.

The shuffle of u and v on the trajectory t, denoted by u ∃ tv, is defined as follows:

if |u| 6= |t|0 or |v| 6= |t|1, then u ∃ tv = ∅; otherwise u ∃ tv = c1c2 · · · ci+j , where, for

1 ≤ k ≤ i+ j, if |t1t2 · · · tk−1|0 = n0 and |t1t2 · · · tk−1|1 = n1, then

ck =

{

an0+1 if tk = 0

bn1+1 if tk = 1.

Shuffle on trajectories is extended to a set T ⊆ {0, 1}∗ of trajectories as follows:

u ∃ T v =
⋃

t∈T

u ∃ tv.

Further, for languages L1, L2 ⊆ Σ∗, we define

L1

∃

TL2 =
⋃

u∈L1,v∈L2

u ∃ T v.



January 5, 2011 15:32 WSPC/INSTRUCTION FILE S0129054111007964

Orthogonal Shuffle on Trajectories 215

A set of trajectories T is said to be complete if u ∃ T v 6= ∅ for all u, v ∈ Σ∗ [9]. In

other words, T is complete if and only if for any (i, j) ∈ N
2, there exists t ∈ T which

contains i 0’s and j 1’s.

Lemma 1. Let u, v, v′ ∈ Σ∗ and t ∈ {0, 1}∗ such that neither u ∃ tv nor u ∃ tv
′ is

empty. If v ≺lex v′, then u ∃ tv ≺lex u ∃ tv
′.

A language L ⊆ Σ∗ is called a uniform code if for any u, v ∈ L, |u| = |v|.

Lemma 2. For uniform codes C,C1, C2 ⊆ Σ∗ and a set T ∈ {0, 1}∗ of trajectories,

if C ∃

TC1 = C ∃

TC2 6= ∅, then C1 ∩ C2 6= ∅.

Proof. The equality implies that the code lengths of C1 and C2 are the same. When

Σ is unary, this lemma holds trivially because in this case, if C1 and C2 have the

same code lengths, then they have to be the same. Let us consider the case when

Σ is non-unary, and suppose that C1 ∩ C2 = ∅. Let wmin be the smallest word in

C ∃

TC1 with respect to ≺lex. Due to the equality C ∃

TC1 = C ∃

TC2, there exist

u, u′ ∈ C, v ∈ C1, v
′ ∈ C2, and t, t′ ∈ T such that

wmin = u ∃ tv = u′ ∃

t′v
′.

Since C1 and C2 are assumed to be disjoint, v 6= v′. As such, either v ≺lex v′ or

v �lex v′ holds. However, in the former case, u′ ∃

t′v ≺lex u′ ∃

t′v
′, which contradicts

the smallest property of wmin because u′ ∃

t′v ∈ C ∃

TC1. We have exactly the same

contradiction even in the latter case.

2. Orthogonal Operations on Languages

In the following, we investigate properties of a special case of operations on words

and languages, termed orthogonal operations. Let ◦ be a binary operation on words,

called bin-op. For two languages L1, L2, consider the following condition:

(OR1) (∀u, u′ ∈ L1, v, v
′ ∈ L2) if u 6= u′ or v 6= v′, then u ◦ v ∩ u′ ◦ v′ = ∅.

Then, we define the orthogonal bin-op of L1 and L2 as

L1 ◦⊥ L2 =

{

L1 ◦ L2 if condition (OR1) holds,

undefined otherwise.

If L1◦⊥L2 is defined, we say that L1 and L2 are bin-op-orthogonal, or ◦-orthogonal.

We say that a language L is an orthogonal bin-op of L1 and L2 if L = L1 ◦⊥ L2.

In this paper we focus on orthogonal catenation, denoted by �⊥, and especially

on orthogonal shuffle on trajectories, denoted by ∃ ⊥
T for a set of trajectories T . In

the case of orthogonal shuffle on trajectories, we redefine the notion of orthogonality

by replacing (OR1) with the following equivalent condition:

(OR2) (∀u, u′ ∈ L1, v, v
′ ∈ L2, t, t

′ ∈ T ) if u 6= u′ or v 6= v′, then u ∃ tv 6= u′ ∃

t′v
′.

Recall that a language L is k-thin if |L ∩ Σn| ≤ k for all n ≥ 0 [10].
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Proposition 3. Let T be a 1-thin set of trajectories. Then for any languages

L1, L2, L1

∃ ⊥
TL2 is always defined and equal to L1

∃

TL2.

Proof. Since T is 1-thin, any w ∈ L1

∃

TL2 admits a unique decomposition w =

u ∃ tv, where u ∈ L1, v ∈ L2, and t ∈ T . This means that (OR2) is satisfied. Hence,

L1

∃ ⊥
TL2 is defined and equal to L1

∃

TL2.

Thus, the known results about shuffle on trajectories apply to orthogonal shuffle

on trajectories when the set of trajectories is 1-thin. For example, Domaratzki and

Salomaa proved that for given a regular languageR and a 1-thin set T of trajectories,

it is decidable whether there exist languages L1, L2 6= {λ} such that R = L1

∃

TL2

[4]. The problem obtained by replacing ∃
T by ∃ ⊥

T in this problem is also decidable.

We now prove several basic properties of orthogonal shuffle on trajectories. Assume

that orthogonal shuffle of two languages is defined on a set of trajectories. Then on

smaller sets of trajectories, shuffle of the languages remains orthogonal.

Proposition 4. Let L1, L2 ⊆ Σ∗ and T ⊆ {0, 1}∗. If L1

∃ ⊥
TL2 is defined, then

L1

∃ ⊥
T ′L2 is defined for any T ′ ⊆ T .

An analogous result of Proposition 4 holds for the case when the two operands are

replaced by their respective subsets.

Lemma 2 has an analogous result in relation to orthogonal shuffle on trajectories.

Lemma 5. For uniform codes C,C1, C2 ⊆ Σ∗ and a set T ⊆ {0, 1}∗ of trajectories,

if C ∃ ⊥
TC1 = C ∃ ⊥

TC2 6= ∅, then C1 = C2.

Proof. As in the proof of Lemma 2, this lemma is trivial when Σ is unary. For

the case when Σ is not unary, suppose C1 6= C2, or we could suppose C1 − C2 6= ∅

without loss of generalitya. For any u ∈ C, v ∈ C1 − C2, and t ∈ T , there exist

u′ ∈ C, v′ ∈ C2, and t′ ∈ T such that

u ∃ tv = u′ ∃

t′v
′. (7)

Since v 6∈ C2, v 6= v′. Note that v′ must not be in C1 because otherwise Eq. (7) would

violate the orthogonality of C ∃ ⊥
TC1. Therefore, C ∃ ⊥

T (C1 −C2) ⊆ C ∃ ⊥
T (C2 −C1).

In the similar manner, its opposite inclusion relation can be proved. Hence, we

would have C ∃ ⊥
T (C1 − C2) = C ∃ ⊥

T (C2 − C1), but this contradicts Lemma 2.

For a set T ⊆ {0, 1}∗ of trajectories, a language L ⊆ Σ∗ is called a T -code if

(L ∃

TΣ
+) ∩ L = ∅ [4].

Proposition 6. Let T ⊆ {0, 1}∗ that contains 0∗. For a language L ⊆ Σ∗, if

L ∃ ⊥
TΣ

∗ is defined, then L is a T -code.

aC1 − C2 is defined as the set {w ∈ C1 | w 6∈ C2}.
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Proof. Suppose that L were not T -code, i.e., there exist u, v ∈ L such that v ∈

u ∃ TΣ
+. Note that |v| > |u| so that v 6= u. Since 0∗ ⊆ T , v ∈ v ∃ TΣ

∗. Thus,

u ∃ TΣ
+ ∩ v ∃ TΣ

∗ 6= ∅, and as a result L ∃ ⊥
TΣ

∗ should not be defined.

A set T of trajectories is said to be associative if (u ∃ T v)
∃

Tw = u ∃ T (v

∃

Tw)

for all u, v, w ∈ Σ∗ [9].

Lemma 7. Let L1, L2, L3 be non-empty languages, and T be an associative set of

trajectories. If both (L1

∃ ⊥
TL2) ∃ ⊥

TL3 and L1

∃ ⊥
T (L2

∃ ⊥
TL3) are defined, then

(L1

∃ ⊥
TL2) ∃

⊥
TL3 = L1
∃ ⊥

T (L2

∃ ⊥
TL3).

Proof. Let w ∈ (L1

∃ ⊥
TL2) ∃ ⊥

TL3. Since this set is defined, w ∈ (L1

∃

TL2) ∃ TL3.

Due to the associativity of T , w ∈ L1

∃

T (L2

∃

TL3). Since L1

∃ ⊥
T (L2

∃ ⊥
TL3) is

defined, it is equal to L1

∃

T (L2
∃

TL3), and hence, it contains w. Therefore,

(L1

∃ ⊥
TL2) ∃

⊥
TL3 ⊆ L1

∃ ⊥
T (L2

∃ ⊥
TL3). Analogously we can prove the opposite in-

clusion relation.

3. Decidability and Language Equations

This section addresses several decidability questions related to the orthogonal shuffle

on trajectories. Given regular languages L1, L2, and a trajectory set T , we first ask

whether or not it is decidable if L1 and L2 are ∃

T -orthogonal. Secondly, for non-

empty languages L and L1, and a complete set T of trajectories, we ask whether

or not a solution to the equation L1

∃ ⊥
TX = L is unique if any. Thirdly, for regular

languages R1, R and a regular set T of trajectories, we ask if it is decidable whether

or not the equation R1

∃ ⊥
TX = R has a solution.

Question 1. For given languages L1, L2, and a trajectory set T , is it decidable

whether or not L1 and L2 are ∃

T -orthogonal?

The following two results have given partial solutions to Question 1.

Theorem 8 ([3]) Given regular languages R1, R2 ⊆ Σ∗ and a regular set of trajec-

tories T , it is decidable whether R1 and R2 are (i) �-orthogonal, (ii) ∃

T -orthogonal.

Proof. (i) In [3], the authors state that this result is well-known, without mention-

ing specific references. A short proof is: since R1 and R2 are regular, so are the left

quotient R−1
1 R1 and the right quotient R2R

−1
2 . Then R1 and R2 are �-orthogonal

if and only if R−1
1 R1 ∩ R2R

−1
2 = {λ}. The latter is decidable, and hence, so is the

former. (ii) The statement is proven in [3], Theorem 5.

This decidability result is complemented by the undecidability result obtained by

expanding the language class which R1 or R2 belongs to up to the class of linear

languages.
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Theorem 9. Given a linear language L ⊆ Σ∗, a regular language R ⊆ Σ∗, and a

regular set T of trajectories, it is undecidable whether or not

(1) L and R are ∃

T -orthogonal,

(2) R and L are ∃

T -orthogonal.

Proof. The instance of the first (second) problem with T = 0∗1∗ and R = Σ∗ is

known to be equivalent to the problem of whether L is a prefix (resp. suffix) code

[3]. It is undecidable whether a given linear language is a prefix- (a suffix-) code.

As a result, these two problems have to be undecidable.

This result is also verified by the fact that it is undecidable whether for a linear

language L and a regular language R, L and R are �-orthogonal [3].

Language equations involving shuffle on trajectories were intensively investigated

in [11]. Here we address this question, but shift our focus to orthogonal shuffle on

trajectories. First of all, let us recall the equation

L1

∃

TX = L, (9)

where L1, L are languages over an alphabet Σ, T is a set of trajectories, and X is

a variable. As done in [4], we define the right-useful solutions to Eq. (9) as

use
(r)
T (X ;L1) = {x ∈ X | L1

∃

Tx 6= ∅}, (10)

where X is any language. Since L1

∃

T (X − use
(r)
T (X ;L1)) = ∅, in the following we

assume that any solution X of Eq. (9) satisfies X = use
(r)
T (X ;L1). Let us replace

shuffle in Eq.(9) with orthogonal shuffle and consider an equation

L1

∃ ⊥
TX = L. (11)

Then the following question arises:

Question 2. Let L and L1 be non-empty languages, and T be a set of trajectories.

When Eq. (11) has a solution for the variable X, is this solution unique?

By definition of orthogonal shuffle on trajectories, it is clear that a solution to

Eq. (11) is a solution to Eq. (9). The next proposition strengthens this statement

further.

Proposition 10. For a set T of trajectories, if the language equation L1

∃ ⊥
TX = L

has a solution L2, then L2 is a minimal solution of L1

∃

TY = L.

Proof. Suppose that there were a language L′ which is a proper subset of L2 and

satisfies L1

∃

TL
′ = L. Because of the assumption that L2 = use

(r)
T (L2, L1), for any

v ∈ L2 − L′, L1

∃

T v 6= ∅. With L1

∃

T v ⊆ L, this implies that L1

∃

T v ∩ L1

∃

TL
′

is not empty. However, this breaks the orthogonality of L1

∃ ⊥
TL2 because L′ ⊆ L2

and v ∈ L2 − L′.
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This proposition means that, unlike the study on language equations based on shuffle

on trajectories, we have to focus on the minimal solutions of L1

∃

TY = L when

considering the solutions of L1

∃ ⊥
TX = L. Compared to the maximal solution of

language equations in general [11, 12], much less is known about minimal solutions

of language equations. Let us imagine that for given languages L1, L and a given set

T of trajectories, the equation L1

∃ ⊥
TX = L has a solution. Is this solution unique?

In general, this uniqueness does not hold as shown in the next example.

Example 11. Let L1 = {aa, aaa}, T = {001111, 000111}, and L =

{aaabbb, aaaabb}. Then both L2 = {aabb, bbb} and L′
2 = {abb, abbb} are solutions to

L1

∃ ⊥
TX = L.

On the other hand, it was proved in [3] that for the catenation �, if the equation

L1 �⊥ X = L has a solution, then the solution is unique. Recall that catenation is

a special case of shuffle on trajectories (with T = 0∗1∗, we have � = ∃

T ). Note

that T in Example 11 is not complete, whereas T = 0∗1∗ is. We generalize this

uniqueness result for orthogonal shuffle on any complete sets of trajectories.

Theorem 12. Let L and L1 be non-empty languages, and T be a complete set of

trajectories. If an equation L1

∃ ⊥
TX = L has a solution for the variable X, the

solution is unique.

Proof. Suppose that there were two distinct languages L2, L
′
2 ⊆ Σ∗ such that

L1

∃ ⊥
TL2 = L1

∃ ⊥
TL

′
2 = L. (12)

Let n be the length of a shortest word in L1, and let m be the length of a shortest

word in the symmetric difference between L2 and L′
2. Note that we can assume

without loss of generality that L2−L′
2 contains such a word of length m because of

the symmetric roles of L2 and L′
2 in Eq. (12). Thus, L1 = L1 ∩ Σn and L2 − L′

2 =

(L2−L′
2)∩Σ

m. Choose an arbitrary u ∈ L1, v ∈ L2 − L′
2, and t ∈ T for which u ∃ tv

is not the empty set. The existence of such t is guaranteed by the completeness of

T . Since u ∃ tv ∈ L1

∃ ⊥
TL2 = L, Eq. (12) implies that there exist u ∈ L1, v

′ ∈ L′
2,

and t′ ∈ T such that

u ∃ tv = u ∃ t′v
′. (13)

Since v 6∈ L′
2, we have v 6= v′. If v′ ∈ L2, then Eq. (13) violates the orthogonality

of L1

∃ ⊥
TL2. Thus, v

′ ∈ L′
2 − L2, and hence, we have |v| ≤ |v′| by the assumption

that v be shortest among words in (L2 − L′
2) ∪ (L′

2 − L2). Provided this inequality

holds strictly, then Eq. (13) implies that |u| > |u|, contradicting the definition of u

being shortest in L1. Summarizing what we have obtained so far,

(1) for any u ∈ L1, v ∈ L2 − L′
2, and t ∈ T , there exist u′ ∈ L1, v

′ ∈ L′
2 − L2, and

t′ ∈ T such that u ∃ tv = u′ ∃

t′v
′;

(2) L′
2 − L2 also contains a word of length m;



January 5, 2011 15:32 WSPC/INSTRUCTION FILE S0129054111007964

220 M. Daley et al.

(3) for any u ∈ L1, v
′ ∈ L′

2 − L2, and t ∈ T , there exist u′ ∈ L1, v ∈ L2 − L′
2, and

t′ ∈ T such that u ∃ tv
′ = u′ ∃

t′v;

Although what we actually proved were the first and second statements, the third

statement is the corollary of these and our previous argument. Thus,

L1

∃ ⊥
TL2 − L′

2 = L1

∃ ⊥
TL

′
2 − L2. (14)

In the light of Lemma 5, however, Eq. (14) cannot hold.

As pointed out in [8, 9], catenation, literal shuffle, and insertion are particular cases

of the operation of shuffle on complete set of trajectories. Thus, this theorem has

the following corollary.

Corollary 13. Let ◦ be either catenation, literal shuffle, or insertion. For languages

L1, L, if the equation L1◦⊥X = L has a solution for the variable X, then the solution

is unique.

So far we have been working on the assumption that a given equation has a solution.

A more interesting topic is to consider a method of solving a given equation. Let

us start our investigation along this line with one-variable equations. An algorithm

is known for solving and constructing the (unique, regular) solution (if any) of an

equation R = R1�⊥X for regular languages R,R1 [1, 3]. We consider the following

question:

Question 3. Let R1, R be regular languages and T be a regular set of trajectories.

Is it decidable whether the equation R1

∃ ⊥
TX = R has a solution or not?

If we limit our scope to the singleton solution, i.e., we consider the equation

R1

∃ ⊥
T {x} = R, then this problem is decidable.

Proposition 14. Given regular languages R1, R and a regular set T of trajectories,

the problem of whether there exists a word w satisfying R1

∃ ⊥
T {w} = R is decidable.

Proof. Let n = min{|u| | u ∈ R}, which can be computed by breadth-first

search on the minimum deterministic finite automaton accepting R. The solution

to R1

∃ ⊥
T {w} = R is of length at most n. Thus, we simply test for all words of

length at most n whether the desired equality is satisfied with orthogonality using

Theorem 8.

The next proposition also gives a partial answer to Question 3.

Proposition 15. Let L1, L ⊆ Σ∗ be languages and T ⊆ {0, 1}∗ be a set of trajecto-

ries. If L is context-free, then it is undecidable whether the equation L1

∃ ⊥
TX = L

has a solution for the variable X.

Proof. We reduce the Post Correspondence Problem (PCP) to the problem of

whether the equation L1

∃ ⊥
TX = L has a solution or not for some specific L1, T, L.
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Let the PCP instance consist of lists α = (α1, . . . , αn) and β = (β1, . . . , βn),

where αi, βi ∈ {0, 1}+. Consider the following two context-free languages:

Lα = {012i1+1 · · · 012ik+102n+212n+2αik · · ·αi1 | k ≥ 1, 1 ≤ ip ≤ n, 1 ≤ p ≤ k},

and

Lβ = {012j1+1 · · · 012jm+102n+212n+2βjm · · ·βj1 | m ≥ 1, 1 ≤ jq ≤ m, 1 ≤ q ≤ m}.

Although in general CFG’s are not closed under complementation, the complement

of a so-called List language is known to be context-free [7]. Lα and Lβ are a variant

of List language, and hence, their complements Lc
α and Lc

β are context-free. Since

CFG’s are closed under union, (Lα ∩Lβ)
c = Lc

α ∪Lc
β is context-free. Note that this

PCP instance has a solution if and only if (Lα ∩Lβ)
c 6= Σ∗. For L1 = ∪i≥0Σ

2i and

T = 0∗1∗, let us consider the language equation L1

∃ ⊥
TX = (Lα ∩ Lβ)

c, where X

is a variable. If the PCP instance does not have a solution, then this equation is

L1

∃ ⊥
TX = Σ∗ and it has a solution X = {λ}∪Σ. On the other hand, if PCP(α, β)

has a solution, say i1, i2, . . . , is, where 1 ≤ s, 1 ≤ ih ≤ n, for all h, 1 ≤ h ≤ s, then

the word

w = 012i1+1012i2+1 · · · 012is+102n+212n+2αis · · ·αi2αi1

is not in (Lα ∩ Lβ)
c. By taking the first two letters (01) from w generates another

word w′ (i.e., w = 01w′). This word w′ begins with 1 so that it cannot be in Lα or

Lβ. Thus, if we suppose that the equation L1

∃ ⊥
TX = (Lα∩Lβ)

c had a solution L2,

then there would exist u ∈ L1 and v ∈ L2 such that w′ = uv (recall that T = 0∗1∗,

that is, ∃ ⊥
T is equivalent to catenation). By definition of L1, 01u ∈ L1 so that

w = 01uv would be in L1

∃ ⊥
TL2, that is, w ∈ (Lα ∩ Lβ)

c, a contradiction.

Note that in the previous proof, L1 is regular and the trajectory set employed is

T = 0∗1∗, that is, ∃ ⊥
T = �⊥. Hence, Proposition 15 augments the decidability

result mentioned previously as:

Corollary 16. For a linear language L, and a regular language R1, it is undecidable

whether the equation R1 �⊥ X = L has a solution for the variable X.

4. Conclusions

This paper studied properties of the orthogonal shuffle on trajectories, i.e., a special

case of shuffle on trajectories where every word in the result is the product of the

unique combination of one word from each operand. Several topics of future work

are of interest, for example Question 3 in its most general setting, and the following

variant of Question 1:

Question 4. For given regular languages R1, R2, is it decidable whether there exists

a complete set T of trajectories such that R1 and R2 are ∃

T -orthogonal?
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Remark that this question is meaningful because there exists languages R1, R2 such

that R1

∃ ⊥
TR2 is undefined for any complete set T of trajectories. A trivial example

is R1 = a∗ and R2 = {λ, a}. A complete set T of trajectories have to contain t, t′

such that a2 ∃ tλ and a ∃ t′a are defined. However, a2 ∃ tλ = a ∃ t′a = a2, and hence,

R1

∃ ⊥
TR2 is undefined. An example over a binary alphabet is R1 = a∗ ∪ a∗ba∗ and

R2 = {λ, b}. Note that for given languages L1, L2, it is not always the case that

such a set T of trajectories that L1

∃ ⊥
TL2 is defined is unique. Indeed, let L1 = a∗b,

L2 = {ab}, T1 = 0∗101, and T2 = 0∗110. Then L1

∃ ⊥
T1
L2 = L1

∃ ⊥
T2
L2 = a∗abb.
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