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Abstract

The usual setting for information transmission systems assumes
that all words over the source alphabet need to be encoded. The de-
mands on encodings of messages with respect to decodability, error-
detection, etc. are thus relative to the whole set of words. In reality,
depending on the information source, far fewer messages are trans-
mitted, all belonging to some specific language. Hence the original
demands on encodings can be weakened, if only the words in that lan-
guage are to be considered. This leads one to relativize the properties
of encodings or codes to the language at hand.

We analyse methods of relativization in this sense. It seems there
are four equally convincing notions of relativization. We compare those.
Each of them has their own merits for specific code properties. We clar-
ify the differences between the four approaches.

We also consider the decidability of relativized properties. If P is
a property defining a class of codes and L is a language, one asks, for
a given language C, whether C satisfies P relative to L. We show that
in the realm of regular languages this question is mostly decidable.

1 Codes in Information Systems
In an information system, a source S generates messages1 which, after some
modifications, enter a channel K. The channel may change a message be-
cause of physical errors or human interference or other reasons. For a given
∗Department of Computer Science, The University of Western Ontario, London, On-

tario, N6A 5B7
1On purpose we keep the notion of “message” and much of the other entities involved at

an intuitive level. A formal treatment is found in [14]. Those details would be important
for the detailed picture, but do not help with the main ideas.
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channel K, and an input message w, let κ(w) be the corresponding set of
potential output messages. Assume the output of the source is a message u
and the corresponding input to the channel is a message γ(u); then, as the
output of the channel one may observe any message v in the set κ(γ(u)). The
output of the channel undergoes changes again, resulting in δ(v), with the
aim to recover the message originally sent as closely as possible. The tech-
nical details of this model are complicated [14]. Such details are provided
in [14, 22]; instead, we explain the concepts and ideas intuitively only. We
ask the reader not to make any assumptions beyond what is being stated as
those might be quite misleading.

Coding theory in general assumes that a source can generate any sequence
of output symbols, albeit with differing probabilities. In reality, a source may
only generate a subset M of the set of all possible output sequences2. For
instance, a source might generate exactly the grammatically correct sentences
of a given natural language. For coding theory this changes important parts
of the task. Instead of the set of all potential messages one only needs to deal
with the messages in M : encode these messages and decode their channel
outputs into messages in M .

Thus, suppose the source generates a message u in the set M . Technical
modifications, which may include compression, encryption, encoding, and
even modulation change the message u into the sent message γ(u). This is
what enters the channel. As output of the channel one finds a received mes-
sage v ∈ κ(γ(u)) which may differ from γ(u) due the physical characteristics
of the channel K. From v one tries to reconstruct a message δ(v) = u′ such
that u′ ∈ M and, ideally, such that u′ = u. Given the characteristics of S
and K, the general goal is to find γ and δ such that the whole system works
well, whatever this may mean concretely3. The choice of γ and δ implicitly
depends on the set M .

In general we assume that all entities in the model use discrete signals
and synchronized discrete time4. In particular this means that there are finite

2In a probabilistic setting, a threshold for the probability of a source output might
determine the set M .

3For instance, if S and K are defined by probabilities, one may require the following: If
S sends u and v is observed as the corresponding output, then the probability of u having
been sent with v observed exceeds the probability of u′ being sent when v is observed for
all output messages of S different from u. For details of this probabilistic setting see [22];
for the corresponding combinatorial setting see [14].

4This latter assumption does not exclude synchronization errors on the logical level.
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non-empty alphabets Θ and Σ such that the messages potentially issued by
the source S form a language M ⊆ Θ+, where Θ+ is the set of all (non-
empty, finite) words which can be formed using the letters in Θ. Σ is the
set of input symbols for K such that γ(Θ+) ⊆ Σ+, where Σ+ is the set of
all non-empty words over Σ. Here γ need not be a mapping, but could be
a relation γ ⊆ Θ+ × Σ+ with γ(u) = {u′ | (u, u′) ∈ γ}. Σ is also the set of
output symbols of the channel5. κ is the input-output relation of the channel.
Thus (w, v) ∈ κ means that v is a potential output of κ for input w. The set
κ(w) for w ∈ Σ+ may contain the empty word λ, hence

κ(w) = {v | (w, v) ∈ κ} ⊆ Σ∗ = Σ+ ∪ {λ}.

In this setting δ is a partial mapping of Σ∗ into Θ+ such that, ideally,
δ(κ(γ(u))) ∈ M for u ∈ M . In this context, we say that γ and δ are en-
codings and decodings, respectively. In general, C = γ(Θ) ⊆ Σ+ is called the
code6 of γ.

Ignoring many technical issues, γ encodes messages potentially sent by S
and δ decodes received messages. The basic requirement is that δ(γ(u)) = u
for all messages u. More subtle conditions may have to be satisfied, when
errors need to be taken into account.

The successful functioning of such a system of information transmission
depends very much on the properties of γ. In general we do not care about
what happens to messages which will never be sent7. Hence, instead of con-
sidering the set Θ∗ of all potential output messages over Θ, we focus on the
set M of all potential (or likely) outputs of S, but disregarding probabilities.

This simplifies the scenario: We eliminate the source S and the set of
potential messages completely. Instead we consider a language C ⊆ Σ+ serv-
ing as a code. The set M of potential messages is now replaced by the set
L ⊆ Σ∗ of words which might have to be decoded as outputs of the channel.

5To use an output alphabet different from Σ certainly is an option, but is just a nuisance
generalization, which changes little.

6Thus a code is just a subset of Σ+ without any further requirements; in much, but not
all of the literature, the term ‘code’ implies unique decodability. This issue is dealt with
later in this paper.

7This is similar to a key argument in the proof of Shannon’s channel theorem (see [22],
for example): Messages with probability 0 contribute errors of probability 0; hence we may
ignore them and concentrate on the likely messages. Of course, messages with probability 0
can occur, but their influence has probability 0 too; hence, for practical purposes, they are
ignored.
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The precise relation between C and L will be discussed further below. Intu-
itively, the set C+ ∩L is the set of potential encoded messages, and L is the
set potential channel outputs for these.

Finally we consider properties P of codes (or encodings) in this context.
In general such a property would define the performance of an encoding
in an information transmission setting such that the code itself determines
properties of the encoding, for example: unique decodability; decoding de-
lay; synchronization delay; error-detection; error-tolerance; error-correction.
It turns out that such properties relativize in unexpected ways.

Obviously, when P contains a proposition of the form

∀x1, . . . , xn ∈ C ∀y1, . . . yn ∈ Σ+ . . . ,

replacing Σ+ by the language L will change P . Intuitively, this is meant by
relativizing properties of C to L.

With these preliminaries collected, we can state the main ideas of the
present paper:

General Question. Let X be a finite non-empty alphabet with at least two
elements. Let L and C be non-empty languages over X. Let P be a property
of languages.

1. Define what it means that C satisfies P relative to L.

2. With P fixed, what is the influence of L and vice versa?

3. Given P , C and L, can one decide whether C satisfies P with respect
to L?

To give this question a more concrete meaning, assume that P is the
property of unique decodability: The set C = γ(Θ) is uniquely decodable if
and only if every word in Σ+ has at most one factorization into words in C;
equivalently, C is uniquely decodable if and only if every word in C+ has
exactly one factorization into words in C. In general one implicitly assumes
that L = Σ+ or L = C+ depending on the requirement ‘at most one’ versus
‘exactly one’. To adapt the concept of unique decodability to the information
system at hand, one would postulate only that L ⊆ Σ+ and that each word
in L have at most one factorization. In this case, C is uniquely decodable
relative to L.
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Example 1.1. Let Σ = {a, b}, L = (ab)+ and C = {a, ab, aab}. Then every
word in L has a unique decoding with respect to C. On the other hand, the
word aab has two distinct decodings. Hence C is not uniquely decodable in
general, but uniquely decodable relative to L.

Remark 1.1. Let L and C be non-empty subsets of Σ+. Every word in L
has at most one factorization into words in C if and only if every word in
L ∩ C+ has exactly one such factorization.

Indeed, as every word in L∩C+ has a factorization into words in C and
every word in L has no more than one such factorization, each word in L∩C+

has exactly one factorization. Conversely, as the words in L\C+ do not have
a factorization at all, when the words in L ∩ C+ have unique factorizations,
then each word in L has at most one factorization.

We now extrapolate from this idea to consider general code properties
P as discussed in [14]. We only consider error-free communication via the
channel K. Thus v = γ(u). The more general situation of errors will require
several additional difficult steps of relativization, for which we do not have a
sufficient answer yet.

Earlier work with the intent to relativize various properties of codes in-
cludes papers by Head [9, 10, 11, 12], Mahalingam [23], and by Daley, Jür-
gensen, Kari, and Mahalingam [2]. In the present paper we do not so much
consider special cases, but focus on the relativization technique itself.

To define a class of codes two intuitively different techniques tend to be
used: an essentially combinatorial approach, based mainly on the structure of
words in the language C; an information theoretical approach, in which the
coding and decoding functions are prevalent. For a example, a prefix code C
over the alphabet Σ can be defined as a set of words, such that no word in
the set is a proper prefix of another word in that set; this is the combinatorial
view. Equivalently, C is a prefix code if it is uniquely decodable with decoding
delay 0, the information theoretic view. Each of these definitions may lead
to an intuitively convincing relativization. When these turn out not to be
equivalent, which one should one choose? How are they related?

We focus on this fundamental issue: How to relativize code properties
of either kind? When do revitalizations coincide? When is the relativized
property decidable?

For classes of codes we refer primarily to [14]. Further information is found
in [1] and [27, 31].
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Our paper is structured as follows: In the next section we introduce the
notation and basic notions. Most of this is standard, and included only to
make the paper self-contained. Some of the main unrelativized concepts are
explained in that part of the paper. In Section 3 we introduce and compare
relativization methods. We review: (1) our approach of [2], which is based on
a notion of admissibility; (2) the concepts proposed by Head [11]. This analy-
sis leads to four essentially different, but equally well motivated, definitions of
relativization. They are formally introduced in Section 3.3, where also their
relationship, depending on the code property in question, is determined. Es-
sentially, the four types of relativization arise from different views of how a
code property might be violated when restricted to a set of messages smaller
than Σ+. While each of the four versions may be considered the “best” one,
we only compare them, so as to understand what the respective strengths
are. In Section 4 we consider decidability questions. Typically: Given C, L,
P , and the type of relativization, we ask whether C is a code relative to L
with property P and the given relativization method. The paper concludes
with some general observations in Section 5.

There is a very important, but different, line of research which focuses
on the relativization or generalization of just unique decodabilty. This traces
back to work by Head and Weber [8, 30] and Harju and Karhumäki [7]. To
our knowledge the most recent work in this field is a paper by Guzmán [6]
and the thesis by Gümüştop [5].

2 Notation and Basic Notions
The sets of positive integers and of non-negative integers are N and N0,
respectively. An alphabet is a non-empty set. To avoid trivial special cases,
we assume that an alphabet has at least two elements. Throughout this paper
Σ is an arbitrary, but fixed, alphabet. When required we add the assumption
that Σ is finite. A word over Σ is a finite sequence of symbols from Σ; the
set Σ∗ of all words over Σ, including the empty word λ, is a free monoid
generated by Σ with concatenation of words as multiplication. The set of
non-empty words is Σ+, that is, Σ+ = Σ∗ \ {λ}. A language over Σ is a
subset of Σ∗. For a language L ⊆ Σ∗ and n ∈ N0 let

Ln =

 {λ}, if n = 0,
L, if n = 1,
{w | ∃u ∈ L ∃v ∈ Ln−1 : w = uv}, if n > 1.
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Moreover, let
L∗ =

⋃
n∈N0

Ln and L+ =
⋃
n∈N

Ln.

If P is a property of languages, then LP (Σ) is the set of languages L over
Σ for which P (L) = 1, that is, P (L) is true. We write LP instead of LP (Σ)
when Σ is understood. In the remainder of this paper, unless explicitly stated
otherwise, all languages are assumed to be non-empty.

Many classes of codes and related languages can be defined systematically
in terms of relations on the free monoid Σ+ or in terms of abstract dependence
systems. See [14, 16, 28, 31] for details. In the present paper only the following
relations between words u, v ∈ Σ+ are considered:

Property Definition Notation
u is a prefix of v: v ∈ uΣ∗ u ≤p v
u is a proper prefix of v: v ∈ uΣ+ u <p v
u is a suffix of v: v ∈ Σ∗u u ≤s v
u is a proper suffix of v: v ∈ Σ+u u <s v
u is an infix of v: v ∈ Σ∗uΣ∗ u ≤i v
u is a proper infix of v: (u ≤i v) ∧ (u 6= v) u <i v
u is an outfix of v: ∃u1, u2 (u = u1u2 ∧ v ∈ u1Σ∗u2) u ωo v
u is a proper outfix of v: (u ωo v) ∧ (u 6= v) u ω 6=o v

We say that u is a scattered subword of v, and we write u ≤h v, if, for some
n ∈ N, there are u1, u2, . . . , un ∈ Σ∗ and v1, v2, . . . , vn+1 ∈ Σ∗ such that
u = u1u2 · · ·un and v = v1u1v2u2 · · ·unvn+1. We write u <h v to denote the
fact that u is a proper scattered subword of v, that is, u ≤h v and u 6= v. We
say that u and v overlap, and we write u ωol v, if there is q ∈ Σ+ such that
q <p u and q <s v or vice versa. The relation ωol is symmetric. Note that a
word can overlap itself.

To simplify or unify notation, we sometimes write ωp instead of ≤p and
so on, for the partial orders above.

A binary relation ω on Σ+ defines the property (predicate) Pω of lan-
guages8 L ⊆ Σ+ as follows: Pω(L) = 1 if and only if, for all u, v ∈ L, one
has u 6ω v and v 6ω u. Clearly, if Pω(L) = 1 and L′ ⊆ L, then Pω(L′) = 1.
Thus Pω(L) = 1 if and only if Pω({u, v}) = 1 for all u, v ∈ L. Here the

8The predicate Pω asserts that L has a certain property, defined by the negation of a
relation. Admittedly, this is awkward, but it is inevitable for reconciling the two different
equally convincing approaches.
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words u and v need not be distinct. This is important for the case of ωol

for instance. Obviously, when ω is reflexive one has Pω(L) = 0 for every
non-empty language L.

When ω = <p we write Pp instead of P<p . Similarly, when ω = ωol we
write Pol instead of Pωol

. The predicates Ps, Pi and Po are defined analogously
starting from <s, <i and ω 6=o , respectively.

For a set S, P(S) is the set of all subsets of S and Pfin(S) is the set of
all finite subsets of S. For n ∈ N, let

P≤n(S) = {T | T ∈ P(S), |T | ≤ n}, P≥n = {T | T ∈ P(S), |T | ≥ n}

and
P=n(S) = {T | T ∈ P(S), |T | = n}.

In [14] the hierarchy of classes of codes is introduced using the systematic
framework of abstract dependence systems. For the purposes of the present
paper, the following simplified concepts suffice.

For the remainder of this section, we refer to [14, 31] and to sources cited
there.

Let C ⊆ Σ+. The language C is uniquely decodable if C+ is a free subsemi-
group of Σ+ which is freely generated by C. A less abstract, but equivalent
definition reads as follows:

Definition 2.1. Let C ⊆ Σ+ be a language over Σ, and let w ∈ Σ+.

1. The word w is C-decodable if there are n ∈ N and words

u1, u2, . . . , un ∈ C such that u1u2 · · ·un = w.

In this case, the pair (n, (u1, u2, . . . , un)) is called a C-decoding of w.

2. The language C is uniquely decodable if every word in Σ+ has at most
one C-decoding.

Thus a language C is uniquely decodable, if and only if every word in C+

has a unique C-decoding. We omit the reference to C when C is understood
from the context. In the following we sometimes use parentheses to describe
various C-decodings of a word. For example, if C = {a, ab, ba}, then w =
aba = (a)(ba) = (ab)(a) has two different C-decodings.

As every word in C+ involves only finitely many elements of C, the lan-
guage C is uniquely decodable if and only if every language in Pfin(C) is
uniquely decodable.
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In the literature one finds the term “code” used in two different ways: (1) a
non-empty language not containing the empty word; (2) a uniquely decodable
non-empty language not containing the empty word. For the rest of this paper
we adopt the second meaning. By Lcode we denote the set of codes over Σ.
For a regular language C ⊆ Σ+ it is decidable whether C ∈ Lcode; for linear
languages the code property is undecidable.

We now introduce some important classes of languages or codes. Further
classes will be defined when they are needed. Let C ⊆ Σ+.

For n ∈ N with n > 1, C is an n-code if every language in P≤n(C) is a
code. In general, an n-code is not necessarily a code. By Ln-code we denote
the set of n-codes over Σ. For regular C it is decidable whether C ∈ L2-code.
For L3-code the corresponding problem is open. The n-codes form an infinite
descending hierarchy with Lcode as its lower bound.

The language C is a prefix code if, for all u, v ∈ C, u 6<p v. It is a suffix
code if, for all u, v ∈ C, u 6<s v. It is a bifix code if it is both a prefix code
and a suffix code. It is an infix code if, for all u, v ∈ C, u 6<i v. It is an outfix
code if, for all distinct u, v ∈ C, u 6ωo v. It is a solid code if it is an infix code
and if, for all u, v ∈ C not necessarily distinct, u and v do not overlap. The
language C is a hypercode if, for all distinct u, v ∈ C, u 6<h v.

By Lp, Ls, Lb, Li, Lo, Lh, and Lsolid we denote the sets of prefix codes,
suffix codes, bifix codes, infix codes, outfix codes, hypercodes, and solid codes,
respectively. The first six of these classes of codes are defined by predicates
Pp, Ps, Pb, Pi, Po and Ph on P=2(C). For Lsolid we need Psolid = Pi ∧ Pol on
P≤2(C). We also use the predicates Pcode on Pfin(C) and Pn-code on P≤n(C)
defining Lcode and Ln-code, respectively.

For n ∈ N, the language C is an intercode of index n if, Σ+CnΣ+∩Cn+1 =
∅. The class Lintern of intercodes of index n is defined by a predicate Pintern on
P≤2n+1(C) derivable from Pi. The set Linter1 of intercodes of index 1 is exactly
the set Lcomma-free of comma-free codes. The languages in Linter =

⋃
n∈N Lintern

are called intercodes.

Lemma 2.1. (See [14, 31]) The following inclusions hold:

Lp ∪ Ls ( Lcode, Li ∪ Lo ( Lb = Lp ∩ Ls,

∀n Lintern ( Lintern+1 ( Linter ( Lb, Lh ∩ Lsolid ( Lh ( Li ∩ Lo

and
Lh ∩ Lsolid ( Lsolid ( Lcomma-free ( Li.
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It will simplify the notation significantly and also open the prospects of
considering a different set of problems if we weaken the definitions as follows:
For

% ∈ {p, s, b, i, o, h, solid, ol, intern, n-code, comma-free}

and potentially other types % of language properties, P% is a predicate on
Pfin(C) in the following sense: A language L ⊆ C has the property % if and
only if P%(L) holds true, that is, P%(L) = 1; for % ∈ {p, s, b, i, o, solid, ol} we
are mainly interested in situations when |L| ≤ 2 as this leads to manageable
decision properties. As a warning to the reader – we have seen this misread
before – the set {u, v} is equal to {u} when u = v, that is, {u, v} is not a
pair, but a set.

3 Variations of Definitions
The definition of relativized codes given in [2] was phrased so as to capture
and generalize the special definitions proposed by Head in [9, 10, 11, 12] in
the more general framework of relations or predicates described in [14]. As
noted in [2] these definitions differ in a subtle way.

In Sections 3.1 and 3.2, we review two natural proposals for relativizing
code concepts. Abstracting from these, and considering other likely scenarios,
it turns out that one has to consider at least four versions according to the
phenomena by which violations of code properties could manifest themselves,
each of them well motivated. These are investigated in detail in Section 3.3 as
violation-freeness or admissibility of words. In Section 3.4 relativized codes
are defined and inclusions between classes of relativized are proved. We com-
pare the concepts considered in the earlier work [2, 11] to the ones introduced
in the present paper in Section 3.5.

3.1 Admissibility of Words as Defined in [2]

We review the definitions and discussions of [2]. An improved general frame-
work is proposed in Section 3.3.

Definition 3.1. Let C be a subset of Σ+ and let P be a predicate on P≤2(C).
A word q ∈ C+ is said to be P -admissible for C if the following condition
is satisfied: if q = xuy = x′u′y′, with u, u′ ∈ C and x, x′, y, y′ ∈ C∗ then
P ({u, u′}) = 1.
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This means that a word q ∈ C+ is P -admissible if every two words
u, u′ ∈ C appearing in C-decodings of q, together satisfy the property P .
For example, for P = Pp, a word q is prefix-admissible, if no two words
u, u′ ∈ C appearing in C-decodings of q are strict prefixes of each other.
There is a subtle point: Suppose that u′ is a proper prefix of u. For a word
q, three different situations need to be considered:

1. The word q has a C-decoding of the form

· · · (u′) · · · (u) · · · or · · · (u) · · · (u′) · · · .

2. The word q has two C-decodings of the forms

· · · (u′) · · · and · · · (u) · · · .

3. The word q has two C-decodings of the form q1(u′)v′q2 and q1(u)q2 with
u = u′v′ where q1, q2, v

′q2 ∈ C∗, v′ ∈ Σ+.

The difference between these situations becomes apparent in our discussion
of relativized solid codes below. Definition 3.1 applies to any occurrences of
u and u′, not just to those situations in which u and u′ start at the same
position in q, and also not just to occurrences of u and u′ in the same C-
decoding of q. Thus, if u and u′ are distinct and occur in any C-decodings of
a word q ∈ L, which is prefix-admissible for C, then the set {u, u′} must be
a prefix code.

Similarly, a word q ∈ C+ is overlap-admissible if no two words u, u′ ∈ C,
not necessarily distinct and appearing in any C-decodings of q, overlap. In
particular, if u ∈ C and u occurs in a C-decoding of q, then u must not
overlap itself.

Definition 3.2. Let C be a subset of Σ+, let L ⊆ C+ and let P be a predicate
on P≤2(C). Then C is said to satisfy P relative to L if every q ∈ L is P -
admissible for C.

Definition 3.3. When C satisfies P relative to L we say that C is a P -code
relative to L.

As the predicate P is arbitrary, a P -code relative to L need not be
uniquely decodable even when L = C+. The restriction of L being a sub-
set of C+ turns out to be too restrictive in the new context of this paper and
is lifted starting in Section 3.3.

11



The following trivial observation is used without special mention in the
sequel.

Remark 3.1. Let P , P1 and P2 be predicates on P≤2(C) with P = P1 ∧ P2.
Let q, C and L be as in Definitions 3.1, 3.3 and 3.2. The following statements
hold true:

1. q is P -admissible for C if and only if q is both P1-admissible and P2-
admissible for C.

2. C satisfies P relative to L if and only if C satisfies P1 and P2 relative
to L.

3. C is a P -code relative to L if and only if C is both a P1-code and a
P2-code relative to L.

3.2 Definitions Inspired by Tom Head

In [11] and related papers, Head proposed various relativizations of code
concepts. The most relevant for the present discussion, because it introduces
issues not encountered in other contexts, is that of relativized solid codes.
The formalism used here leads to a novel general concept of relativization.
This section of the paper summarizes ideas and statements from [2] relevant
to the issue at hand.

Definition 3.4. ([9]) Let C and L be non-empty subsets of Σ+. The set C is
a solid code relative to L if it satisfies the following conditions for all words
q ∈ L:

1. if q = xszty with x, y, s, t ∈ Σ∗ such that z, szt ∈ C, then st = λ;

2. if q = xszty with x, y, s, t ∈ Σ∗ such that sz, zt ∈ C and z ∈ Σ+ then
st = λ.

The first condition states that, for u, v ∈ C, if u <i v, then, for all q ∈ L,
v 6≤i q. The second condition states that if u, v ∈ C, and u and v overlap as
u = sz and v = zt with z ∈ Σ+, then, for all q ∈ L, szt 6≤i q.

Definition 3.4 is one possible relativization of the notion of solid code. It
differs from the notion of Psolid-code relative to a language as introduced in
Definition 3.3.
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Note that, if C is a solid code relative to L then C is a Pi-code relative
to L ∩ C+. Indeed, let q in L ∩ C+. If u ∈ C occurs in a C-decoding of q,
v ∈ C and u <i v, then v 6<i q. Hence v does not occur in a C-decoding of q.
As shown in Example 3.1 below, C being a solid code relative to L does not
imply that C is a Pol-code or a Psolid-code relative to L.

For (unrelativized) solid codes there is also a definition based on decom-
positions of messages (see [14]): Let C be a subset of Σ+ and q ∈ Σ+. A
C-decomposition of q consists of two sequences u0, u1, . . . , un ∈ Σ∗ and v1,
v2, . . . , vn ∈ C for some n ∈ N, such that q = u0v1u1v2u2 · · · vnun and v 6≤i ui
for all v ∈ C and i = 0, 1, . . . , n. Every word q ∈ Σ+ has at least one C-
decomposition. Note that every C-decomposition of a word in C+ can be
considered as a C-decoding as follows:

u0 = u1 = · · · = un = λ

and the C-decoding is
(n, (v1, v2, . . . , vn)).

The set C is a solid code if and only if every word in Σ+ has a unique C-
decomposition. In [13], a relativization of the notion of solid code is proposed,
which is based on the uniqueness of C-decompositions, and this notion turns
out to be equivalent to the one of Definition 3.4.

Proposition 3.1. ([13]) Let L ⊆ Σ+. A language C ⊆ Σ+ is a solid code
relative to L if and only if every word q ∈ L has a unique C-decomposition.

The difference between these equivalent concepts and our approach to
relativizing solid codes is illustrated by the following example.

Example 3.1. ([11]) Let Σ = {a, b, c} and C = {ab, c, ba}. The set C is
not overlap-free, hence not a solid code. By Definition 3.4, C is a solid code
relative to the language L = ({abc}

⋃
{cba})∗. However, the set C is not a

Psolid-code relative to L, as q = abccba ∈ L has the C-decoding (ab)(c)(c)(ba)
and is thus not Psolid-admissible since ab ωol ba.

The main differences between Definitions 3.3 and 3.4 are as follows:

1. According to Definition 3.3, the mere and possibly unrelated existence
of words for which the predicate is false constitutes a violation. Ac-
cording to Definition 3.4, the words in question must be in a specific
violating position.
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2. According to Definition 3.3, the words in violation must occur in C-
decodings. According to Definition 3.4, they may appear anywhere.

In the next section, we analyse these differences and provide new definitions
according to the analysis. Altogether, we have to investigate four different
ways in which code concepts can be relativized.

3.3 Violating Instances

There does not seem to be a unique best scheme for relativizing code prop-
erties. All proposed schemes seem to diverge not only when the language L
relativized to is a subset of Σ+ or of C+, but also when the particular types
of violations of the code properties are considered. We now identify four vi-
olating scenarios in very general terms. These seem to be the most common
ones in real systems. For specific natural code properties we state their rel-
ativizations. We also determine the connection between the four notions of
violation. Our basic definitions may seem to be far too general; this permits
us to capture most of the interesting cases and to leave the field open for
other cases which might require a relativization as well.

To clarify the intuition, we start with examples. We consider a language
C ⊆ Σ+ and a predicate P defining a class of codes.

A violating instance of Pp, the prefix-freeness predicate, would be the
occurrence of a word v ∈ C such that there is a word u ∈ C with u <p v,
that is, Pp({u, v}) = 0. For Ps, Pi, Ph, Po and several other such predicates
we have analogous characterizations. To help the readers’ intuition we switch
freely between predicates and relations whenever one or the other seems easier
to understand.

Take Pb. One has Pb({u, v}) = 0 if u <p v or u <s v or vice versa. Thus
there are two potential violating instances of Pb, manifested as violating
instances of Pp and Ps, respectively.

This seems to determine the pattern for predicates defined by conjunc-
tions or disjunctions of predicates.

Thus a violating instance of the conjunction (intersection) P of two pred-
icates P1 and P2 could be a violating instance of P1 or a violating instance
of P2. Dually, if P is defined as the disjunction (union) of two such predicates,
then violating instances of P are exactly the instances which are violating
both P1 and P2. This idea works well also with Psolid = Pi ∧ Pol.

These considerations suggest the following tentative definition:
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Let P be an n-ary predicate. A violating instance of P is a set
{u1, . . . , un} of words such that P ({u1, . . . , un}) = 0.

This definition is not good enough as it does not capture how the words
in question are actually located with respect to each other; hence, a proper
definition needs to be based on relations or tuples with special properties
rather than sets.

We consider a set of more detailed examples in order to detect a pattern.
For

% ∈ {p, s, pi, si, b, i, o, h, solid, ol, intern, comma-free}

and potentially other types % of language properties, let ω% or <% be the cor-
responding relation or partial order, and P% be the corresponding predicate.
Let C ⊆ Σ+.

1. A violating instance of Pp is the occurrence of a word v ∈ C such that
there is u ∈ C with u <p v. Similarly for Ps, Ppi, Psi, and Pi.

2. A violating instance of Pb is the occurrence of a word v ∈ C such that
there is u ∈ C with u ωb v, that is, u <p v or u <s v.

3. A violating instance of Po is the occurrence of a word v ∈ C such that
there is u ∈ C with u ωo v and u 6= v.

4. A violating instance of Pol is the occurrence of a word w = w1w2w3 with
w1, w2, w3 ∈ Σ+ such that w1w2 ∈ C and w2w3 ∈ C; thus, w1w2 ωol

w2w3.

5. A violating instance of Psolid is the occurrence of a word which is a
violating instance of Pi or of Pol.

6. A violating instance of Pintern is the occurrence of a word

w = v1v2 · · · vn+1 with v1, v2, . . . , vn+1 ∈ C

such that there are words

u1, u2, . . . , un ∈ C and x, y ∈ Σ+

with xu1u2 · · ·uny = w.
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7. A violating instance of Pcomma-free is the occurrence of a word w = v1v2

such that there are words u ∈ C and x, y ∈ Σ+ with xuy = w.

8. A violating instance of Ph is the occurrence of a word v ∈ C such that
there is a word u ∈ C with u <h v.

The cases (1), (2), (3), (6), (7), and (8) above have in common that the
(proper) relation involved has a “direction”: The relations for

% ∈ {p, s, pi, si, b, i, o, h}

are anti-symmetric. For % ∈ {intern, comma-free}, that is, cases (6) and (7),
one considers the relations ωintern and ωcomma-free defined as follows9 [14]:

• ωintern is a (2n+ 1)-ary relation on C such that

(u1, u2, . . . , un, v1, v2, . . . , vn+1) ∈ ωintern

if and only if there are x, y ∈ Σ+ such that v1v2 · · · vn+1 = xu1u2 · · ·uny.

• ωcomma-free = ωintern for n = 1.

We interpret ωintern as a binary relation between n-tuples and (n+ 1)-tuples
of words in C. Let ωintern be this binary relation, that is,

(u1, u2, . . . , un, v1, v2, . . . , vn+1) ∈ ωintern

if and only if

((u1, u2, . . . , un), (v1, v2, . . . , vn+1)) ∈ ωintern .

Similarly, we obtain ωcomma-free from ωcomma-free. Then, by definition, both
ωintern and ωcomma-free are anti-symmetric binary relations.

For Pol, instead of considering a binary relation between code words, it
seems more adequate to consider a binary relation ωol between a pair (u1, u2)
of codewords and a word w ∈ Σ+ such that (u1, u2) ωol w if and only if there
are w1, w2, w3 ∈ Σ+ such that u1 = w1w2, u2 = w2w3, and w1w2w3 = w.

One could apply similar modifications to the relations defining the out-
fix codes, the hypercodes, and all the codes in the shuffle hierarchy. For

9In [14] the order of the components is different. The change is not essential, but
simplifies the presentation.
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example, instead of <h one could use the relation ωh defined as follows:
(u1, u2, . . . , uk) ωh (v) if and only if

v ∈ Σ∗u1Σ∗u2 · · ·Σ∗ukΣ∗ and u1u2 · · ·uk 6= v,

where k ∈ N and u1, u2, . . . , uk, v ∈ Σ+. For the present purposes the follow-
ing, less intuitive, alternative

(u1, u2, . . . , uk) ωh (v) if and only if u1u2 · · ·uk <h v

would also work. The former captures the idea that u1 ≤i q, u2 ≤i q, . . .,
uk ≤i q in the order given by the k-tuple (u1, u2, . . . , uk). The latter is a simple
reformulation of the embedding order. For our purposes, neither modification
is needed.

Note that the transition from a relation ω% to its overlined version ω% is ad
hoc and not claimed to be in any way defined by an operator. We introduce
the latter only for convenience. In the sequel, to keep the notation simple,
we drop the distinction when there is no risk of confusion. For example, a
statement of the form

“For % ∈ {p, . . . , intern, . . .} the relation ω% satisfies . . .”

refers to ωp for % = p and, depending on the context, to ωintern or to ωintern

for % = intern.
To define violating instances in rather general terms, we consider binary

relations on tuples of words and their corresponding binary predicates.
For any set S and any n ∈ N, let n-tuples(S) be the set of n-tuples of

elements in S and let all-tuples(S) =
⋃
n∈N n-tuples(S). We consider binary

relations ω between tuples of words over Σ. Typically there is a small upper
bound on the arity of the tuples. Such a relation ω would be a subset of⋃

1≤k≤m

⋃
1≤n≤m

k-tuples(Σ∗)× n-tuples(Σ∗)

for some m ∈ N. In some quite natural situations however, like that of hy-
percodes, there might not be a priori bounds on k and n. This concern will
be kept in mind as we propose definitions. As such relations are defined by
(disjoint) unions of relations in a natural way as expressed by the formula
above, their respective properties are conjunctions of the individual prop-
erties according to the constituents. The details are explained by example
below.
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Definition 3.5. Let n ∈ N and let u = (u1, u2, . . . , un) be an n-tuple of
words in Σ∗. Define word(u) as the word u1u2 · · ·un. Moreover, for u ∈ Σ∗,
let word(u) = u.

The present goal is as follows: Let C ⊆ Σ+, C 6= ∅. For a word q ∈ Σ+

we want to express that q does not contain words in C which violate a
binary relation ω on all-tuples(Σ+), the latter defining a class of languages or
codes. Additionally, if u ω v, then word(u) and word(v) must appear in some
“natural” relationship within q. A first attempt towards this goal might read
as follows:

Let ω be a binary relation on all-tuples(Σ+) and let q ∈ Σ+. A
violating instance of ω in q is a pair (u, v) of distinct tuples of
words in Σ+ such that u ω v and word(v) ≤i q.

At a first glance this seems to be a clean definition. It only involves the rela-
tion ω, but not the set C, and the latter can be built in later as a constraint.
The following example shows that the attempted definition will not work
without a connection to C.

Example 3.2. Let Σ = {a, b} and ω = <p. Then every word of length at
least 2 contains a violating instance of <p.

Nevertheless, we work with this intuition. It does not lead to a general
definition, but at least to a usable one for many relevant cases. To simplify
terminology, when (u, v) is a violating instance of ω in q in the tentative sense
above, we also say, equivalently, that q contains (u, v) as a violating instance
of ω – or of the predicate Pω defining ω.

For % ∈ {p, s, pi, si, b, i, o, h} we just consider the relation ω%. Similarly, for
the relations defining the shuffle hierarchy. For % ∈ {intern, comma-free, ol},
the relations ωintern , ωcomma-free, and ωol will serve. Thus, also the solid codes
are included. In each of the cases considered here, word(v) ≤i q implies that
each component of u is a subword, possibly scattered, of q. Our present
motivation was to cover as much as possible of the code hierarchy of [14].

To address the problems with the notion of violating instance of a relation
ω, we consider, simultaneously, a relation ω, a non-empty set C of words in
Σ+, and a word q ∈ Σ+. The relation ω is meant to describe a class of
languages – or codes – such that C does not contain any words which would
lead to a violating instance in q. Without loss of generality, one can assume
that ω is irreflexive. We did not find a satisfactorily simple definition which
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could be applied to any binary relation on all-tuples(Σ+). Especially relations
like ωol or ωol cause difficulties, as the relative positions of the occurrences of
their components in a word are not fixed. Therefore, from here on we consider
only a restricted class of relations:

% ∈ {p, s, pi, si, b, i, o, h, solid, ol, intern, comma-free}.

Definition 3.6. Let C ⊆ Σ+ and q ∈ Σ+. Let ω 6= ωol be an irreflexive,
binary relation on all-tuples(Σ+) such that, for all u, v ∈ all-tuples(Σ+), u ω v
implies word(u) ≤h word(v). Let Pω be the predicate defining ω.

1. The word q is Pω-violation-free for decompositions with respect to C,
if there are no u, v ∈ all-tuples(C) such that u ω v and word(v) ≤i q.

2. The word q is Pω-violation-free for decodings with respect to C, if for
all q1, q2 ∈ C∗ and all v ∈ all-tuples(C) with q = q1word(v)q2 there is
no u ∈ all-tuples(C) such that u ω v.

3. The word q is said to be Pol-violation-free for decompositions with re-
spect to C, if there are no words u, v, w ∈ Σ+ such that uv, vw ∈ C
and uvw ≤i q.

4. The word q is said to be Pol-violation-free for decodings with respect to
C, if there are no words q1, q2 ∈ C∗ and u, v, w ∈ Σ+ with uv, vw ∈ C
such that q = q1uvq2 with w ≤p q2 or q = q1vwq2 with u ≤s q1.

To explain Definition 3.6, we consider the special cases of prefix codes,
outfix codes, intercodes of some index n, and solid codes defined by the rela-
tions <p, ω 6=o , ω

6=
intern

, and ωsolid as characteristic examples. Most other cases
in the hierarchy of codes are analogous. In the definition we attempt to cap-
ture an essential idea of Head’s relativization: the respective code property is
violated if and only if the words involved appear exactly in the relative posi-
tions as defined by the code property. Beyond that, we distinguish between
violating instances for decompositions and violating instances for decodings.
The former may occur anywhere in the word q under consideration – and this
is the case of Head’s definition (Definition 3.4); the latter can only occur at
positions defined by a decoding. This distinction turns out to be important,
as fewer positions in a word under consideration need to be examined in the
case of decodings compared to the case of decompositions.
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Head’s relativization of the condition of overlap-freeness in Definition 3.4
really applies only to decompositions. In Definition 3.6(4) we propose a pos-
sible interpretation of Head’s approach in the context of decompositions.
Another possible interpretation would be as follows.

Let q = q1uvwq2 ∈ C∗ with uv, vw ∈ C and u, v, w ∈ Σ+. Then
q1, wq2 ∈ C∗ or q2, q1u ∈ C∗.

This is equivalent to Definition 3.6(4).
The first two parts of Definition 3.6 refer to binary relations ω on tuples

of words in Σ+ such that u ω v implies that word(u) ≤h word(v). Thus, if
word(v) ≤i q, then word(u) appears as a possibly scattered subword of that
occurrence of word(v) in q. The relation ωol is an important example of a
relation which does not fit into this pattern. We include ωol as a special case
in Definition 3.6 to exhibit unsolved problems in the relativization methods
and the need for a more inclusive approach.

Among the cases for illustrating Definition 3.6, a simple one is that of
prefix codes and the like. The class of codes C is defined by a partial order
ω 6= on Σ+ such that u, v ∈ C implies that u 6ω 6= v. Moreover, u ω 6= v implies
u <i v. If q contains a violation of ω, then there are u, v ∈ C such that
u ω 6= v and v ≤i q. Thus the mere occurrence of v as an infix of q results
in a violating instance, for decompositions. For decodings, the word v has
to appear at a special spot, determined by a decoding; but note that the
decoding need not be unique.

The case of outfix codes and of all shuffle codes down to the class of
hypercodes requires special consideration as to what we mean by “violation”.
The case of outfix codes is indicative of the issues. Suppose u is a proper
outfix of v. Then v = u1v0u2 with u1u2 ∈ Σ+, u = u1u2, and v0 ∈ Σ+. If
v ≤i q we have a violating instance according to the definition, but u 6≤i q. Do
we want this? We argue as follows: The intent of using an outfix code could
be to detect insertion errors, like the ones which change u into v. In this,
clearly, the occurrence of v in q gives rise to an ambiguity as to how q should
be read (both for decompositions and decodings). Similar arguments concern
the whole shuffle hierarchy and motivate the condition of word(u) ≤h word(v)
above. In general, the embedding is completely determined by ω.

The case of intercodes of index n is special only in that we deal with
tuples of words. The relation defining the intercodes satisfies the conditions
trivially.
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Finally, for solid codes we need to consider the relation ωsolid = <i ∪ ωol.
The rôle of <i is similar to that of the prefix order above. The rôle of ωol is
different. Regardless of whether we use ωol or ωol, there is a problem which
seems to require special measures.

• Using ωol: If u ωol v with u, v ∈ Σ+ then v ≤i q does not imply that
u ≤h q.

• Using ωol: If (u1, u2) ωol v then v ≤i q does not imply word((u1, u2)) =
u1u2 ≤h q. However, we have u1 ≤i q and u2 ≤i q.

In either case, the mere occurrence of v does not result in a violating instance
in general.

Example 3.3. Let Σ = {a, b}.

1. Consider the prefix order <p and the language C = {a, ab}. This lan-
guage is not a prefix code. The set of words which are violation-free of
<p for decompositions with respect to C are the words not containing
ab, that is, all the words in Σ+ \Σ∗abΣ∗ = a+ ∪ b+a∗. The set of words
which are violation-free of <p for decodings with respect to C are the
words in Σ+ \ C∗abC∗.

2. For the outfix relation, consider the language C = {aa, aba} which is
not an outfix code. A violation-free word for decompositions must not
contain aba as an infix, that is, must be in Σ+\Σ∗abaΣ∗. For decodings,
such a word must not have the form C∗abaC∗.

3. For the intercode relation of index n, consider, without loss of general-
ity, n = 1 and the language C = {ab, bba}. The language C is not an
intercode of index 1, that is, not a comma-free code, as Σ+CΣ+∩C2 6= ∅
with ab and bbabba as witnesses. Note that C is a bifix code. For decom-
positions, bbabba must not occur as an infix. For decodings, any word
not in C∗bbabbaC∗ is violation-free.

4. For the solid code relation, the infix part is analogous to <p that has
already been illustrated. The “new” problem is that of overlaps. Consider
C = {ab, ba}, which is an infix code, but not an overlap-free language10.

10Note that overlap-freeness alone does not imply unique decodability.
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We focus on the overlap relation either in the form ωol or the form of
ωol. For decompositions the words which do not contain aba or bab
are violation-free. For decodings, any word not in C∗{abab, baba}C∗ is
violation-free.

Note that every non-empty word q /∈ C+ is violation-free for decodings
with respect to C.

In general there is a pattern: For decompositions q /∈ Σ∗word(v)Σ∗ is
violation-free. For decodings q /∈ C∗word(v)C∗ is violation-free.

When two relations interact, as in the case of solid codes, for violation-
freeness the corresponding property seems not to be just a simple Boolean
junction of the basic properties; this seems to require an expression of the
co-locality of the respective defining situations. Neither Definition 3.4 based
on Head’s work nor our Definition 3.6 covers this adequately. We hope to
look at this issue in a subsequent study.

Instead of violating instances one can also consider occurrences of words
which, taken together, violate the condition in question although their occur-
rences may be “unrelated”. To this end we modify Definition 3.1 following the
pattern of Definition 3.6. In contrast to the violating instances, we consider
a property Pω which is given by an k-ary relation ω ⊆ k-tuples(Σ+). For ex-
ample: for prefix-freeness we have (u, v) ∈ ω 6=p if u <p v; for overlap-freeness
we have (u, v) ∈ ωol if there exist w1, w1, w3 ∈ Σ+ such that u = w1w2 and
v = w2w3; and for the intercode property of index n, we have

(u1, u2, . . . , un, v1, v2, . . . , vn+1) ∈ ωintern

if there exist x, y ∈ Σ+ such that v1v2 · · · vn+1 = xu1u2 · · ·uny. As our defi-
nition covers the overlap relation and a word can have a non-trivial overlap
with itself, like (xyx, xyx) ∈ ωol, we cannot assume that the relation ω is
irreflexive – if it is binary – in general. On the other hand, all binary rela-
tions ω% with % ∈ {p, s, pi, si, b, i, o, h} are irreflexive. In order to make the
following definition as general as possible, we let ω be an arbitrary subset of
all-tuples(Σ+) rather than a k-ary relation.

Definition 3.7. Let C ⊆ Σ+, q ∈ Σ+, and ω ⊆ all-tuples(Σ+). Let Pω be the
predicate defining ω.

1. The word q is said to be Pω-admissible for decompositions with respect
to C, if, for all u = (u1, u2, . . . , un) ∈ ω ∩ all-tuples(C), there exists (at
least) one index 1 ≤ i ≤ n such that ui 6≤i q.
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2. The word q is said to be Pω-admissible for decodings with respect to C,
if, for all u = (u1, u2, . . . , un) ∈ ω ∩ all-tuples(C), there exists (at least)
one index 1 ≤ i ≤ n such that there are no C-decodings q = q1uiq2 with
q1, q2 ∈ C∗.

Remark 3.2. For ωo and the relations defining the shuffle hierarchy except
<i the definition of admissibility differs significantly from that of violation-
freeness. Consider u, v ∈ C with (u, v) ∈ ω 6=o . The occurrence of v would be a
violating instance. However, it is no obstacle to admissibility unless also the
word u occurs. This statement holds true for all shuffle relations including
<h, but excluding <i.

For intercodes ωintern, as well as comma-free codes and overlap-freeness, a
word q is violation-free if the words in u ∈ ωintern do not appear in a particular
constellation in q as defined by the binary relation ωintern. In contrast, for
admissibility each word in u ∈ ωintern is treated individually and can appear
anywhere in q.

Example 3.4. Let Σ = {a, b}.

1. Consider the prefix order <p and the language C = {a, ab}. The set
of words which are admissible for decompositions with respect to C are
the words not containing ab, that is, all the words in a+ ∪ b+a∗; in this
case violation-freeness and admissibility coincide because a is an infix
of ab. The set of words which are admissible for decodings with respect
to C are the words in Σ+ \ (C∗abC∗ ∩C∗aC∗) = Σ+ \C+ ∪ a+ ∪ (ab)+.

2. For the outfix relation, consider the language C = {aa, aba} which is
not an outfix code. An admissible word for decompositions must not
contain both aba and aa as infixes, that is, must be in Σ+ \ (Σ∗abaΣ∗ ∩
Σ∗aaΣ∗). For decodings, such a word must be in Σ+ \ (C∗abaC∗ ∩
C∗aaC∗).

3. For the comma-free relation, consider the language C = {ab, bba}. The
language C is not a comma-free code, as Σ+CΣ+ ∩C2 6= ∅ with ab and
bbabba as witnesses. Note that C is a bifix code. For decompositions, a
word is admissible if not both, bba and ab, are infixes of this word. For
decodings, any word not in C∗bbaC∗ ∩ C∗abC∗ is admissible.

4. For solid codes, consider C = {ab, ba}, which is an infix code, but not
an overlap-free language. We focus on the overlap relation in the form
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ωol rather than ωol. For decompositions the words which do not contain
ab and ba are admissible, that is, all words in a+b∗ ∪ b∗a+ ∪ b+. For
decodings, any word not in C∗abC∗ ∩ C∗baC∗ is admissible.

The following two theorems show how the different notions of admissibil-
ity and violation-freeness are related to each other. The set of relations con-
sidered can be divided into two sets with two essentially different behaviours.
The first set contains only binary, asymmetric, irreflexive relations and its
properties are stated in Theorem 3.1; Figure 1 illustrates the relationships.
The remaining properties are covered by Theorem 3.2 below.

violation-free for
decompositions

violation-free
for decodings

admissible for
decompositions

admissible
for decodings

for all % (2)

for % ∈ {p, s,pi, si,b, i},
but not for % ∈ {o,h} (5)

for all % (3)

not conversely

for
all

%
(1)

not
conversely

for
all

%
(4)

not
conversely

Figure 1: Relation described in Theorem 3.1: The numbers on the ar-
rows refer to the statements in Theorem 3.1. This figure is restricted to
% ∈ {p, s, pi, si, b, i, o, h}.

Theorem 3.1. Let C ⊆ Σ+, q ∈ Σ+ and % ∈ {p, s, pi, si, b, i, o, h}. The
following statements hold true:

1. If the word q is P%-violation-free for decompositions with respect to C,
then it is P%-violation-free for decodings, but not conversely.

2. If the word q is P%-violation-free for decompositions with respect to C,
then it is P%-admissible for decompositions with respect to C.

3. If the word q is P%-violation-free for decodings with respect to C, then
it is P%-admissible for decodings with respect to C, but not conversely.
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4. If the word q is P%-admissible for decompositions with respect to C, then
it is P%-admissible for decodings with respect to C, but not conversely.

5. For % ∈ {p, s, pi, si, b, i} the converse of (2) holds true. However, for
% ∈ {o, h} the converse of (2) does not hold.

Proof: Since ω 6=% is binary and irreflexive, we consider two distinct words u
and v such that u ω 6=% v. The words u and v are fixed throughout this proof.

Assume that the word q is P%-violation-free for decompositions with re-
spect to C, that is, v 6≤i q. In particular, v is not an infix of a decoding of q
with respect to C.

Conversely, consider the language C = {ab, abab, aa, ba} and note that
abab is the sole violating instance of P% for all relations considered here. The
word aababa with the unique C-decoding (3, (aa, ba, ba)) is P%-violation-free
for decodings with respect to C, but it is not P%-violation-free for decompo-
sitions with respect to C. This proves (1).

Again, let q be P%-violation-free for decompositions with respect to C. As
v 6≤i q, trivially v and u cannot both be infixes of q. This proves (2).

Assume that the word q is P%-violation-free for decodings with respect to
C. Then v is not an infix of a decoding of q with respect to C. Thus, trivially
v and u cannot both be infixes of a decoding of q either.

Conversely, consider the language C = {ab, abbab} and note that ab ω 6=%
abbab for all relations considered here. The word abbab with the unique C-
decoding (1, (abbab)) is not P%-violation-free for decodings with respect to C,
but it is P%-admissible for decodings with respect to C. This proves (3).

Assume that the word q is P%-admissible for decompositions with respect
to C. Then u and v are not both infixes of q. Hence, they are not both infixes
of decodings of q with respect to C.

Conversely, consider the language C = {ab, abbab} again, and note that
abbab is P%-admissible for decodings with respect to C, but it is not P%-
admissible for decompositions with respect to C. This proves (4).

For % ∈ {p, s, pi, si, b, i}, if q is P%-admissible for decompositions with
respect to C, then v 6≤i q because u <i v due to the choice of %. Hence, q is
P%-violation-free for decompositions with respect to C.

Now, consider C = {aa, aba}, which is not an outfix code. The word aba
contains aba, but not aa. Therefore, aba is Po-admissible and Ph-admissible
for decompositions with respect to C. On the other hand, the occurrence of
aba is a Po-violating and Ph-violating instance. This proves (5). �
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The situation for overlap-free languages, solid codes, intercodes, and comma-
free codes is different from the code properties that are covered by Theo-
rem 3.1; Figure 2 illustrates the relationships stated in Theorem 3.2.

Theorem 3.2. Let C ⊆ Σ+, q ∈ Σ+ and % ∈ {ol, solid, intern, comma-free}.
The following statements hold true:

1. If the word q is P%-violation-free for decompositions with respect to C,
then it is P%-violation-free for decodings, but not conversely.

2. If the word q is P%-admissible for decompositions with respect to C,
then it is P%-violation-free for decompositions with respect to C, but
not conversely.

3. If the word q is P%-admissible for decompositions with respect to C, then
it is P%-admissible for decodings with respect to C, but not conversely.

4. If q is P%-asmissible for decodings with respect to C, this does not imply
that q is P%-violation-free for decodings or decompositions with respect
to C. If q is P%-violation-free for decodings or decompositions with re-
spect to C, this does not imply that q is P%-admissible for decodings
with respect to C.

5. If q ∈ C+ and q is Psolid-violation-free for decodings with respect to C,
then q is also Psolid-violation-free for decompositions with respect to C.

Proof: Let % ∈ {ol, intern} and let u, v be word tuples such that u ω% v. For
% = intern, we require that u, v ∈ all-tuples(C) and we let w = u · v be the
concatenation of the tuples u and v. For % = ol, we only require that u ∈
all-tuples(C) and we let w = u. In both cases, we have w ∈ ω%∩ all-tuples(C).

The case Pcomma-free is covered as a special case of Pintern , whereas the case
Psolid = Pi ∧ Pol requires special attention. Note that the positive statements
of (1,2,3) follow for Psolid because they hold for Pol (proven below) and Pi

(Theorem 3.1).
If q is P%-violation-free for decompositions with respect to C, then word(v)

is not a proper infix of q. In particular, word(v) is not an infix of a decoding
of q as described in Definition 3.6. Hence, q is P%-violation-free for decodings
with respect to C. The same property holds for Psolid because it holds for Pol

and Pi by Theorem 3.1.
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Figure 2: Relation described in Theorem 3.2: The numbers on the ar-
rows refer to the statements in Theorem 3.2. This figure is restricted to
% ∈ {ol, solid, intern, comma-free}.

Conversely, for Pintern with n ≥ 1, let C = {ab, ba, a(ab)n+1}. The word
a(ab)n+1, with the unique C-decoding (1, (a(ab)n+1)), is Pintern-violation-free
for decodings with respect to C, but it is not Pintern-violation-free for de-
compositions with respect to C as it contains the violating instance (ab)n+1.
For Pol, let C = {ab, ba, abaa}. The word abaa, with the unique C-decoding
(1, (abaa)), is Pol-violation-free for decodings with respect to C, but it is not
Pol-violation-free for decompositions with respect to C as it contains the vi-
olating instance aba. For Psolid, this result can only be obtained if q does
not have a C-decoding and is, therefore, Psolid-violation-free for decodings
with respect to C, but contains a Psolid-violating instance as infix; otherwise,
statement (5) would be contradicted. This proves (1).

Assume q is P%-admissible for decompositions with respect to C. Hence,
not all of the words in w appear as infixes of q. Because word(v) contains all
words from w as infixes, we have word(v) 6≤i q. Hence, q is P%-violation-free
for decompositions with respect to C. This proves the “forward direction”
of (2).

If q is P%-admissible for decompositions with respect to C, then not all of
the words from w can be infixes of q. In particular, they cannot all be infixes
of decodings of q. Hence, q is P%-admissible for decodings with respect to C.
This proves the “forward direction” of (3).
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For % = intern with n ≥ 1, let C = {ab, ba}. The word (ab)n+1 is Pintern-
violation-free for decodings and decompositions with respect C, but it is
Pintern-admissible for decodings with respect to C since ba does not appear
in the unique C-decoding (n + 1, (ab, . . . , ab)). Furthermore, (ab)n+1 is not
Pintern-admissible for decompositions with respect to C. On the other hand,
the word abba with the unique decoding (2, (ab, ba) is Pintern-violation-free
for decodings and decompositions with respect to C, but it is not Pintern-
admissible for decodings or decompositions with respect to C. Note that we
do not require that ab or ba appears in n or n+ 1 distinct positions in abba.
This proves (4) and the “converse directions” of (2) and (3) do not hold for
intercodes of index n.

For % ∈ {ol, solid}, let C = {abb, bab}. The word abbabb is P%-admissible
for decodings with respect to C, because bab does not occur in a decoding
of abbabb. However, abbabb contains the violating instance abbab as described
in Definition 3.6. Therefore, abbabb is not P%-violation-free for decodings or
decompositions with respect to C. Furthermore, abbabb is not P%-admissible
for decompositions with respect to C. The word abbbab, on the other hand,
is P%-violation-free for decodings or decompositions with respect to C, but it
is not P%-admissible for decodings or decompositions with respect to C. This
proves (4) and the “converse directions” of (2) and (3) do not hold.

Let q = u1u2 · · ·un with u1, u2, . . . , un ∈ C be Psolid-violation-free for
decodings with respect to C. Suppose q contains a Psolid-violating instance v
as infix If v it is a violating instance of Pi, let w = v ∈ C; if v it is a violating
instance of Pol, let w <p v such that w ∈ C and there exists w′ <s v such
that w′ ∈ C and |ww′| > |v|. We distinguish five cases:

• If w = ui, for some 1 ≤ i ≤ n, such that v ≤p wui+1 · · ·un then v
would be a witness that q is not Psolid-violation-free for decodings with
respect to C.

• If w was an infix of any ui, then ui would be a witness that q is not
Pi-violation-free for decodings with respect to C.

• If w = uiui+1 · · ·uj for some i, j with 1 ≤ i < j ≤ n, then w (in the
decoding q = u1 · · ·ui−1wuj+1 · · ·un) would be a witness that q is not
Pi-violation-free for decodings with respect to C.

• If there existed 1 ≤ i < n and x, y, z ∈ Σ+ such that ui = xy, w = yz
and w ≤p ui+1 · · ·un, then xyz is a witness that q is not Pol-violation-
free for decodings with respect to C.
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• If there existed 1 < i ≤ n and x, y, z ∈ Σ+ such that w = xy, ui = yz
and w ≤s u1 · · ·ui−1, then xyz is a witness that q is not Pol-violation-
free for decodings with respect to C.

This covers all possibilities of how w, as prefix of v, can be located in q. This
proves (5). �

One can intuit the relativization of a code property P as follows: If a
word q ∈ C+ satisfies the relativized property with respect to C, then the
word should be uniquely decodable over C. As we show next, this intuition
holds true for the notion of admissibility, but does so only for some special
properties when considering violation-freeness. However, the converse of this
statement is not true: If a word q is uniquely decodable over C, then q is not
necessarily P -violation-free or P -admissible for decompositions or decodings
with respect to C. For example, consider the prefix-free property and C =
{ab, aba}. The word q = ababa has the unique C-decoding (2, (ab, aba)); it
is, however, neither Pp-violation-free nor Pp-admissible for decompositions or
decodings with repect to C.

Theorem 3.3. Let ω ⊆ k-tuples(Σ+) be a k-ary relation such that if a non-
empty language D satisfies Pω, then D is a code (all words over Σ+ have
at most one D-decoding). Let C ⊆ Σ+ be a non-empty language. If q is
Pω-admissible for decodings or decompositions, then q has at most one C-
decoding.

Proof: Suppose q ∈ Σ+ has two C-decodings and is Pω-admissible for decod-
ings or decompositions relative to C. Let

(m, (u1, u2, . . . , um)) and (n, (v1, v2, . . . , vn))

be two distinct C-decodings of q. Let C ′ = {u1, u2, . . . , um, v1, v2, . . . , vn} ⊆
C. As q is Pω-admissible for decodings or decompositions with respect to C,
for all w ∈ k-tuples(C ′) we have w /∈ ω. Therefore, C ′ satisfies the property
Pω and must be a code. However, the word q has two C ′-decodings – a
contradiction! �

This result easily extends to violation-free words for the properties P%
with % ∈ {p, s, pi, si, b, i, o, h, solid}, using Theorem 3.1. For Psolid we need
to observe that Psolid-violation-freeness with respect to a language C implies
Pi-violation-freeness with respect to C.

29



Corollary 3.1. Let % ∈ {p, s, pi, si, b, i, o, h, solid} and C ⊆ Σ+ be a non-
empty language. If q is P%-violation-free for decodings or decompositions, then
q has at most one C-decoding.

A similar result cannot be obtained for intercodes or comma-free codes:
Let C = {ab, abab} and n ≥ 1 The word abab clearly has two distinct C-
decodings. However, abab is Pintern-violation-free for decodings or decompo-
sitions with respect to C. Indeed, for comma-freeness the shortest violating
instance over C is (ab) ωcomma-free (ab, abab) or (ab) ωcomma-free (abab, ab).

3.4 Relativized Codes

We have arrived at four notions of how a word may satisfy the predicate P%
for a given non-empty language C ⊆ Σ+:

1. vf-decomp: Violation-free for decompositions;

2. vf-decod: Violation-free for decodings;

3. adm-decomp: Admissible for decompositions;

4. adm-decod: Admissible for decodings.

Let M be the set of these notions. Each µ ∈M gives rise to a definition of a
class of relativized codes as follows:

Definition 3.8. Let C and L be non-empty subsets of Σ+, let µ ∈ M and
let

% ∈ {p, s, pi, si, b, i, o, h, solid, ol, intern, comma-free}.
The language C is a P%-µ code relative to L if every word in L has the
property P%-µ with respect to C.

Let Cµ% (L) be the class of P%-µ codes relative to L. Let Lµ%(C) be the class
of non-empty languages L ⊆ Σ+ such that C is a P%-µ code relative to L.
The following statements are consequences of the results obtained so far.

Theorem 3.4. In the statements below the symbols µ, %, C, and L are defined
as follows: µ ∈M,

% ∈ {p, s, pi, si, b, i, o, h, solid, ol, intern, comma-free},

C, L ⊆ Σ+, C 6= ∅, L 6= ∅. The following statements hold true:
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1. For all µ, % and C, the set Lµ%(C) is closed under arbitrary unions.
Therefore, it contains a unique maximal language denoted Mµ

C,%.

2. For all µ, % and L, the set Cµ% (L) is closed under non-empty intersec-
tions.

3. Cvf-decomp
% (L) ⊆ Cvf-decod

% (L) and Cadm-decomp
% (L) ⊆ Cadm-decod

% (L). The
inclusions are proper for some L.

4. Cvf-decomp
% (L) = Cadm-decomp

% (L) for % ∈ {p, s, pi, si, b, i}; Cvf-decomp
% (L) ⊆

Cadm-decomp
% (L) for % ∈ {o, h}; and Cvf-decomp

% (L) ⊇ Cadm-decomp
% (L) for % ∈

{solid, ol, intern, comma-free}. The inclusions are proper for some L.

5. Cvf-decod
% (L) ⊆ Cadm-decod

% (L) for % ∈ {p, s, pi, si, b, i, o, h}. The inclusion
is proper for some L.

6. If C ′ ⊆ C, C ′ 6= ∅, then Lµ%(C) ⊆ Lµ%(C ′) for all µ and %.

7. If L′ ⊆ L then Cµ% (L) ⊆ Cµ% (L′) for all µ and %.

Proof: All statements are easy consequences of the definitions and of Theo-
rems 3.1 and 3.2. �

Theorem 3.4 summarizes simple aspects of relativizing code properties.
More detailed issues can be learned from Theorems 3.1 and 3.2. In both
cases, the statements are limited to specific code properties %. To identify
the common scheme for a wider class of code properties is still an open
problem.

3.5 The Old and New Definitions Compared

We outline how the definitions of code relativization given in [2] and [9] com-
pare to the ones in the present paper. While we attempted to maintain con-
sistency, it was inevitable that some definitions would change given the fact
that a detailed look prompted by [13] revealed the need for a more general
and less uniform approach. Hence, when reading the older papers together
with this one, it is important to watch for slight, but possibly important,
differences in the definitions, before using the statements of theorems. Par-
ticular attention needs to be paid to the issues in the following remark.

Remark 3.3. Let L,C ⊆ Σ+ be non-empty languages.
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1. Let P be a predicate on P≤2(C). Note that a subset ω of 1-tuples(Σ+)∪
2-tuples(Σ+) describes the predicate P , that is P = Pω, if and only if

P ({x, y}) = 0 ⇐⇒ (x, y) ∈ ω or (y, x) ∈ ω and

P ({x}) = 0 ⇐⇒ (x) ∈ ω or (x, x) ∈ ω.

Let P = Pω be described by a set of tuples ω. A word q ∈ C+ is
P -admissible for C in the sense of Definition 3.1 if and only if it is P -
admissible for decodings with respect to C in the sense of Definition 3.7.
Furthermore, if L ⊆ C+, then C is a P -code relative to L in the sense
of Definition 3.3 if and only if C is a P -admissible code for decodings
relative to L in the sense of Definition 3.8.

Note that, Definitions 3.1 and 3.3 do not cover the cases when q /∈ C+

and L 6⊆ C+, respectively, while, in this paper, we naturally extend these
definitions to all words q ∈ Σ+ and languages L ⊆ Σ+.

2. C is a solid code relative to L according to Definition 3.4 if and only
if every word q ∈ L is Psolid-violation-free for decompositions with re-
spect to C in the sense of Definition 3.6 or, equivalently, if C is a
Psolid-violation-free code for decompositions relative to L in the sense
of Definition 3.8.

We suggest that the framework of this paper supersede those of [2, 9].
The concepts are still not ideal, but approaching what we consider the right
ones.

4 Decidability Questions
In general, given non-empty languages C,L ⊆ Σ+ and a code property P ,
one would like to know whether C is a P -code relative to L. In practical
terms, we are given a language L of messages to be transmitted. We are also
given a target for the transmission quality expressed by the predicate P . We
want to know whether a given candidate code C serves the purpose. This
gives rise to decidability problems for relativized codes.

For unrelativized codes, that is codes relative to Σ+, results regarding the
decidability of code properties as of 1996 are proved or summarized in [15, 14].
Further details are found in [3] and [4]. It is known that code properties are
usually decidable when C is a regular language, and undecidable when C is
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a linear language. In [4] it is shown that the boundary between decidability
and undecidability is significantly lower than that of linear languages. For
relativized code properties this implies that one should not expect decidabil-
ity unless C is regular. Regarding assumptions about L, we only consider the
case of L being regular as well. At present we do not know to which extent
this restriction can be lifted.

We first review two notions which we use in some of the proofs in this
section.

1. Let L ⊆ Σ+. The syntactic congruence ∼L with respect to L is defined
as follows: For u, v ∈ Σ+, u ∼L v if and only if, for all x, y ∈ Σ∗, either
xuy and xvy are both in L or both not in L. The syntactic semigroup
of L is the quotient semigroup Σ+/∼L. Each element of the syntactic
semigroup of L is a syntactic class which can be viewed as a language
itself. For a word u we write [u]L to denote its syntactic class. The
syntactic semigroup of a language L is finite if and only if L is regular.
For languages L1 and L2 over the same alphabet Σ, ∼(L1,L2) denotes
the intersection of the congruences ∼L1 and ∼L2 . For additional basic
information on syntactic semigroups we refer to [17, 24].

2. The second notion to consider is that of shuffling on a trajectory. This
concept is widely used in order to describe code properties [29, 18, 19,
20, 21, 14]. A trajectory t is a word over the alphabet {0, 1}. The result
of shuffling two words u and v on the trajectory t is a word w = u�t v
that is obtained by using all letters from u and v where the trajectory
t determines in which places to use letters from u or v. Shuffling is
defined recursively by

λ�λ λ = λ, au�0t v = a(u�t v), u�1t bv = b(u�t v)

where a, b ∈ Σ, u, v ∈ Σ∗, and t ∈ {0, 1}∗. Note that u �t v is only
defined if |u| = |t|0 and |v| = |t|1. This concept is extended to languages
L1, L2 and a set of trajectories t by

L1�t L2 = {u�t v | u ∈ L1, v ∈ L2, t ∈ t}.

The shuffle of two regular languages on a regular set of trajectories
yields a regular language.
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Let P% be a code property and C ⊆ Σ+ be a non-empty language. For
each of the four notions of relativized codes µ ∈ M there is a maximal
language Mµ

C,% such that a language L is a P%-µ code relative to C if and
only if L ⊆Mµ

C,%, as stated in Theorem 3.4.
We show thatMvf-decomp

C,% andMvf-decod
C,% are effectively constructible regular

languages for all P% considered in this paper. Thus, to decide whether or not
a given regular language is a P%-violation-free code for decompositions or
decodings relative to another regular language, one can test for inclusion of
regular languages. Let VC,% = {v ∈ C | v is a violating instance of P% in
C}. Here, a violating instance is a word(v) as used in Definition 3.6. Since
Pol-violation-freeness and Psolid-violation-freeness, do not follow the general
definition, these properties are treated separately.

Lemma 4.1. Let C ⊆ Σ+ be a non-empty language and let

% ∈ {p, s, pi, si, b, i, o, h, intern, comma-free}.

We have Mvf-decomp
C,% = Σ+ \ Σ∗VC,%Σ

∗ and Mvf-decod
C,% = Σ+ \ C∗VC,%C∗.

Proof: The languages Mvf-decomp
C,% and Mvf-decod

C,% contain precisely those words
which are violation-free for decompositions or decodings, respectively, with
respect to C. This is a direct consequence of Definition 3.6. �

Theorem 4.1. For

% ∈ {p, s, pi, si, b, i, o, h, ol, solid, intern, comma-free}

and regular C ⊆ Σ+ the languages Mvf-decomp
C,% and Mvf-decod

C,% are effectively
regular.

Proof: The sets of violations can be expressed as VC,p = C ∩ CΣ+, VC,s =
C ∩ Σ+C, VC,pi = C ∩ Σ∗CΣ+, VC,si = C ∩ Σ+CΣ∗, VC,b = VC,p ∪ VC,s,
VC,i = C ∩ (Σ+CΣ∗ ∪ CΣ+), VC,intern = Cn+1 ∩ Σ+CnΣ+, VC,comma-free =
CC ∩ Σ+CΣ+, which are all regular languages. The sets of violations for
outfix-codes and hypercodes can be expressed using shuffling on a trajectory:
we have VC,h = C ∩ (C �th Σ+) for th = {0, 1}+ and VC,o = C ∩ (C �to Σ+)
for to = 0∗1+0∗; both sets of violations are regular.

Using Lemma 4.1, we obtain that Mvf-decomp
C,% and Mvf-decod

C,% are regular
because VC,% is regular for % ∈ {p, s, pi, si, b, i, o, h, intern, comma-free}. All
steps in these constructions are effective.
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For % = ol, the set of violations can be written as

VC,ol = {xyz | x, y, z ∈ Σ+, xy, yz ∈ C} =
⋃

X,Y,Z∈Σ+/∼C

XY⊆C,Y Z⊆C

XY Z

which is an effectively regular language. As before, we obtain Mvf-decomp
C,ol =

Σ+ \ Σ∗VC,olΣ
∗.

The set Mvf-decod
C,ol cannot be expressed in a similar manner as above; nev-

ertheless, it is effectively regular, given as

Mvf-decod
C,ol = Σ+ \

⋃
X,Y,Z∈Σ+/∼C

XY⊆C,Y Z⊆C

(
C∗XY (ZΣ∗ ∩ C+) ∪ (C+ ∩ Σ∗X)Y ZC∗

)
.

Finally, we have Mvf-decomp
C,solid = Mvf-decomp

C,i ∩ Mvf-decomp
C,ol and Mvf-decod

C,solid =

Mvf-decod
C,i ∩Mvf-decod

C,ol . �

Since the constructions of the regular languages in both Lemma 4.1 and
Theorem 4.1 are effective, one concludes:

Corollary 4.1. Let

% ∈ {p, s, pi, si, b, i, o, h, ol, solid, intern, comma-free}.

For given regular languages C and L it is decidable

1. whether or not C is a P%-violation-free code for decompositions relative
to L, and

2. whether or not C is a P%-violation-free code for decodings relative to L.

This result can be extended to P%-admissible codes for decompositions for
those properties for which P%-admissibility and P%-violation-freeness coincide
– see Theorem 3.1.

Corollary 4.2. Let
% ∈ {p, s, pi, si, b, i}.

For given regular languages C and L it is decidable whether or not C is an
P%-admissible code for decompositions relative to L.
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The situation changes when considering admissibility for decodings. De-
cidability cannot be expressed as an inclusion test of two regular languages
as before.

Proposition 4.1. For a given regular C ⊆ Σ∗ the language Madm-decod
C,p is

not necessarily regular.

Proof: Let Σ = {0, 1} and C = 10∗. Obviously, a word w ∈ 10i10j ∈ C2

belongs to Madm-decod
C,% if and only if i = j. Therefore, the language Madm-decod

C,%

cannot be regular as its intersection with the regular language C2 is not
regular. �

Deciding whether or not a regular language C is an P%-admissible code
for decodings relative to a regular language L works in two stages: first,
decide whether or not C is a code relative to L, that is, every word in L
has at most one C-decoding; then, verify that every decoding of a word in L
is P%-admissible. We focus only on code properties P% defined by irreflexive
binary relations; this excludes solid codes, intercodes, comma-free codes and
overlap-free languages.

The next lemma forms the basis for deciding whether or not a regular
language C is a code relative to a regular language L. The lemma itself does
not require that the languages L and C be regular.

Lemma 4.2. Let L,C ⊆ Σ+ be non-empty languages. The language C is
a code relative to L if and only if, for all syntactic classes Y ∈ Σ+/∼C
contained in C, one has

(C∗Y )−1L ∩ C∗ ∩ (Y −1C \ {λ})C∗ = ∅.

Proof: Suppose C is not a code relative to L. There exists a word w =
u1 · · ·un = v1 · · · vm ∈ L such that u1, . . . , un, v1, . . . , vm ∈ C and ui 6= vi
for some 1 ≤ i ≤ min{n,m}. Let i be minimal such that ui 6= vi and,
by symmetry, assume that ui <p vi. Let Y = [ui]C and observe that z =
ui+1 · · ·un belongs to (C∗Y )−1L as well as C∗; furthermore, since u−1

i vi ∈
Y −1C \ {λ}, we obtain z = (u−1

i vi)vi+1 · · · vm ∈ (Y −1C \ {λ})C∗. Therefore,

(C∗Y )−1L ∩ C∗ ∩ (Y −1C \ {λ})C∗

is not empty.
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Conversely, suppose that

z ∈ (C∗Y )−1L ∩ C∗ ∩ (Y −1C \ {λ})C∗

exists for some Y ∈ Σ+/∼C with Y ⊆ C. Let x1, . . . , xi ∈ C∗ and y ∈ Y such
that w = x1 · · ·xiyz ∈ L. There are u1, . . . , un ∈ C such that z = u1 · · ·un.
Furthermore, we let v0 ∈ y(Y −1C \ {λ}) and v1, . . . , vm ∈ C such that yz =
v0, . . . , vm; note that v0 ∈ C. Thus, we found two factorizations

w = x1 · · ·xiyu1 · · ·un = x1 · · ·xiv0 · · · vm

of a word that belongs to L where all factors belong to C and y 6= v0. We
conclude that C is not a code relative to L. �

Theorem 3.3 and Lemma 4.2 lead to a general method for deciding whether
a regular language C is an P%-admissible code for decodings relative to a reg-
ular language L provided the relation ω% is binary and recognizable in a
transducer model with a decidable emptiness or membership problem. This
applies to

% ∈ {p, s, pi, si, b, i, o, h}.

In [15] it is shown that the emptiness problem for a transducer model is
decidable if and only if its membership problem is decidable. Furthermore, if
the emptiness problem of a transducer machine recognizing ω% is decidable,
then for regular X, Y it is decidable whether or not x ∈ X and y ∈ Y exists
such that x ω% y.

Theorem 4.2. Let C,L ⊆ Σ+ be non-empty regular languages and let P% be
a code property such that ω% is irreflexive and recognizable by a transducer
machine with decidable emptiness problem. It is decidable whether or not C
is a P%-admissible code for decodings relative to L.

Proof: According to Theorem 3.3, for C to be an P%-admissible code for
decodings relative to L, it is necessary that C is a code relative to L. By
Lemma 4.2, we can decide whether or not C is a code relative to L by
performing a series of emptiness test of regular languages. Henceforth, we
assume that we have preformed this test and that C is a code relative to L.

We will show that, under the premise that C is a code relative to L, C is
a P%-admissible code for decodings relative to L if and only if for all syntactic
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classes X, Y ∈ Σ+/∼(C,L) such that X, Y ⊆ C and there exist x ∈ X and
y ∈ Y with x ω% y or y ω% x, we have

C∗XC∗Y C∗ ∩ L = ∅.

Recall that one can decide whether or not there are x ∈ X and y ∈ Y
such that x ω% y or y ω% x because ω% is recognizable by a transducer machine
with decidable emptiness problem [15].

Now, suppose that w ∈ C∗XC∗Y C∗∩L exists for a pairX, Y ∈ Σ+/∼(C,L)

such that X, Y ⊆ C and there exist x ∈ X and y ∈ Y with x ω% y or y ω% x.
Let w ∈ u1Xu2Y u3 for u1, u2, u3 ∈ C∗. One obtains that u1Xu2Y u3 ⊆ L
and, therefore, u1xu2yu3 ∈ C∗XC∗Y C∗ ∩ L with x ω% y or y ω% x. Hence C
is not a P%-admissible code for decodings relative to L.

Conversely, let w ∈ L be a witness for the fact that C is not a P%-
admissible code for decodings relative to L; that is, two words x, y ∈ C
such that x ω% y or y ω% x appear in decodings of w over C; note that we
cannot have x = y since ω% is irreflexive. As C is a code relative to L, x
and y appear in the same decoding; thus, without loss of generality, we can
factorize w = u1xu2yu3 with u1, u2, u3 ∈ C∗ and C∗[x](C,L)C

∗[y](C,L)C
∗ ∩ L

cannot be empty. �

With the tools used in this section we cannot answer the following ques-
tions:

1. For % ∈ {o, h, ol, solid, intern, comma-free} and given regular languages
C, L, is it decidable whether or not C is a P%-admissible code for
decompositions relative to L?

2. For % ∈ {ol, solid, intern, comma-free} and given regular languages C,
L, is it decidable whether or not C is a P%-admissible code for decodings
relative to L?

5 Final Remarks
In information processing, coding serves several purposes. These are ex-
pressed by code properties. In a real information transmission system, mes-
sages arrive with different probabilities including many with probability 0.
Unless data ideal compression is applied, which would essentially eliminate
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the latter and make all messages equally likely, coding should take into ac-
count which messages are likely to be encoded. This idea is modelled by
relativized codes. Thus the standard code properties, both information the-
oretically and in terms of combinatorics, have their relativized counterparts,
relativized to the language of likely messages to be encoded. This is very
much in the spirit of Shannon’s channel coding theorem [26] where messages
of probability 0 are practically ignored.

Contrary to what was envisaged in [2], no uniformly acceptable relativiza-
tion seems possible. Instead, examining various potential models, we arrived
at four definitions, each of which seems to be equally well motivated.

We compare these models both among each other and to intuitive expec-
tations. We also consider their decidability properties. We have indicated a
few open questions. Many more could have been mentioned.
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