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This paper is a continuation of our research work on state complexity of combined operations. Moti-
vated by applications, we study the state complexities of two particular combined operations: catena-
tion combined with star and catenation combined with reversal. We show that the state complexities
of both of these combined operations are considerably less than the compositions of the state com-
plexities of their individual participating operations.

1 Introduction

It is worth mentioning that in the past 15 years, a large number of papers have been published on state
complexities of individual operations, for example, the state complexities of basic operations such as
union, intersection, catenation, star, etc. [5, 7, 9, 10, 14, 16, 17, 18], and the state complexities of several
other operations such as shuffle, orthogonal catenation, proportional removal, and cyclic shift [2, 3, 4,
11]. However, in practice, it is common that several operations, rather than only a single operation, are
applied in a certain order on a number of finite automata. The state complexity of combined operations
is certainly an important research direction in state complexity research. The state complexities of a
number of combined operations have been studied in the past two years. It has been shown that the state
complexity of a combination of several operations are usually not equal to the composition of the state
complexities of individual participating operations [6, 12, 13, 15].

In this paper, we study the state complexities of catenationcombined with star, i.e.,L1L∗
2, and rever-

sal, i.e.,L1LR
2, respectively, whereL1 andL2 are regular languages. These two combined operations are

useful in practice. For example, the regular expressions that match URLs can be summarized asL1L∗
2.

Also, the state complexity ofL1LR
2 is equal to that of catenation combined withantimorphic involution

(L1θ(L2)) in biology. An involution functionθ is such thatθ2 equals the identity function. An antimor-
phic involution is the natural formalization of the notion of Watson-Crick complementarity in biology.
Moreover, the combination of catenation and antimorphic involution can naturally formalize a basic bi-
ological operation, primer extension. Indeed, the processof creating the Watson-Crick complement of a
DNA single strandw1w2 uses the enzyme DNA polymerase to extend a known short primerp= θ(w2)
that is partially complementary to it, to obtainθ(w2)θ(w1) = θ(w1w2). This can be viewed as the cate-
nation between the primerp andθ(w1). The reader is referred to [1] for more details about biological
definitions and operations.

It has been shown in [18] that (1) the state complexity of the catenation of anm-state DFA language
(a language accepted by anm-state minimal complete DFA) and ann-state DFA language ism2n−2n−1,
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(2) the state complexity of the star of ak-state DFA language, where the DFA contains at least one final
state that is not the initial state, is 2k−1+2k−2, and (3) the state complexity of the reversal of anl -state
DFA language is 2l . In this paper, we show that the state complexities ofL1L∗

2 andL1LR
2 are considerably

less than the compositions of their individual state complexities. LetL1 andL2 be two regular languages
accepted by two complete DFAs of sizesp andq, respectively. We will show that, if theq-state DFA
has only one final state which is also its initial state, the state complexity ofL1L∗

2 is p2q−2q−1; in the
other cases, that is when theq-state DFA contains some final states that are not the initialstate, the
state complexity ofL1L∗

2 is (3p−1)2q−2. This is in contrast to the composition of state complexities of
catenation and star that equals(2p−1)22q−1+2q−2−1. We will also show that the state complexity ofL1LR

2
is p2q − 2q−1− p+ 1 instead ofp22q

− 22q−1, the composition of state complexities of catenation and
reversal.

The paper is organized as follows. We introduce the basic notations and definitions used in this
paper in the following section. Then, we study the state complexities of catenation combined with star
and reversal in Sections 3 and 4, respectively. Due to page limitation, we omit the proofs of Lemma 1,
Lemma 2, Lemma 3, Lemma 4, Theorem 5, and Lemma 5. We also omit the proof of Theorem 2 for the
case whenm≥ 2 andn≥ 3. We conclude the paper in Section 5.

2 Preliminaries

An alphabetΣ is a finite set of letters. A wordw∈ Σ∗ is a sequence of letters inΣ, and the empty word,
denoted byλ , is the word of 0 length.

An involution θ : Σ → Σ is a function such thatθ2 = I whereI is the identity function and can be
extended to an antimorphic involution if, for allu,v ∈ Σ∗, θ(uv) = θ(v)θ(u). For example, letΣ =
{a,b,c} and defineθ by θ(a) = b,θ(b) = a,θ(c) = c, thenθ(aabc) = cabb. Note that the well-known
DNA Watson-Crick complementarity is a particular antimorphic involution defined over the four-letter
DNA alphabet,∆ = {A,C,G,T}.

A non-deterministic finite automaton(NFA) is a quintupleA= (Q,Σ,δ ,s,F), whereQ is a finite set
of states,s∈ Q is the start state, andF ⊆ Q is the set of final states,δ : Q×Σ → 2Q is the transition
function. If |δ (q,a)| ≤ 1 for anyq ∈ Q anda ∈ Σ, then this automaton is called adeterministic finite
automaton(DFA). A DFA is said to be complete ifδ (q,a) is defined for allq ∈ Q anda ∈ Σ. All the
DFAs we mention in this paper are assumed to be complete. We extendδ to Q×Σ∗→Q in the usual way.
Then the automaton accepts a wordw∈ Σ∗ if δ (s,w)∩F 6= /0. Two statesp,q∈ Q are equivalent if the
following condition holds:δ (p,w) ∈ F if and only if δ (q,w) ∈ F for all wordsw∈ Σ∗. It is well-known
that a language which is accepted by an NFA can be accepted by aDFA, and such a language is said to
be regular. The language accepted by a finite automatonA is denoted byL(A). The reader is referred
to [8, 19] for more details about regular languages and finiteautomata.

Thestate complexityof a regular languageL, denoted bysc(L), is the number of states of the minimal
complete DFA that acceptsL. The state complexity of a classSof regular languages, denoted bysc(S),
is the supremum among allsc(L), L ∈ S. The state complexity of an operation on regular languages is
the state complexity of the resulting language from the operation as a function of the state complexities
of the operand languages. For example, we say that the state complexity of the intersection of anm-state
DFA language and ann-state DFA language is exactlymn. This implies that the largest number of states
of all the minimal complete DFAs that accept the intersection of two languages accepted by two DFAs of
sizesmandn, respectively, ismn, and such languages exist. Thus, in a certain sense, the state complexity
of an operation is a worst-case complexity.
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3 Catenation combined with star

In this section, we consider the state complexity of catenation combined with star. LetL1 andL2 be two
languages accepted by two DFAs of sizesm andn, respectively. We notice that, if then-state DFA has
only one final state which is also its initial state, this DFA also acceptsL∗

2. Thus, in such a case, an upper
bound for the number of states of any DFA that acceptsL1L∗

2 = L1L2 is given by the state complexity of
catenation asm2n−2n−1. We first show that this upper bound is reachable by some DFAs of this form
(Lemma 1). Then, we consider the state complexity ofL1L∗

2 in the other cases, that is when then-state
DFA contains some final states that are not the initial state.We show that, in such cases, the upper bound
(Theorem 1) coincides with the lower bound (Theorem 2).

Lemma 1. For any m≥ 2 and n≥ 2, there exists a DFA A of m states and a DFA B of n states, where B
has only one final state that is also the initial state, such that any DFA accepting the language L(A)L(B),
which is equal to L(A)L(B)∗, needs at least m2n−2n−1 states.

Note that, ifn= 1, due to Theorem 3 in [18], for any DFAA of sizem≥ 1, the state complexity of a
DFA acceptingL(A)L(B) (L(A)L(B)∗) is m.

In the rest of this section, we only consider casesL1L∗
2 where the DFA forL2 contains at least one

final state that is not the initial state. Thus, the DFA forL2 is of size at least 2.
When considering the size of the DFA forL1, we notice that, when the size of this DFA is 1, the state

complexity ofL1L∗
2 is 1.

Lemma 2. Let A be a 1-state DFA and B be a DFA of n≥ 1 states. Then, the necessary and sufficient
number of states for a DFA to accept L(A)L(B)∗ is 1.

Now, we focus on the cases whenm> 1 andn> 1, and give an upper bound for the state complexity
of L1L∗

2.

Theorem 1. Let A= (Q1,Σ,δ1,s1,F1) be a DFA such that|Q1| = m > 1 and |F1| = k1, and B=
(Q2,Σ,δ2,s2,F2) be a DFA such that|Q2|= n> 1 and |F2−{s2}|= k2 ≥ 1. Then, there exists a DFA of
at most m(2n−1+2n−k2−1)−k12n−k2−1 states that accepts L(A)L(B)∗.

Proof. We denoteF2−{s2} by F0. Then,|F0|= k2 ≥ 1.
We construct a DFAC = {Q,Σ,δ ,s,F} for the languageL1L∗

2, whereL1 andL2 are the languages
accepted by DFAsA andB, respectively. Intuitively,C is constructed by first constructing a DFAB′ for
acceptingL∗

2, then catenatingA to this new DFA. Note that, in the construction forB′, we need to add an
additional initial and final states′2. By careful examination, we can check that the states ofB′ are states′2
and the elements inP−{ /0}, whereP is defined in the following. As the state set we choose

Q= {r ∪ p | r ∈ Randp∈ P}, where

R = {S| S= {qi}, if qi 6∈ F1,S= {qi ,s
′
2}, otherwise, whereqi ∈ Q1}, and

P = {S| S⊆ (Q2−F0)}∪{T | T ⊆ Q2,s2 ∈ T, andT ∩F0 6= /0}.

If s1 6∈ F1, the initial states is s= {s1}∪{ /0}, otherwise,s= {s1,s′2}∪{ /0}.
The set of final statesF is chosen to beF = {S∈ Q | S∩ (F2∪{s′2}) 6= /0}.
We denote a state inQ as{qi}∪G, whereqi ∈ Q1 andG⊆ Q2∪{s′2}. Then, the transition relationδ

is defined as follows:

δ ({qi}∪G,a) = D1∪D2∪D3, for anya∈ Σ, where
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D1: If δ1(qi ,a) = q′i ∈ F1, D1 = {q′i ,s
′
2}, otherwise,D1 = {q′i}.

D2: If s′2 ∈ G, thenD2 = {δ2(s2,a)}, otherwise,D2 = /0.

D3: If G= /0, D3 = /0, otherwise,

D3 =

{

δ2(G,a) if δ2(G,a)∩F0 = /0,
δ2(G,a)∪{s2} otherwise.

We can verify that the DFAC indeed acceptsL1L∗
2. It is clear that each state inQ should consist of

exactly one state inQ1 and the states in one element ofP−{ /0}. Moreover, if a state ofQ contains a final
state ofA, then this state also contains the states′2.

To get an upper bound for the state complexity of catenation combined with star, we should count
the number of states ofQ. However, as we will show in the following, some states inQ are equivalent.

Let us recall the construction forB′. Note that, in that construction, statess′2 ands2 should reach the
same state on any letter inΣ. Also note that a state ofQ containss′2 only when it contains a final state
of A. Moreover, there exist pairs of states, denoted by{qf ,s′2,s2}∪T and{qf ,s′2}∪T, such thatqf is a
final state ofA andT ⊆ Q2\{s2}. Then, we show that the two states in each of such pairs are equivalent
as follows. For a lettera∈ Σ and a wordw∈ Σ∗,

δ ({qf ,s
′
2,s2}∪T,aw) = δ ({qf ,s

′
2}∪T,aw) = δ (δ ({qf ,s

′
2}∪T,a),w).

Note that the equivalent states are only in the setF1×{s′2}×{S|S⊆ (Q2−F0)}, and we can furthermore
partition this set into two sets as

F1×{s′2}×{s2}×{S′ | S′ ⊆ (Q2−F0−{s2})}∪

F1×{s′2}×{S′ | S′ ⊆ (Q2−F0−{s2})}.

It is easy to see that, for each state in the former set, there exists one and only one equivalent state in the
latter set, and vice versa. Thus, the number of equivalent pairs isk12n−k2−1.

Finally, we calculate the number of inequivalent states ofQ. Notice that there arem elements inR,
2n−k2 elements in the first term ofP, and(2k2 −1)2n−k2−1 elements in the second term ofP. Therefore,
the size ofQ is |Q| = m(2n−1+2n−k2−1). Then, after removing one state from each equivalent pair, we
obtain the following upper bound

m(2n−1+2n−k2−1)−k12n−k2−1.

Next, we give examples to show that this upper bound can be reached.

Theorem 2. For any integers m≥ 2 and n≥ 2, there exists a DFA A of m states and a DFA of n states

such that any DFA accepting L(A)L(B)∗ needs at least m
3
4

2n−2n−2 states.

Proof. We first give an example of two DFAsAandB of sizesm≥ 2 andn= 2, respectively, and we show
that the number of states of a DFA acceptingL(A)L(B)∗ reaches the upper bound given in Theorem 1.
We use a three-letter alphabetΣ = {a,b,c}. We omit the cases whenn> 2, due to the page limit.

DefineA= (Q1,Σ,δ1,q0,{qm−1}), whereQ1 = {q0,q1, . . . ,qm−1}, and the transitions are given as:

• δ1(qi ,a) = qi+1, i ∈ {0, . . . ,m−2}, δ1(qm−1,a) = q0,
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• δ1(qi ,b) = qi+1, i ∈ {0, . . . ,m−3}, δ1(qm−2,b) = q0, δ1(qm−1,b) = qm−2,

• δ1(qi ,c) = qi+1, i ∈ {0, . . . ,m−3}, δ1(qm−2,c) = q0, δ1(qm−1,c) = qm−1.

DefineB= (Q2,Σ,δ2,0,{1}), whereQ2 = {0,1}, and the transitions are given as:

δ2(0,a) = 1, δ2(0,b) = 0, δ2(0,c) = 0,

δ2(1,a) = 0, δ2(1,b) = 1, δ2(1,c) = 0.

Following the construction described in the proof of Theorem 1, we construct a DFAC=(Q3,Σ,δ3,s3,F3)
that acceptsL(A)L(B)∗. Note that setP only contains three elementsP= { /0,{0},{0,1}}. To prove that
C reaches the upper bound, it is sufficient to show that 1) all the states inQ3 are reachable froms3, 2) after
merging the equivalent states{qm−1,0′} and{qm−1,0′,0}, the remaining states are pairwise inequivalent.

We first consider the reachability of all the states. It is clear that state{qi}∪{ /0}, for i ∈ {1, . . . ,m−
2}, and state{qm−1,0′} ∪ { /0} are reachable froms3 by reading the stringsai andam−1, respectively.
Then, on lettersbandc, we can reach states{qm−2,0} and{qm−1,0′,0}, respectively, from state{qm−1,0′}.
Moreover, state{qi ,0}, i ∈ {0, . . . ,m−3}, can be reached from state{qm−2,0} by reading the stringbi+1.
Lastly, state{qi ,0,1}, i ∈ {0, . . . ,m−2}, and state{qm−1,0′,0,1}, are reachable from{qm−1,0′} on in-
putsai+1 andam, respectively.

Since states{qm−1,0′} and{qm−1,0′,0} are equivalent, we remove state{qm−1,0′,0} from Q3, and
show that the rest of the states are pairwise inequivalent. Let {qi}∪G and{q j}∪H be two different
states inQ3 with 0≤ i ≤ j ≤ m−1. There are three cases:

1. i < j. Then the stringam−1−ic is accepted by DFAC starting from state{qi}∪G, but it is not
accepted starting from state{q j}∪H. Note that, after readingam−1−ic, state{qi}∪G reaches a state that
contains statesqm−1 and 0′. In contrast, the state reached by{qi}∪H on the same input does not contain
these states. Moreover, the resulting states cannot contain state 1, since on letterc, C remains in state 0
from state 0 and goes to state 0 from state 1.

2. i = j 6= m− 1. SinceP = { /0,{0},{0,1}} consists of only three elements, we consider them
individually. It is obvious that, state{qi ,0,1} is not equivalent to either{qi} or {qi ,0}, since it is a final
state but the latter two are not. States{qi} and{qi ,0} are inequivalent, since on the stringab we can
reach a final state from state{qi ,0} but not from state{qi}.

3. i = j = m− 1. There are only two states{qm−1,0′} and{qm−1,0′,0,1}. They are inequivalent,
because after reading a letterb, state{qm−1,0′,0,1} leads to a final state ofC but{qm−1,0′} does not.

Due to 1) and 2), DFAC has at least 3m+ 2 pairwise inequivalent reachable states, which reaches
the upper bound in Theorem 1.

4 Catenation combined with reversal

In this section, we first show that the state complexity of catenation combined with an antimorphic in-
volution θ (L1θ(L2)) is equal to that of catenation combined with reversal. Thatis, we show, for two
regular languagesL1 andL2, thatsc(L1θ(L2)) = sc(L1LR

2) (Corollary 1). Then, we obtain the state com-
plexity of L1LR

2 by proving that its upper bound (Theorem 3) coincides with its lower bound (Theorem 4,
Theorem 5, and Lemma 5).

We note that an antimorphic involutionθ can be simulated by the composition of two simpler
operations: reversal and a mappingφ , which is defined asφ(a) = θ(a) for any lettera ∈ Σ, and
φ(uv) = φ(u)φ(v) whereu,v∈ Σ+. Thus, for a languageL, we haveθ(L) = φ(LR) andθ(L) = (φ(L))R.
It is clear thatφ is a homomorphism. Thus, the language resulting from applying such a mapping to a
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regular language remains to be regular. Moreover, we can obtain a relationship between the sizes of the
two DFAs that acceptL andφ(L), respectively.

Lemma 3. Let L⊆ Σ∗ be a language that is accepted by a minimal DFA of size n, n≥ 1. Then, the
necessary and sufficient number of states of a DFA to acceptφ(L) is n.

In order to show that the state complexity ofL1θ(L2) is equal to that ofL1LR
2 , we first show that

the state complexity of catenation combined withφ is equal to that of catenation, i.e., for two regular
languagesL1 andL2, sc(L1φ(L2)) = sc(L1L2). Due to the above lemma, ifL2 is accepted by a DFA
of sizen, φ(L2) is accepted by another DFA of sizen as well. Thus, the upper bound for the number
of states of any DFA that acceptsL1φ(L2) is clearly less than or equal tom2n−2n−1. The next lemma
shows that this upper bound can be reached by some languages.

Lemma 4. For integers m≥ 1 and n≥ 2, there exist languages L1 and L2 accepted by two DFAs of sizes
m and n, respectively, such that any DFA accepting L1φ(L2) needs at least m2n−2n−1 states.

As a consequence, we obtain that the state complexity of catenation combined withφ is equal to that
of catenation.

Corollary 1. For two regular languages L1 and L2, sc(L1φ(L2)) = sc(L1L2).

Then, we can easily see that the state complexity of catenation combined withθ is equal to that of
catenation combined with reversal as follows.

sc(L1θ(L2)) = sc(L1φ(LR
2)) = sc(L1LR

2).

In the following, we study the state complexity ofL1LR
2 for regular languagesL1 andL2. We will first

look into an upper bound of this state complexity.

Theorem 3. For two integers m,n≥ 1, let L1 and L2 be two regular languages accepted by an m-state
DFA with k1 final states and an n-state DFA with k2 final states, respectively. Then there exists a DFA of
at most m2n−k12n−k2(2k2 −1)−m+1 states that accepts L1LR

2 .

Proof. Let M = (QM,Σ,δM,sM ,FM) be a DFA ofm states,k1 final states andL1 = L(M). Let N =
(QN,Σ,δN,sN,FN) be another DFA ofnstates,k2 final states andL2= L(N). LetN′=(QN,Σ,δN′ ,FN,{sN})
be an NFA withk2 initial states.δN′(p,a) = q if δN(q,a) = p wherea∈ Σ andp,q∈ QN. Clearly,

L(N′) = L(N)R = LR
2.

After performing subset construction onN′, we can get an equivalent, 2n-state DFAA=(QA,Σ,δA,sA,FA)
such thatL(A) = LR

2 . Please note thatA may not be minimal and sinceA has 2n states, one of its final
state must beQN. Now we construct a DFAB= (QB,Σ,δB,sB,FB) accepting the languageL1LR

2 , where

QB = {〈i, j〉 | i ∈ QM, j ∈ QA},

sB = 〈sM , /0〉, if sM 6∈ FM;

= 〈sM ,FN〉, otherwise,

FB = {〈i, j〉 ∈ QB | j ∈ FA},

δB(〈i, j〉,a) = 〈i′, j ′〉, if δM(i,a) = i′, δA( j,a) = j ′, a∈ Σ, i′ /∈ FM;

= 〈i′, j ′∪FN〉, if δM(i,a) = i′, δA( j,a) = j ′, a∈ Σ, i′ ∈ FM.

It is easy to see thatδB(〈i,QN〉,a) ∈ FB for any i ∈ QM anda∈ Σ. This means all the states (two-tuples)
ending withQN are equivalent. There aremsuch states in total.
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On the other hand, since NFAN′ hask2 initial states, the states inB starting withi ∈ FM must end
with j such thatFN ⊆ j. There are in totalk12n−k2(2k2 −1) states which don’t meet this.

Thus, the number of states of the minimal DFA acceptingL1LR
2 is no more than

m2n−k12n−k2(2k2 −1)−m+1.

This result gives an upper bound for the state complexity ofL1LR
2 . Next we show that this bound is

reachable.

Theorem 4. Given two integers m≥ 2, n≥ 2, there exists a DFA M of m states and a DFA N of n states
such that any DFA accepting L(M)L(N)R needs at least m2n−2n−1−m+1 states.

Proof. Let M = (QM,Σ,δM ,0,{m−1}) be a DFA, whereQM = {0,1, . . . ,m−1}, Σ = {a,b,c}, and the
transitions are given as:

• δM(i,x) = i, i = 0, . . . ,m−1,x∈ {a,b},

• δM(i,c) = i +1 modm, i = 0, . . . ,m−1.

Let N = (QN,Σ,δN,0,{0}) be a DFA, whereQN = {0,1, . . . ,n−1}, Σ = {a,b,c}, and the transitions
are given as:

• δN(0,a) = n−1, δN(i,a) = i −1, i = 1, . . . ,n−1,

• δN(0,b) = 1, δN(i,b) = i, i = 1, . . . ,n−1,

• δN(0,c) = 1, δN(1,c) = 0, δN( j,c) = j, j = 2, . . . ,n−1, if n≥ 3.

Now we design a DFAA= (QA,Σ,δA,{0},FA), whereQA = {q | q⊆ QN}, Σ = {a,b,c}, FA = {q |
0∈ q, q∈ QA}, and the transitions are defined as:

δA(p,e) = { j | δN( j,e) = i, i ∈ p}, p∈ QA, e∈ Σ.

It has been shown in [18] thatA is a minimal DFA that acceptsL(N)R. LetB=(QB,Σ= {a,b,c},δB,sB =
〈0, /0〉,FA) be another DFA, where

QB = {〈p,q〉 | p∈ QM −{m−1}, q∈ QA−{QN}}∪{〈0,QN〉}

∪ {〈m−1,q〉 | q∈ QA−{QN}, {0} ∈ q},

FB = {〈p,q〉 | q∈ FA, 〈p,q〉 ∈ QB},

and for each state〈p,q〉 ∈ QB and each lettere∈ Σ,

δB(〈p,q〉,e) =























〈p′,q′〉 if δM(p,e) = p′ 6= m−1, δA(q,e) = q′ 6= QN,
〈p′,q′〉 if δM(p,e) = p′ = m−1,

δA(q,e) = r ′, q′ = r ′∪{0}, q′ 6= QN,
〈0,QN〉 if δM(p,e) = m−1, δA(q,e) = r ′, r ′∪{0}= QN,
〈0,QN〉 if δM(p,e) 6= m−1, δA(q,e) = QN.

As we mentioned in last proof, all the states (two-tuples) ending with QN are equivalent. So here, we
replace them with one state:〈0,QN〉. And all the states starting withm−1 must end withj ∈ QA such
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that 0∈ j. It is easy to see thatB accepts the languageL(M)L(N)R. It hasm2n − 2n−1−m+ 1 states.
Now we show thatB is a minimal DFA.

(I) We first show that every state〈i, j〉 ∈ QB is reachable by induction on the size ofj. Let k = | j|
andk≤ n−1. Note that state〈0,QN〉 is reachable from state〈0, /0〉 over stringcmb(ab)n−2.

Whenk= 0, i should be less thanm−1 according to the definition ofB. Then, there always exists a
stringw= ci such thatδB(〈0, /0〉,w) = 〈i, /0〉.

Basis (k= 1): State〈m−1,{0}〉 can be reached from state〈m−2, /0〉 on a letterc. State〈0,{0}〉 can
be reached from state〈m−1,{0}〉 on stringcan−1. Then, fori ∈ {1, . . . ,m−2}, state〈i,{0}〉 is reachable
from state〈i − 1,{0}〉 on stringcan−1. Moreover, fori ∈ {0, . . . ,m− 2}, state〈i, j〉 is reachable from
state〈i,{0}〉 on stringa j .

Induction steps: Assume that all states〈i, j〉 such that| j|< k are reachable. Then, we consider the
states〈i, j〉 where| j|= k. Let j = { j1, j2, . . . , jk} such that 0≤ j1 < j2 < .. . < jk ≤ n−1. We consider
the following four cases:

1. j1 = 0 and j2 = 1. State〈m−1,{0,1, j3, . . . , jk}〉 is reachable from state〈m−2,{0, j3, . . . , jk}〉
on a letterc. Then, fori ∈ {0, . . . ,m−2}, state〈i, j〉 can be reached from state〈m−1,{0,1, j3, . . . , jk}〉
on stringci+1.

2. i = 0, j1 = 0, and j2 > 1. State〈0, j〉 can be reached as follows:

〈0,{ j1, j2, . . . , jk}〉= δB(〈m−2,{ j3− j2+1, . . . , jk− j2+1,n− j2+1}〉,c2a j2−1).

3. i = 0 and j1 > 0. State〈0, j〉 is reachable from state〈0,{0, j2− j1, . . . , jk− j1}〉 over stringa j1.
4. We consider the remaining states. Fori ∈ {1, . . . ,m−1}, state〈i, j〉 such thatj1 = 0 and j2 > 1

can be reached from state〈i −1,{1, j2, . . . , jk}〉 on a letterc, and, fori ∈ {1, . . . ,m−2}, state〈i, j〉 such
that j1 > 0 is reachable from state〈i,{0, j2− j1, . . . , jk− j1}〉 over stringa j1. Recall that we do not have
states〈i, j〉 such thati = m−1 and j1 > 0.

(II) We then show that any two different states〈i1, j1〉 and〈i2, j2〉 in QB are distinguishable. Let us
consider the following three cases:

1. j1 6= j2. Without loss of generality, we may assume that| j1| ≥ | j2|. Let x ∈ j1− j2. We don’t
need to consider the case whenx= 0, because, if 0∈ j1− j2, then the two states are clearly in different
equivalent classes. For 0< x ≤ n− 1, there always exists a stringt such thatδB(〈i1, j1〉, t) ∈ FB and
δB(〈i2, j2〉, t) /∈ FB, where

t =







an−x if i2 6= m−1, j1 6= j2,
an−x−1ca if i2 = m−1, j1 6= j2, n> 2,
c if i2 = m−1, j1 6= j2, n= 2.

Note that, under the second condition, after reading the prefix an−x−1 of t, staten−1 cannot be in the
second component of the resulting state. This is becausex 6∈ j2.

Also note that whenn= 2, j1, j2 ∈ {QN,{0},{1}}, whereQN = {0,1}. Moreover, wheni2 = m−1,
〈i2, j2〉 can only be〈m−1,{0}〉. Due to the definition ofB, we have that, fors≥ 1, 〈s,QN〉 /∈ QB. Thus,
it is easy to see that〈i1, j1〉 is either〈i1,{1}〉 or 〈0,{0,1}〉. When〈i1, j1〉 = 〈i1,{1}〉, 0∈ j1 − j2, so
the two states are distinguishable. When〈i1, j1〉 = 〈0,{0,1}〉, a stringc can distinguish them because
δB(〈0,{0,1}〉,c) ∈ FB andδB(〈m−1,{0}〉,c) /∈ FB.

2. j1 = j2 6= QN, i1 6= i2. Without loss of generality, we may assume thati1 > i2. In this case,
i2 6=m−1. Letx∈QN− j1. There always exists a stringu= an−x+1bcm−1−i1 such thatδB(〈i1, j1〉,u)∈FB

andδB(〈i2, j2〉,u) /∈ FB.
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Let 〈i1, j ′1〉 and〈i2, j ′1〉 be two states reached from states〈i1, j1〉 and〈i2, j2〉 on the prefixan−x+1 of
w, respectively. We notice that state 1 ofN cannot be inj ′1. Then, after reading another letterb, we reach
states〈i1, j ′′1〉 and〈i2, j ′′1〉, respectively. It is easy to see that states 0 and 1 ofN are not in j ′′1. Lastly,
after reading the remaining stringcm−1−i1 from state〈i1, j ′′1〉, the first component of the resulting state
is the final state of DFAM and therefore its second component contains state 0 of DFAN. In contrast,
the second component of the resulting state reached from state 〈i2, j ′′1〉 on the same string cannot contain
state 0, and hence it is not a final state ofB. Note that this includes the case thatj1 = j2 = /0, i1 6= i2.

3. We don’t need to consider the casej1 = j2 = QN, because there is only one state inQB which ends
with QN. It is 〈0,QN〉.

Since all the states inB are reachable and pairwise distinguishable, DFAB is minimal. Thus, any
DFA acceptingL(M)L(N)R needs at leastm2n−2n−1−m+1 states.

This result gives a lower bound for the state complexity ofL(M)L(N)R whenm,n≥ 2. It coincides
with the upper bound whenk1 = 1 andk2 = 1. In the rest of this section, we consider the remaining
cases when eitherm= 1 or n= 1. We first consider the case whenm= 1 andn≥ 3. We haveL1 = /0 or
L1 = Σ∗. WhenL1 = /0, for anyL2, a 1-state DFA always acceptsL1LR

2, sinceL1LR
2 = /0. The following

theorem provides a lower bound for the latter case.

Theorem 5. Given an integer n≥ 3, there exists a DFA M of1 state and a DFA N of n states such that
any DFA accepting L(M)L(N)R needs at least2n−1 states.

Now, we consider the case whenm= 1 andn= 2.

Lemma 5. There exists a1-state DFA M and a2-state DFA N such that any DFA accepting L(M)L(N)R

needs at least2 states.

Lastly, we consider the case whenm≥ 1 andn= 1. WhenL2 = /0, for anyL1, a 1-state DFA always
acceptsL1LR

2 = /0. WhenL2 = Σ∗, L1LR
2 = L1Σ∗, since(Σ∗)R = Σ∗. Due to Theorem 3 in [18], which

states that, for any DFAA of sizem≥ 1, the state complexity ofL(A)Σ∗ is m, the following is immediate.

Corollary 2. Given an integer m≥ 1, there exists an m-state DFA M and a1-state DFA N such that any
DFA accepting L(M)L(N)R needs at least m states.

After summarizing Theorems 3, 4, and 5, Lemma 5 and Corollary2, we obtain the state complexity
of the combined operationL1LR

2.

Theorem 6. For any integer m≥ 1, n≥ 1, m2n−2n−1−m+1 states are both necessary and sufficient
in the worst case for a DFA to accept L(M)L(N)R, where M is an m-state DFA and N is an n-state DFA.

5 Conclusion

Motivated by their applications, we have studied the state complexities of two particular combinations of
operations: catenation combined with star and catenation combined with reversal. We proved that they
are significantly lower than the compositions of the state complexities of their individual participating
operations. Thus, this paper shows further that the state complexity of a combination of operations has
to be studied individually.
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