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Abstract—Auto dynamic difficulty is the technique of 
automatically changing the level of difficulty of a video game in 
real time to match player expertise. In this paper, we describe a 
collection of software design patterns for enabling auto dynamic 
difficulty in video games. The benefits of a design pattern 
approach include more reusability and lower risk compared to 
traditional ad hoc approaches. We implemented these design 
patterns as a proof-of-concept prototype system using Pac-Man 
as a test-bed. 
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I. INTRODUCTION

In the last 30 years, the scope of video games has expanded 
considerably in terms of platforms, genres and size. 
Unfortunately, we still struggle with keeping players engaged 
in a game for a long period of time. According to a recent 
article [1], 90% of game players never finish a game. One of 
the key engagement factors for a video game is an appropriate 
level of difficulty, as games become frustrating when they are 
too hard and boring when they are too easy [2].  From the point 
of view of skill levels, reflex speeds, hand-eye coordination, 
tolerance for frustration, and motivations, video game players 
may vary drastically [3].  These factors together make it very 
challenging for video game designers to set an appropriate 
level of difficulty in a video game. Traditional static difficulty 
levels (e.g., easy, medium, hard) often fail in this context as 
they expect the players to judge their ability themselves 
appropriately before playing the game and also try to classify 
them in broad clusters (e.g., what if easy is too easy and 
medium is too difficult for a particular player?). 

Auto dynamic difficulty (ADD), also known as dynamic 
difficulty adjustment (DDA) or dynamic game balancing 
(DGB), refers to the technique of automatically changing the 
level of difficulty of a video game in real time, based on the 
player’s ability (or, the effort s/he is currently spending) in 
order to provide them the “optimal experience”, also 
sometimes referred to as “flow”. If the dynamically adjusted 
difficulty level of a video game appropriately matches the 
expertise of the current player, then it will not only attract 
players of varying demographics but also enable the same 
player to play the game repeatedly without being bored. 
Popular games such as “Max Payne”, "Half-Life 2" and “God 
Hand” use the concept of auto dynamic difficulty.   While 
others have studied ADD in games, this has been done in an ad 
hoc fashion in terms of software design and is therefore not 

reusable or applicable to other games.  Recreating an ADD 
system on a game-by-game basis is both expensive and time 
consuming, ultimately limiting its usefulness.  For this reason, 
in our current work, we leverage the benefits of software 
design patterns [4] to construct an ADD framework and system 
that is reusable, portable, flexible, and maintainable. In this 
paper, we describe a collection of four design patterns from 
self-adaptive system literature, derived in the context of 
enabling auto dynamic difficulty in video games, and discuss 
their use in a proof-of-concept prototype system. We used a 
variant of Pac-Man as a test-bed for our study.

The rest of this paper is organized as follows. In Section II, 
we discuss the literature reviewed. In Section III, we describe 
the design patterns for enabling auto dynamic difficulty in 
video games. In Section IV, we describe the proof-of-concept 
implementation. In Sections V and VI, we highlight the benefit 
of a design pattern approach and conclude the paper.

II. RELATED WORK

In recent years, ADD has received notable attention from 
numerous researchers. Some of this research is primarily 
focused on knowledge seeking, whereas other works present 
solutions such as frameworks and algorithms. Additionally, in 
some research, new solutions are presented together with 
empirical validations. Here, we review some of these works.      

Bailey and Katchabaw [3] developed an experimental test-
bed based on Epic’s Unreal engine that can be used to 
implement and study ADD in games. It allows development of 
new ADD algorithms as well. A number of mini-game game-
play scenarios were developed in the test-bed and these were 
used in preliminary validation experiments.

Rani et al. [5] suggested a method to use real time 
feedback, by measuring the anxiety level of the player using 
wearable biofeedback sensors, to modify game difficulty. They 
conducted an experiment on a Pong-like game to show that 
physiological feedback based difficulty levels were more 
effective than performance feedback to provide an appropriate 
level of challenge. Physiological signals data were collected 
from 15 participants each spending 6 hours in cognitive tasks 
(i.e., anagram and Pong tasks) and these were analyzed offline 
to train the system. 

Hunicke [6] used a probabilistic model to design ADD in 
an experimental first person shooter (FPS) game based on the 
Half-life SDK. They used the game in an experiment on 20 
subjects and found that ADD increased the player’s 



performance (i.e., the mean number of deaths decreased from 
6.4 to 4 in the first 15 minutes of play) and the players did not 
notice the adjustments.

Orvis et al. [7], from an experiment involving 26 
participants, found that across all difficulty levels, completion 
of the game resulted in an improvement in performance and 
motivation. Prior gaming experience was found to be an 
important influence factor. Their findings suggested that for 
inexperienced gamers, the method of manipulating difficulty 
level would influence performance.

Hao et al. [8] proposed a Monte-Carlo Tree Search (MCTS) 
based algorithm for ADD to generate intelligence of non-player 
characters. Because of the computational intensiveness of the 
approach, they also provided an alternative based on artificial 
neural networks (ANN) created from the MCTS. They also 
tested the feasibility of their approach using Pac-Man.

Hocine and Gouaïch [9] described an ADD approach for 
pointing tasks in therapeutic games. They introduced a 
motivation model based on job satisfaction and activation 
theory to adapt the task difficulty. They also conducted 
preliminary validation through a control experiment on eight 
healthy participants using a Wii balance board game.    

As we can see from above discussion, the work on ADD in 
video games focuses on tool building (e.g., framework [3], 
algorithm ([6], [8]) etc.) and empirical studies (e.g., [5], [7]
etc.), but they all use an ad-hoc approach from a software 
design point of view. Thus, in this paper, we discuss the usage 
of software design patterns derived from self-adaptive system 
literature for enabling ADD in video games.

III. DESIGN PATTERNS

Ramirez and Cheng [10] presented 12 design patterns, 
developed through the generalization of design solutions found 
in the self-adaptive system literature, that would assist in 
enabling adaptability in a software system. We found four of 
these design patterns to be often necessary and sufficient for 
enabling ADD in video games. In this section, we derive these 
design patterns in the context of ADD in video games. We used 
the same classification scheme of adaptive design patterns as 
Ramirez and Cheng (i.e., monitoring, decision making, and 
reconfiguration patterns). Bailey and Katchabaw also used 
synonymous component names for their framework [3]. In 
Sections A, B, and C, we discuss monitoring, decision making, 
and reconfiguration patterns respectively. In Section D, we 
discuss how these design patterns work together.

A. Monitoring Pattern

The main purpose of ADD is to provide more enjoyment to 
a broader range of player types and skill levels. Even though it 
seems that there should be a direct mapping from a player’s 
achievements to their enjoyment, the actual relationship is far 
more complicated. For example, high achievement with 
minimum effort can be boring for a hardcore player whereas 
low achievement with high effort can be frustrating for a
novice player. Thus, before we dynamically adjust the 
difficulty level of a game, we need to know the player’s 
perceived level of difficulty which requires collecting data 

from the game at runtime. The monitoring pattern is used to 
provide a systematic way of collecting data while satisfying 
resource constraints, and provide those data to the rest of the 
ADD system. Examples of data to be collected include the 
player’s score, player’s life level, time spent on activities, 
inventory, number of enemies killed, and so on.

Sensor factory: Sensors are objects that periodically read 
data from the game1 and notify the rest of the ADD system. 
Sensor (please see Figure 1) is an abstract class which 
encapsulates the periodical collection and notification 
mechanism. It has the abstract method refreshValue() which 
child classes need to define. A concrete sensor realizes the 
Sensor and defines data collection and calculation inside the 
refreshValue() method. An example of a concrete sensor can be 
AverageScorePerLifeSensor, which reads score and number of 
life attributes from the game and divides the score by the 
number of lives. The SensorFactory class uses the “factory 
method” pattern to provide a unified way of creating any 
sensors. It takes the sensorName and the object to be monitored 
as input and creates the sensor. It is good practice that the 
object will provide an appropriate interface so that it can be 
queried by the ConcreteSensor for the required attribute. If for 
some reason the object does not provide the required interface, 
then reflection can be used to bypass the access modifier.

Figure 1. Sensor factory design pattern

Before creating a sensor, the SensorFactory checks in the 
Registry data structure to see whether the sensor has already 
been created. If created, the SensorFactory just returns that 
sensor instead of creating a new one. Otherwise, it verifies with 
a ResourceManager whether a new sensor can be created 
without violating any resource constraints. Usually, the 
underlying platform and/or development environment provides 
wrappers for resource monitoring. For example, the 
java.lang.Runtime class and java.lang.management package 
provide such functionality.

B. Decision Making Patterns

After collecting raw data using the monitoring pattern (i.e., 
sensor factory), the ADD system must interpret what that 
information means in the context of a particular game and 
which game elements need to be adjusted to what degree to 

                                                          
1 Please note that, with the advancements of HCI in games, the scope of 
sensors are no longer limited to the game world. Real world data collected 
from input devices such as Xbox’s Kinect, Wii’s controller, Playstation’s 
Move, etc. might be useful to monitor for ADD.  Research (e.g., [5]) also 
suggests biological feedback can be included in this context.



provide the player with an appropriate level of difficulty. Two 
decision making patterns: adaptation detector and case based 
reasoning are discussed below, encapsulating the tasks of 
“when to adjust the game” and “what to adjust in the game and 
how to adjust?” respectively.

Adaptation detector: With the help of the sensor factory 
pattern, the AdaptationDetector (please see Figure 2) deploys a 
number of sensors in the game and attaches observers2 to each 
sensor. Observer encapsulates the data collected from sensor, 
the unit of data, and whether the data is up-to-date or not. The 
unit of data represents the degree of precision necessary for 
each particular type of sensor data. For example, in a particular 
game, every tenth change in the player’s inventory might be 
worth noticing, compared to changes in the player’s remaining 
number of lives, which should be noted on each change. 
AdaptationDetector periodically compares the updated values 
found from Observers with specific Threshold values with the 
help of the ThresholdAnalyzer. Each Threshold contains one or 
more boundary values as well as the type of the boundary (e.g., 
less than, greater than, not equal to, etc.). Once the 
ThresholdAnalyzer indicates a situation when adaptation might 
be needed, the AdaptationDetector creates a Trigger with the 
information that the rest of the ADD process might need.
Trigger also holds book-keeping attributes such as the trigger 
creation time and so on. For example, if the average score per 
life is less than a particular threshold, then it might indicate that 
an adaptation is necessary. Now to give a bigger picture, the 
Trigger may include contextual information, such as the 
number of enemies left, their average speed, etc. 
AdaptationDetector needs to make sure that it does not 
repeatedly create the same Trigger.

Figure 2. Adaptation detector design pattern

Case based reasoning: While the adaptation detector 
determines the situation when a difficulty-adjustment is 
required by creating a Trigger, case based reasoning (please 
see Figure 3) formulates the Decision that contains the 
adjustment plan. As the name of the pattern suggests, this 
pattern is best suited to games where the difficulty adjustment 
logic can be defined as a finite number of cases.

The InferenceEngine has two data structures: the 
TriggerPool and the FixedRules. FixedRules contains a number 
of Rules3 . Each Rule is a combination of a Trigger and a 
Decision. The Triggers created by the adaptation detector will 

                                                          
2 In an observer design pattern, the subject (i.e., sensors in this case) maintains 
a list of observers and notifies them of changes. Many programming 
languages provide a built in observer implementation mechanism.
3 Please note that, the Rules are very much specific to the game and the 
success of the ADD system highly depends on determining and using 
appropriate Rules.

be stored in the TriggerPool. To address the triggers in the 
sequence they were raised in, the TriggerPool should be a 
FIFO data structure. The FixedRules data structure should 
support search functionality so that when the InferenceEngine
takes a Trigger from the TriggerPool, it can scan through the 
Rules held by FixedRules and find a Decision that 
appropriately responds to the Trigger. Please note that many 
programming languages will have built in implementation for 
typical instantiation of the TriggerPool and the FixedRules. A 
Trigger should provide the method (e.g., overriding the 
equalsTo() method in Java) to compare it with another one so 
that the InferenceEngine can find and take the appropriate 
Decision. Optionally, a learner component (not shown in 
Figure 3) can be attached to the inference engine, which can 
learn new rules based on monitoring the sequence and 
effectiveness of different trigger-decision executions on the 
game.

Figure 3. Case based reasoning design pattern

C. Reconfiguration Pattern

Once the ADD system detects that a difficulty adjustment is 
necessary, and decides what and how to adjust the various 
game components, it is the task of the reconfiguration pattern 
to facilitate smooth execution of the decision. This task is non-
trivial because the game difficulty needs to be adjusted while 
the player is progressing through the game. If the adjustment is 
drastic, it will disturb the player’s immersion. Also, there is the 
risk of leaving the game in an inconsistent state. Here we 
discuss the game reconfiguration pattern, derived from the 
server reconfiguration pattern [10] for a client-server model, as
a systematic approach to reconfigure the game. The reason we 
choose this pattern is because a video game often closely 
resembles a client-server model in which a server continuously 
checks in a loop for requests from clients and responds to the 
requests when they arrive. Similarly, in a video game, the game 
logic continuously checks in the game loop for inputs from 
input devices (such as the keyboard, mouse, gamepad, sensors, 
etc.) and behaves according to those inputs.

Game reconfiguration: The server reconfiguration pattern 
described in [10] assumes that the object that needs to be 
configured will implement a specific interface for 
reconfiguration. With the help of the adapter design pattern, 
this assumption can be eliminated from the game
reconfiguration design pattern (as we show in Figure 4 and 
discuss below). The AdaptationDriver receives a Decision
selected by the InferenceEngine (please see case based 



reasoning in Section III B) and executes it with the help of the 
Driver. Driver implements the algorithm to make any attribute 
change in an object that implements the State interface (i.e., 
that the object can be in ACTIVE, BEING_ACTIVE, 
BEING_INACTIVE or INACTIVE states, and outside objects 
can request state changes). As the name suggests, in the active 
state, the object shows its usual behavior whereas in the 
inactive state, the object stops its regular tasks and is open to 
changes. The Driver takes the object to be reconfigured 
(default object used if not specified), the attribute path (i.e., the 
attribute that needs to be changed, specified according to a 
predefined protocol4) and the changed attribute value as inputs. 
The Driver requests the object that needs to be reconfigured to 
be inactive and waits for the inactivation. When the object 
becomes inactive, it reconfigures the object as specified. After 
that, it requests the object to be active and informs the 
AdaptationDriver when the object becomes active. The 
GameState maintains a RequestBuffer data structure to 
temporarily store the inputs received during the inactive state 
of the game. The GameState overrides Game’s event handling 
methods and game-loop to implement the State interface. It is 
important to note that in a reasonable implementation, all the 
state changes and reconfigurations can be done in less time 
than the game loop’s sleeping period after each execution and, 
consequently, these changes are not noticeable to the player.

Figure 4. Game reconfiguration design pattern

D. ADD Design Patterns

In this Section, we briefly re-discuss how the four design 
patterns discussed in previous sections work together to create 
a complete ADD system (please see Figure 5).

The sensor factory pattern uses Sensors to collect data from 
the game so that the player’s perceived level of difficulty can 
be measured. The adaptation detector pattern observes Sensor 
data using Observers. When the adaptation detector finds 
situations where difficulty needs to be adjusted, it creates 
Triggers with appropriate additional information. Case based 
reasoning gets notified about required adjustments by means of 
Triggers. It finds appropriate Decisions associated with the
Triggers and passes them to the adaptation driver. The 
adaptation driver applies the changes specified by each 
Decision to the game, to adjust the difficulty of the game 
appropriately, with the help of the Driver. The adaptation 
driver also makes sure that the change process is transparent to 

                                                          
4 Example can be: object oriented dot notation like, 
attribute1.sub_attribute2[sub_attribute_index].sub_sub_attribute5.

the player. In this way, all four design patterns work together to 
create a complete ADD system for a particular game.

Figure 5. ADD design patterns

IV. PROOF OF CONCEPT

We implemented a proof-of-concept prototype ADD 
system in Java using the design patterns discussed in Section 
III and a variant of Pac-Man as a test-bed (please see Figure 6). 
We choose Pac-Man for our case study, as it is both a highly 
influential video game and a game used widely among 
researchers as a test-bed in their work. 

Figure 6. Screen captured from the developed Pac-Man gamea

a. The player controls Pac-Man in a maze. There are pellets, power pellets, and 
4 ghosts in the maze. Pac-Man has 6 lives. Usually, ghosts are in a predator 
mode and touching them will cause the loss of one of Pac-Man’s lives. When 
Pac-Man eats a power-pellet, it becomes the predator for a certain amount of 
time. When Pac-Man is in this predator mode and eats a ghost, the ghost will 
go back to the center of the maze and will stay there for a certain amount of 
time. Eating pellets gives points to Pac-Man. The player tries to eat all the 
pellets in the maze without losing all of Pac-Man’s lives. The player is 
motivated to chase the ghosts while in predator mode, as that will benefit them 
by keeping the ghosts away from the maze for a time, allowing Pac-Man to eat 
pellets more freely. Ghosts only change direction when they reach intersections 
in the maze, while Pac-Man can change direction at any time. A ghost’s vision 
is limited to a certain number of cells in the maze. Ghosts chase the player if 
they can see them. If the ghosts do not see Pac-Man, they try to roam the cells 
with pellets, as Pac-Man needs to eventually visit those areas to collect the 
pellets. If the ghosts do not see either Pac-Man or pellets, they move in a 
random fashion.

Usually, a Pac-Man game is multi-level, but our 
implementation has only one level. The maximum possible 
score is 300 in our case, so the player will try to achieve the 
score of 300 without losing all of Pac-Man’s lives. Our 
assumption is that if the player loses all lives (i.e., 6) before 
finishing the game, then the average score per life (i.e., total 
score / number of lives lost to achieve the score) would be less 
than 50 and the game would seem overly difficult to them. On 
the other hand, if the player finishes the game losing half of the 
lives or less, then the average score would be greater than or 



equal to 100, and the game would seem too easy to them. Thus, 
in this case, the ADD system monitors the average-score-per-
life and changes game difficulty accordingly. It starts 
increasing the game difficulty when the monitored value is 
more than 50 and the game become most difficult when the 
value is more than 100. (Corresponding logic decreases the 
game difficulty when the average-score-per-life is less than 
50.)  The attributes ghost’s speed, the ghost’s vision length, 
duration of Pac-Man’s predator mode, and the amount of time 
that a ghost stays in the centre of the maze after being eaten by
Pac-Man in predator mode are increased or decreased to 
change the game difficulty. Each of these attributes has lower 
and upper limits, so that the game includes the option of 
someone playing extremely well or extremely poorly.

V. DISCUSSION

In this section, we discuss the benefits of using a design 
pattern approach for implementing ADD in video games:

Reusable solution: A framework- or middleware-based 
approach for creating a self adaptive-system (such as ADD in 
video games) is usually specific to a particular programming 
language and or platform, whereas a design pattern-based 
approach is highly reusable across different platforms and 
programming languages [10].

Reusable source code: Generally, it is expected that 
reusable source code can be created for reusable solutions. Our 
preliminarily plans on how to reuse the ADD source code of 
the Pac-Man game (discussed in Section IV) indicates that a 
design pattern approach for implementing ADD in video games 
will result in highly reusable source code. We are also planning 
on some further studies with other games to confirm this idea.

Lower risk: As these design patterns have been developed 
based on generalizations of other researchers’ work in the area 
of self-adaptive systems [10], this approach is less risky 
compared to an ad-hoc approach, and more likely to be 
effective in implementing ADD.

Separation of concerns: As different parts of the design 
patterns have specific concerns (e.g., Sensors will collect data, 
Driver will make changes to the game, etc.) the resulting 
source code will have high traceability and maintainability. So, 
creating test cases also becomes easier compared to a more ad-
hoc approach.

Parallelizable: Since, in this approach, the game logic and 
ADD logic are clearly separate entities, they can be 
implemented and evolved in parallel. Also, it is possible to 
implement ADD logic on top of pre-existing games. 

Defined process: Since the high level structure of the 
solution is already known, it is possible to create a step-by-step 
method for developing ADD (e.g., identifying the attributes to 
be monitored, identify attributes that controls the difficulty, 
etc.). Furthermore, developers can focus more on game play 
design and ADD logic design (please see Section IV for 
example) rather than implementation details.

VI. CONCLUSIONS AND FUTURE WORK

Design patterns are a formal approach of describing 
reusable solutions for a design problem. To date, the literature 
on the usage of software design patterns in video games is 
relatively scarce. Thus, in this paper, we introduced four design 
patterns from the self-adaptive system literature derived in the 
context of enabling auto dynamic difficulty (ADD) in video 
games. We also described a proof-of-concept implementation 
as a means for validation of those design patterns. Even though 
our context of discussion was ADD, these patterns can be used 
in any situation where the game needs to be adaptive and 
reconfigures itself based on monitoring. In the future, we want 
to conduct case studies to evaluate the applicability of these 
design patterns across different genres and platforms. Our 
future plans also include developing a set of reusable 
components implementing these design patterns.
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