
Software Design Patterns for Enabling Auto Dynamic
Difficulty in Video Games

Muhammad Iftekher Chowdhury, Michael Katchabaw
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada

Abstract—Auto dynamic difficulty is the technique of
automatically changing the level of difficulty of a video game in
real time to match player expertise. In this paper, we describe a
collection of software design patterns for enabling auto dynamic
difficulty in video games. The benefits of a design pattern
approach include more reusability and lower risk compared to
traditional ad hoc approaches. We implemented these design
patterns as a proof-of-concept prototype system using Pac-Man
as a test-bed.

Keywords-auto dynamic difficulty; game balancing; software
design pattern

I. INTRODUCTION

In the last 30 years, the scope of video games has expanded
considerably in terms of platforms, genres and size.
Unfortunately, we still struggle with keeping players engaged
in a game for a long period of time. According to a recent
article [1], 90% of game players never finish a game. One of
the key engagement factors for a video game is an appropriate
level of difficulty, as games become frustrating when they are
too hard and boring when they are too easy [2]. From the point
of view of skill levels, reflex speeds, hand-eye coordination,
tolerance for frustration, and motivations, video game players
may vary drastically [3]. These factors together make it very
challenging for video game designers to set an appropriate
level of difficulty in a video game. Traditional static difficulty
levels (e.g., easy, medium, hard) often fail in this context as
they expect the players to judge their ability themselves
appropriately before playing the game and also try to classify
them in broad clusters (e.g., what if easy is too easy and
medium is too difficult for a particular player?).

Auto dynamic difficulty (ADD), also known as dynamic
difficulty adjustment (DDA) or dynamic game balancing
(DGB), refers to the technique of automatically changing the
level of difficulty of a video game in real time, based on the
player’s ability (or, the effort s/he is currently spending) in
order to provide them the “optimal experience”, also
sometimes referred to as “flow”. If the dynamically adjusted
difficulty level of a video game appropriately matches the
expertise of the current player, then it will not only attract
players of varying demographics but also enable the same
player to play the game repeatedly without being bored.
Popular games such as “Max Payne”, "Half-Life 2" and “God
Hand” use the concept of auto dynamic difficulty. While
others have studied ADD in games, this has been done in an ad
hoc fashion in terms of software design and is therefore not

reusable or applicable to other games. Recreating an ADD
system on a game-by-game basis is both expensive and time
consuming, ultimately limiting its usefulness. For this reason,
in our current work, we leverage the benefits of software
design patterns [4] to construct an ADD framework and system
that is reusable, portable, flexible, and maintainable. In this
paper, we describe a collection of four design patterns from
self-adaptive system literature, derived in the context of
enabling auto dynamic difficulty in video games, and discuss
their use in a proof-of-concept prototype system. We used a
variant of Pac-Man as a test-bed for our study.

The rest of this paper is organized as follows. In Section II,
we discuss the literature reviewed. In Section III, we describe
the design patterns for enabling auto dynamic difficulty in
video games. In Section IV, we describe the proof-of-concept
implementation. In Sections V and VI, we highlight the benefit
of a design pattern approach and conclude the paper.

II. RELATED WORK

In recent years, ADD has received notable attention from
numerous researchers. Some of this research is primarily
focused on knowledge seeking, whereas other works present
solutions such as frameworks and algorithms. Additionally, in
some research, new solutions are presented together with
empirical validations. Here, we review some of these works.

Bailey and Katchabaw [3] developed an experimental test-
bed based on Epic’s Unreal engine that can be used to
implement and study ADD in games. It allows development of
new ADD algorithms as well. A number of mini-game game-
play scenarios were developed in the test-bed and these were
used in preliminary validation experiments.

Rani et al. [5] suggested a method to use real time
feedback, by measuring the anxiety level of the player using
wearable biofeedback sensors, to modify game difficulty. They
conducted an experiment on a Pong-like game to show that
physiological feedback based difficulty levels were more
effective than performance feedback to provide an appropriate
level of challenge. Physiological signals data were collected
from 15 participants each spending 6 hours in cognitive tasks
(i.e., anagram and Pong tasks) and these were analyzed offline
to train the system.

Hunicke [6] used a probabilistic model to design ADD in
an experimental first person shooter (FPS) game based on the
Half-life SDK. They used the game in an experiment on 20
subjects and found that ADD increased the player’s

performance (i.e., the mean number of deaths decreased from
6.4 to 4 in the first 15 minutes of play) and the players did not
notice the adjustments.

Orvis et al. [7], from an experiment involving 26
participants, found that across all difficulty levels, completion
of the game resulted in an improvement in performance and
motivation. Prior gaming experience was found to be an
important influence factor. Their findings suggested that for
inexperienced gamers, the method of manipulating difficulty
level would influence performance.

Hao et al. [8] proposed a Monte-Carlo Tree Search (MCTS)
based algorithm for ADD to generate intelligence of non-player
characters. Because of the computational intensiveness of the
approach, they also provided an alternative based on artificial
neural networks (ANN) created from the MCTS. They also
tested the feasibility of their approach using Pac-Man.

Hocine and Gouaïch [9] described an ADD approach for
pointing tasks in therapeutic games. They introduced a
motivation model based on job satisfaction and activation
theory to adapt the task difficulty. They also conducted
preliminary validation through a control experiment on eight
healthy participants using a Wii balance board game.

As we can see from above discussion, the work on ADD in
video games focuses on tool building (e.g., framework [3],
algorithm ([6], [8]) etc.) and empirical studies (e.g., [5], [7]
etc.), but they all use an ad-hoc approach from a software
design point of view. Thus, in this paper, we discuss the usage
of software design patterns derived from self-adaptive system
literature for enabling ADD in video games.

III. DESIGN PATTERNS

Ramirez and Cheng [10] presented 12 design patterns,
developed through the generalization of design solutions found
in the self-adaptive system literature, that would assist in
enabling adaptability in a software system. We found four of
these design patterns to be often necessary and sufficient for
enabling ADD in video games. In this section, we derive these
design patterns in the context of ADD in video games. We used
the same classification scheme of adaptive design patterns as
Ramirez and Cheng (i.e., monitoring, decision making, and
reconfiguration patterns). Bailey and Katchabaw also used
synonymous component names for their framework [3]. In
Sections A, B, and C, we discuss monitoring, decision making,
and reconfiguration patterns respectively. In Section D, we
discuss how these design patterns work together.

A. Monitoring Pattern

The main purpose of ADD is to provide more enjoyment to
a broader range of player types and skill levels. Even though it
seems that there should be a direct mapping from a player’s
achievements to their enjoyment, the actual relationship is far
more complicated. For example, high achievement with
minimum effort can be boring for a hardcore player whereas
low achievement with high effort can be frustrating for a
novice player. Thus, before we dynamically adjust the
difficulty level of a game, we need to know the player’s
perceived level of difficulty which requires collecting data

from the game at runtime. The monitoring pattern is used to
provide a systematic way of collecting data while satisfying
resource constraints, and provide those data to the rest of the
ADD system. Examples of data to be collected include the
player’s score, player’s life level, time spent on activities,
inventory, number of enemies killed, and so on.

Sensor factory: Sensors are objects that periodically read
data from the game1 and notify the rest of the ADD system.
Sensor (please see Figure 1) is an abstract class which
encapsulates the periodical collection and notification
mechanism. It has the abstract method refreshValue() which
child classes need to define. A concrete sensor realizes the
Sensor and defines data collection and calculation inside the
refreshValue() method. An example of a concrete sensor can be
AverageScorePerLifeSensor, which reads score and number of
life attributes from the game and divides the score by the
number of lives. The SensorFactory class uses the “factory
method” pattern to provide a unified way of creating any
sensors. It takes the sensorName and the object to be monitored
as input and creates the sensor. It is good practice that the
object will provide an appropriate interface so that it can be
queried by the ConcreteSensor for the required attribute. If for
some reason the object does not provide the required interface,
then reflection can be used to bypass the access modifier.

Figure 1. Sensor factory design pattern

Before creating a sensor, the SensorFactory checks in the
Registry data structure to see whether the sensor has already
been created. If created, the SensorFactory just returns that
sensor instead of creating a new one. Otherwise, it verifies with
a ResourceManager whether a new sensor can be created
without violating any resource constraints. Usually, the
underlying platform and/or development environment provides
wrappers for resource monitoring. For example, the
java.lang.Runtime class and java.lang.management package
provide such functionality.

B. Decision Making Patterns

After collecting raw data using the monitoring pattern (i.e.,
sensor factory), the ADD system must interpret what that
information means in the context of a particular game and
which game elements need to be adjusted to what degree to

1 Please note that, with the advancements of HCI in games, the scope of
sensors are no longer limited to the game world. Real world data collected
from input devices such as Xbox’s Kinect, Wii’s controller, Playstation’s
Move, etc. might be useful to monitor for ADD. Research (e.g., [5]) also
suggests biological feedback can be included in this context.

provide the player with an appropriate level of difficulty. Two
decision making patterns: adaptation detector and case based
reasoning are discussed below, encapsulating the tasks of
“when to adjust the game” and “what to adjust in the game and
how to adjust?” respectively.

Adaptation detector: With the help of the sensor factory
pattern, the AdaptationDetector (please see Figure 2) deploys a
number of sensors in the game and attaches observers2 to each
sensor. Observer encapsulates the data collected from sensor,
the unit of data, and whether the data is up-to-date or not. The
unit of data represents the degree of precision necessary for
each particular type of sensor data. For example, in a particular
game, every tenth change in the player’s inventory might be
worth noticing, compared to changes in the player’s remaining
number of lives, which should be noted on each change.
AdaptationDetector periodically compares the updated values
found from Observers with specific Threshold values with the
help of the ThresholdAnalyzer. Each Threshold contains one or
more boundary values as well as the type of the boundary (e.g.,
less than, greater than, not equal to, etc.). Once the
ThresholdAnalyzer indicates a situation when adaptation might
be needed, the AdaptationDetector creates a Trigger with the
information that the rest of the ADD process might need.
Trigger also holds book-keeping attributes such as the trigger
creation time and so on. For example, if the average score per
life is less than a particular threshold, then it might indicate that
an adaptation is necessary. Now to give a bigger picture, the
Trigger may include contextual information, such as the
number of enemies left, their average speed, etc.
AdaptationDetector needs to make sure that it does not
repeatedly create the same Trigger.

Figure 2. Adaptation detector design pattern

Case based reasoning: While the adaptation detector
determines the situation when a difficulty-adjustment is
required by creating a Trigger, case based reasoning (please
see Figure 3) formulates the Decision that contains the
adjustment plan. As the name of the pattern suggests, this
pattern is best suited to games where the difficulty adjustment
logic can be defined as a finite number of cases.

The InferenceEngine has two data structures: the
TriggerPool and the FixedRules. FixedRules contains a number
of Rules3 . Each Rule is a combination of a Trigger and a
Decision. The Triggers created by the adaptation detector will

2 In an observer design pattern, the subject (i.e., sensors in this case) maintains
a list of observers and notifies them of changes. Many programming
languages provide a built in observer implementation mechanism.
3 Please note that, the Rules are very much specific to the game and the
success of the ADD system highly depends on determining and using
appropriate Rules.

be stored in the TriggerPool. To address the triggers in the
sequence they were raised in, the TriggerPool should be a
FIFO data structure. The FixedRules data structure should
support search functionality so that when the InferenceEngine
takes a Trigger from the TriggerPool, it can scan through the
Rules held by FixedRules and find a Decision that
appropriately responds to the Trigger. Please note that many
programming languages will have built in implementation for
typical instantiation of the TriggerPool and the FixedRules. A
Trigger should provide the method (e.g., overriding the
equalsTo() method in Java) to compare it with another one so
that the InferenceEngine can find and take the appropriate
Decision. Optionally, a learner component (not shown in
Figure 3) can be attached to the inference engine, which can
learn new rules based on monitoring the sequence and
effectiveness of different trigger-decision executions on the
game.

Figure 3. Case based reasoning design pattern

C. Reconfiguration Pattern

Once the ADD system detects that a difficulty adjustment is
necessary, and decides what and how to adjust the various
game components, it is the task of the reconfiguration pattern
to facilitate smooth execution of the decision. This task is non-
trivial because the game difficulty needs to be adjusted while
the player is progressing through the game. If the adjustment is
drastic, it will disturb the player’s immersion. Also, there is the
risk of leaving the game in an inconsistent state. Here we
discuss the game reconfiguration pattern, derived from the
server reconfiguration pattern [10] for a client-server model, as
a systematic approach to reconfigure the game. The reason we
choose this pattern is because a video game often closely
resembles a client-server model in which a server continuously
checks in a loop for requests from clients and responds to the
requests when they arrive. Similarly, in a video game, the game
logic continuously checks in the game loop for inputs from
input devices (such as the keyboard, mouse, gamepad, sensors,
etc.) and behaves according to those inputs.

Game reconfiguration: The server reconfiguration pattern
described in [10] assumes that the object that needs to be
configured will implement a specific interface for
reconfiguration. With the help of the adapter design pattern,
this assumption can be eliminated from the game
reconfiguration design pattern (as we show in Figure 4 and
discuss below). The AdaptationDriver receives a Decision
selected by the InferenceEngine (please see case based

reasoning in Section III B) and executes it with the help of the
Driver. Driver implements the algorithm to make any attribute
change in an object that implements the State interface (i.e.,
that the object can be in ACTIVE, BEING_ACTIVE,
BEING_INACTIVE or INACTIVE states, and outside objects
can request state changes). As the name suggests, in the active
state, the object shows its usual behavior whereas in the
inactive state, the object stops its regular tasks and is open to
changes. The Driver takes the object to be reconfigured
(default object used if not specified), the attribute path (i.e., the
attribute that needs to be changed, specified according to a
predefined protocol4) and the changed attribute value as inputs.
The Driver requests the object that needs to be reconfigured to
be inactive and waits for the inactivation. When the object
becomes inactive, it reconfigures the object as specified. After
that, it requests the object to be active and informs the
AdaptationDriver when the object becomes active. The
GameState maintains a RequestBuffer data structure to
temporarily store the inputs received during the inactive state
of the game. The GameState overrides Game’s event handling
methods and game-loop to implement the State interface. It is
important to note that in a reasonable implementation, all the
state changes and reconfigurations can be done in less time
than the game loop’s sleeping period after each execution and,
consequently, these changes are not noticeable to the player.

Figure 4. Game reconfiguration design pattern

D. ADD Design Patterns

In this Section, we briefly re-discuss how the four design
patterns discussed in previous sections work together to create
a complete ADD system (please see Figure 5).

The sensor factory pattern uses Sensors to collect data from
the game so that the player’s perceived level of difficulty can
be measured. The adaptation detector pattern observes Sensor
data using Observers. When the adaptation detector finds
situations where difficulty needs to be adjusted, it creates
Triggers with appropriate additional information. Case based
reasoning gets notified about required adjustments by means of
Triggers. It finds appropriate Decisions associated with the
Triggers and passes them to the adaptation driver. The
adaptation driver applies the changes specified by each
Decision to the game, to adjust the difficulty of the game
appropriately, with the help of the Driver. The adaptation
driver also makes sure that the change process is transparent to

4 Example can be: object oriented dot notation like,
attribute1.sub_attribute2[sub_attribute_index].sub_sub_attribute5.

the player. In this way, all four design patterns work together to
create a complete ADD system for a particular game.

Figure 5. ADD design patterns

IV. PROOF OF CONCEPT

We implemented a proof-of-concept prototype ADD
system in Java using the design patterns discussed in Section
III and a variant of Pac-Man as a test-bed (please see Figure 6).
We choose Pac-Man for our case study, as it is both a highly
influential video game and a game used widely among
researchers as a test-bed in their work.

Figure 6. Screen captured from the developed Pac-Man gamea

a. The player controls Pac-Man in a maze. There are pellets, power pellets, and
4 ghosts in the maze. Pac-Man has 6 lives. Usually, ghosts are in a predator
mode and touching them will cause the loss of one of Pac-Man’s lives. When
Pac-Man eats a power-pellet, it becomes the predator for a certain amount of
time. When Pac-Man is in this predator mode and eats a ghost, the ghost will
go back to the center of the maze and will stay there for a certain amount of
time. Eating pellets gives points to Pac-Man. The player tries to eat all the
pellets in the maze without losing all of Pac-Man’s lives. The player is
motivated to chase the ghosts while in predator mode, as that will benefit them
by keeping the ghosts away from the maze for a time, allowing Pac-Man to eat
pellets more freely. Ghosts only change direction when they reach intersections
in the maze, while Pac-Man can change direction at any time. A ghost’s vision
is limited to a certain number of cells in the maze. Ghosts chase the player if
they can see them. If the ghosts do not see Pac-Man, they try to roam the cells
with pellets, as Pac-Man needs to eventually visit those areas to collect the
pellets. If the ghosts do not see either Pac-Man or pellets, they move in a
random fashion.

Usually, a Pac-Man game is multi-level, but our
implementation has only one level. The maximum possible
score is 300 in our case, so the player will try to achieve the
score of 300 without losing all of Pac-Man’s lives. Our
assumption is that if the player loses all lives (i.e., 6) before
finishing the game, then the average score per life (i.e., total
score / number of lives lost to achieve the score) would be less
than 50 and the game would seem overly difficult to them. On
the other hand, if the player finishes the game losing half of the
lives or less, then the average score would be greater than or

equal to 100, and the game would seem too easy to them. Thus,
in this case, the ADD system monitors the average-score-per-
life and changes game difficulty accordingly. It starts
increasing the game difficulty when the monitored value is
more than 50 and the game become most difficult when the
value is more than 100. (Corresponding logic decreases the
game difficulty when the average-score-per-life is less than
50.) The attributes ghost’s speed, the ghost’s vision length,
duration of Pac-Man’s predator mode, and the amount of time
that a ghost stays in the centre of the maze after being eaten by
Pac-Man in predator mode are increased or decreased to
change the game difficulty. Each of these attributes has lower
and upper limits, so that the game includes the option of
someone playing extremely well or extremely poorly.

V. DISCUSSION

In this section, we discuss the benefits of using a design
pattern approach for implementing ADD in video games:

Reusable solution: A framework- or middleware-based
approach for creating a self adaptive-system (such as ADD in
video games) is usually specific to a particular programming
language and or platform, whereas a design pattern-based
approach is highly reusable across different platforms and
programming languages [10].

Reusable source code: Generally, it is expected that
reusable source code can be created for reusable solutions. Our
preliminarily plans on how to reuse the ADD source code of
the Pac-Man game (discussed in Section IV) indicates that a
design pattern approach for implementing ADD in video games
will result in highly reusable source code. We are also planning
on some further studies with other games to confirm this idea.

Lower risk: As these design patterns have been developed
based on generalizations of other researchers’ work in the area
of self-adaptive systems [10], this approach is less risky
compared to an ad-hoc approach, and more likely to be
effective in implementing ADD.

Separation of concerns: As different parts of the design
patterns have specific concerns (e.g., Sensors will collect data,
Driver will make changes to the game, etc.) the resulting
source code will have high traceability and maintainability. So,
creating test cases also becomes easier compared to a more ad-
hoc approach.

Parallelizable: Since, in this approach, the game logic and
ADD logic are clearly separate entities, they can be
implemented and evolved in parallel. Also, it is possible to
implement ADD logic on top of pre-existing games.

Defined process: Since the high level structure of the
solution is already known, it is possible to create a step-by-step
method for developing ADD (e.g., identifying the attributes to
be monitored, identify attributes that controls the difficulty,
etc.). Furthermore, developers can focus more on game play
design and ADD logic design (please see Section IV for
example) rather than implementation details.

VI. CONCLUSIONS AND FUTURE WORK

Design patterns are a formal approach of describing
reusable solutions for a design problem. To date, the literature
on the usage of software design patterns in video games is
relatively scarce. Thus, in this paper, we introduced four design
patterns from the self-adaptive system literature derived in the
context of enabling auto dynamic difficulty (ADD) in video
games. We also described a proof-of-concept implementation
as a means for validation of those design patterns. Even though
our context of discussion was ADD, these patterns can be used
in any situation where the game needs to be adaptive and
reconfigures itself based on monitoring. In the future, we want
to conduct case studies to evaluate the applicability of these
design patterns across different genres and platforms. Our
future plans also include developing a set of reusable
components implementing these design patterns.

REFERENCES

[1] B. Snow, "Why most people don't finish video games," Online
publication in CNN, August 17, 2011. Retrieved from:
http://www.cnn.com/2011/TECH/gaming.gadgets/08/17/finishing.video
games.snow/. Last accessed: July 04, 2012.

[2] Y. Hao, S. He, J. Wang, X. Liu, J. Yang, and W. Huang, "Dynamic
difficulty adjustment of game AI by MCTS for the game Pac-Man," In
Proc. of 6th Int. Conf. on Natural Computation, 2010, pp. 3918-3922.

[3] C. Bailey, and M. Katchabaw, "An experimental test bed to enable auto-
dynamic difficulty in modern video games," In Proc. of the 2005 North
American Game-On Conf., 2005, pp. 18-22.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vissides, "Design patterns:
elements of reusable object-oriented software," Addison - Wesley, 1995.

[5] P. Rani, N. Sarkar, and C. Liu, "Maintaining optimal challenge in
computer games through real-time physiological feedback," In Proc. of
11th Int. Conf. on Human-Computer Interaction, 2005, pp. 184-192.

[6] R. Hunicke, "The case for dynamic difficulty adjustment in games," In
Proc. of 2005 ACM SIGCHI Int. Conf. on Advances in computer
entertainment technology, 2005, pp. 429-433.

[7] K. A. Orvis, D. B. Horn, and J. Belanich, "The roles of task difficulty
and prior videogame experience on performance and motivation in
instructional videogames," Computers in Human Behavior, vol. 24(5),
pp. 2415-2433, September 2008.

[8] Y. Hao, S. He, J. Wang, X. Liu, J. Yang, and W. Huang, "Dynamic
difficulty adjustment of game AI by MCTS for the game Pac-Man," In
Proc. of 6th Int. Conf. on Natural Computation, 2010, pp. 3918-3922.

[9] N. Hocine, and A. Gouaïch, " Therapeutic games' difficulty adaptation:
An approach based on player's ability and motivation," In Proc. of 16th
Int. Conf. on Computer Games (CGAMES), 2011, pp. 257 - 261.

[10] A. J. Ramirez, and B. H. Cheng, B., "Design patterns for developing
dynamically adaptive systems," In Proc. of 2010 ICSE Workshop on
Software Eng. for Adaptive and Self-Managing Syst., 2010, pp. 49 - 58.

BIOGRAPHY

Muhammad Iftekher Chowdhury is a PhD candidate working in
the area of game design at the University of Western Ontario. He
finished his Masters in software engineering from the same
university.

Dr. Michael Katchabaw is a Associate Professor at the University
of Western Ontario. His research interest includes game design
and development. He co-founded the Digital Recreation,
Entertainment, Art, and Media (DREAM) research group at
Western.

