

USING SYNTHETIC PLAYERS TO GENERATE WORKLOADS FOR

NETWORKED MULTIPLAYER GAMES

Asif Raja and Michael Katchabaw
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada

N6A 5B7
E-mail: araja4@csd.uwo.ca, katchab@csd.uwo.ca

KEYWORDS

Networked games, multiplayer games, workload generation,
synthetic players, bots.

ABSTRACT

 The increase in popularity of online games in recent years has
motivated research and development efforts into the creation of
new algorithms, architectures, and protocols for these games.
Generating suitable workloads to permit live empirical testing
and experimentation to verify and validate this work, however,
is a difficult process, especially if one is working towards
massively multiplayer technologies.

 To support these efforts, we have developed a framework for
synthetic players that generates appropriate workloads for
networked multiplayer games. Based on this framework, we
have developed a software infrastructure and a prototype
synthetic player for the multiplayer adventure game Crossfire.
This paper introduces our framework, discusses our
implementation efforts, and presents results from initial
experiments using our prototype synthetic player. Results to
date have been quite promising.

INTRODUCTION

 Video games have been projected to continue to enjoy solid
growth over the coming years (PricewaterhouseCoopers LLP
2007). Online video games in particular are continuing to grow
in popularity, with reports now estimating that 62% of all video
game players play games online (NPD Group 2007). As a
result, there is a serious need for research and development
efforts into creation of new technologies for networked games
that provide improved quality of service to players despite the
uncertainties and adversities in network performance and
reliability that frequently occur over the public Internet (Carlson
et al. 2003).

 When creating new algorithms, architectures, and protocols
for networked multiplayer and massively multiplayer games, a
significant challenge comes in the form of verification and
validation of research and development results. Traditionally,
this has taken the form of simulation, but the increase in
availability of and access to sufficient computing infrastructure

and network testbeds in recent years (Craven 2006) now makes
live empirical testing and experimentation a realistic and
attractive option. A key difficulty in doing this, however, is the
generation of a suitable workload for the game in question.

 Using human players for workload generation is problematic
for several reasons. Coordinating a reasonably large number of
human players for specific experimentation can be difficult; this
is especially problematic when one would like to generate a
workload for a massively multiplayer game potentially requiring
thousands upon thousands of players. The use of human players
also increases the potential for variability and unanticipated
influences on experimentation, making experiments difficult to
repeat and replicate, and analyses more complicated and
susceptible to error. Because of these issues, the use of
synthetic players, driven by some form of artificial intelligence,
must be considered very seriously.

 This paper introduces a new framework for synthetic players,
specifically designed with workload generation for empirical
testing and experimentation with networked multiplayer games
in mind. This framework supports the creation of independent
synthetic players that interface with a networked game in the
same fashion as its human players would, to realistically and
accurately recreate the workload that human players induce on
the game. The framework allows synthetic player behaviour to
be scripted or generated dynamically, with generated behaviour
being either repeatable or different for every gameplay session.
The framework is also flexible and robust, allowing it to be used
in constructing synthetic players for a wide variety of games in
various genres. Furthermore, it provides the monitoring and
control features required to support large-scale rigorous
experimentation efforts.

 Based on this framework, we have developed software and
libraries to facilitate the construction of synthetic players for
workload generation for networked multiplayer games. As a
proof of concept, we have created a synthetic player for the
open-source multiplayer adventure game Crossfire (Wedel et al.
2007), and used this to conduct a variety of experiments with
this game. This paper discusses these development efforts, as
well as initial experiences with using our synthetic Crossfire
player to date.

 The remainder of this paper is structured as follows. We
begin by discussing related work in this area, providing a brief

overview and analysis of this work. We then describe the
framework for synthetic players we have developed, and
describe how it can be used in workload generation for
networked multiplayer games. We then discuss our
implementation efforts and our experiences in using our
synthetic Crossfire player to date in experimentation. Finally,
we conclude this paper with a summary and a discussion of
directions for future work.

RELATED WORK

 There has been considerable work done towards the
application of various principles and techniques from artificial
intelligence to creating realistic synthetic players for video
games, as discussed in (Rabin 2002) and elsewhere. Many
successes have been achieved for a wide variety of types of
games, and on-going work in this area is extremely promising.

 Unfortunately, the majority of this work is not suitable for
workload generation for multiplayer games. To be suitable,
these synthetic players would need to be separate and exist
outside of the game as a whole, connecting to the game
remotely over the network as a human player would, and acting
as if it were a human player in this regard. This is not the case,
however, in much of the work in this area. In many cases, in
fact, the synthetic players rely on abilities and access to
information from the game that are generally not available to
human players in order to play the game well (Rouse 2005).

 There are, of course, many notable exceptions to this.
Interesting work has been done towards the use of synthetic
players commonly referred to as bots in a variety of games,
from commercial, research, and hobbyist perspectives. This
includes bots for games such as Quake (Randar 2007), Quake II
(Randar 2007, van Lent et al. 1999), Quake III (Randar 2007,
van Waveren 2001), Counter-Strike (Booth 2004), Unreal
Tournament (Epic Games 2004), Descent 3 (van Lent et al.
1999), and others.

 These bots, unfortunately, tend not to be suitable for workload
generation in practice either. While they can connect to a game
remotely over a network as a human player would, these
synthetic players were designed primarily to provide interesting
and challenging opponents to the human players of the game,
and not as tools to support empirical testing and
experimentation. Consequently, they lack many of the features
required to properly support workload generation for this
purpose, such as monitoring and control capabilities, as
examples.

 Furthermore, as one can see from the bots listed above, the
majority of bots have been created for first person shooter
games. These games have relatively set formulae for gameplay,
and tend to not support the rich variety of gameplay and
interactions available in other genres like role-playing or
adventure games. Consequently, there is a need for more robust
and flexible approaches to synthetic players to support a wider
variety of games. Since most massively multiplayer online
games are role-playing games, and these and games from other
genres are among the most popular games currently being

played (Nielsen Media Research 2007), this is not something
that can be ignored.

 As a result, in the end, more work is needed to provide
synthetic players to support workload generation for networked
multiplayer games.

A FRAMEWORK FOR SYNTHETIC PLAYERS

 To support the creation of synthetic players for workload
generation for networked games, we have developed a general
and flexible framework, as shown in Figure 1. This is based on
a sense-think-act process that has been used in artificial
intelligence, agent development, and game bots, such as the
work in (van Lent et al. 1999). The main elements of this
framework are described in the sections that follow.

Figure 1: A Framework for Synthetic Players for Workload
Generation in Networked Multiplayer Games

Networked Game

 The networked game is the game for which workload is being
generated by the synthetic player. Ideally, the game should be
used without modification from its original form, if at all
possible. The networked game can be based on a variety of
architectures such as client-server or peer-to-peer; ultimately, it
is up to the synthetic player to adapt accordingly to remotely
connect and work with the game properly. In the end, the game
and other players in the game should be unaware that the
synthetic player is not, in fact, a human player after all.

Synthetic Player

 The synthetic player is responsible for generating a realistic
workload for the networked game in question. It does so by
interfacing with the game and playing it in the same manner as a
human player would.

 The synthetic player consists of two main sets of modules.
The first set consists of the sense-think-act logic that enables the
synthetic player to properly play the networked game. The
second set of modules consists of monitoring and control
elements to enable and facilitate experiments using the synthetic
player. All of these modules are discussed in the sections
below.

Sense

 The sense module is responsible for receiving events and
messages from the networked game. It uses this information to
construct the view of the game and its state that the synthetic
player uses in its decision making processes. In theory, this is
the same view that a human player would have if it was in the
synthetic player’s position in the game, although the synthetic
player might have access to more information depending on
how it interfaces and communicates with the game in question.

Think

 The think module is used to encapsulate whatever decision
process is used within the synthetic player to guide its actions in
playing the networked game and generating its workload. This
module relies on the sense module to provide input for the
decision process, and has its decisions carried out by passing
them onto the act module once they have been formulated.

 The decision process used in this module is likely to be some
form of rule based system or state machine, but could be
virtually any kind of decision making logic. Alternatively, this
module could use some kind of scripting system to have the
synthetic player generate workload according to a previously
scripted sequence of actions. It is also possible to construct a
synthetic player with a think module that uses some
combination of these approaches as necessary.

Act

 The act module is responsible for carrying out the actions
decided upon by the think module. It does so by generating
appropriate messages and sending them to the networked game
according to the formatting and protocol requirements of the
game in question. These messages, in the end, are what induce
workload on the network game, as the game must receive,
process, and respond to these messages appropriately.

Monitoring

 The monitoring module is used to observe the synthetic player
in playing the networked game and collect and record
information about its performance in doing so. Monitoring
measures both the workload being generated by the synthetic
player and the results of applying the workload to the game.
This ensures that the synthetic player is generating the correct
workload and provides valuable information that enables
qualitative and quantitative evaluation of the experience
delivered as a result, as will be discussed further below.

 Data being monitored can be collected either from the sense
module or the think module. Data elements collected from the
sense module are either copies taken from messages received
from the networked game, or measurements taken concerning
these messages, such as message latency, data volume, and so
on. Data collected from the think module, on the other hand,
either reports on the synthetic player’s decisions or provides the
synthetic player’s impressions of the game according to its

decision logic. The exact data collected, understandably,
depends significantly on the game in question.

 Data collected through monitoring is directed to modules
outside of the synthetic player for a variety of purposes. This
includes trace logging, reporting, and visualization, depending
on the needs of the experimentation being conducted.

Control

 The control module is used to manipulate or tune the
behaviour of the synthetic player. This can be done both to
influence the sense-think-act logic guiding the decisions made
and actions taken by the synthetic player, and to adjust the
configuration of the monitoring module, such as what
information is collected and how frequently it is collected.

 The synthetic player’s behaviour in playing the networked
game can be directly controlled by manipulating the stream of
actions sent to the game by the act module. The synthetic player
can also be indirectly controlled by adjusting the decision
process used in the think module; for example, by changing
internal state, goals, and other elements used in the process.
Such control over the synthetic player allows adjustments to
generated workloads at run-time, during a test or experiment.

 Control is achieved through the use of external command tools
that instruct the control module within a synthetic player on
what behavioural manipulations are necessary.

Trace Logging

 This module is used to create logs of activity from the
networked game in real-time, based on data collected by the
monitoring module embedded within the synthetic player. The
use of the logs depends greatly on the information they contain.
For example, a quantitative evaluation of a game can be
facilitated by a log consisting of performance measurements
over time, such as latency, data volume, anomalies, and so on.

Reporting

 The reporting module is used to generate reports of activity
from the networked game, typically containing summaries or
analyses of data collected by the monitoring module. Again, the
use of the reports depends on the information they contain. For
example, a report containing summary statistics of various
performance measurements, such as those described above,
would be quite useful in supporting quantitative evaluations.

Visualization

 The visualization module is used to provide a variety of
different visual methods of representing data collected by the
monitoring module within a synthetic player. These can be as
simple as charts or graphs of various data elements, useful for
quantitative evaluations, or renderings of the game and its game
world, useful for more qualitative evaluations. (In such a case,
for example, visualization could provide in essence the same
view of the game as would be provided to a human player.)

Command Tools

 Command tools are used to exert control over the behaviour of
the synthetic player through the use of its embedded control
module. Such tools can either be command-line or graphical in
nature, depending on requirements for control.

PROTOTYPE IMPLEMENTATION

 Based on the framework discussed in the previous section, we
have developed software and libraries to ease the construction of
synthetic players for workload generation. This includes a
layered mapping system as a basis for sense modules to track
and record the state of the game world, and a simple and
efficient rule based system to be used within think modules to
guide decision processes within the synthetic player. Further
details of these elements can be found in (Raja 2007).

 Using these software elements, we have developed a synthetic
player for the multiplayer adventure game Crossfire (Wedel et
al. 2007). Crossfire is a fairly mature open-source project that
has been developed for several years with an active community
of contributors and players. The game has an incredibly rich set
of gameplay features allowing its players to interact with each
other and the game world in a variety of ways. Crossfire is
supported on several computing platforms, including Microsoft
Windows, Linux, and many others.

 To facilitate our development efforts, we built our synthetic
player using the code base for the Linux version of the GTK
Crossfire client as a starting point. This allowed us to make use
of existing functionality to receive game update messages from
a Crossfire server and dispatch actions to the server in our sense
and act modules respectively. Since the client is nearly
stateless, with almost all game state stored on the server, our
sense module made use of our layered mapping system to track
the various elements of the game world. (Traditionally, this
information would be rendered to the client’s graphical interface
and not stored at the client.) Human player control was replaced
with our own rule based system as a think module.

 The original client’s graphical interface was kept and
preserved to facilitate debugging of the synthetic player, and to
act as a rendering system for a visualization module. This
allows a human observer to track the game and the quality of the
experience being delivered to the synthetic player in real-time.
The human player control elements that were replaced by our
think module to drive the player were kept for use in a control
module to manipulate the synthetic player as necessary during a
game. Monitoring, logging, and reporting functions were also
added to collect a variety of quantitative performance metrics,
including latency and several others.

EXPERIMENTAL RESULTS

 To evaluate our approach to workload generation for
networked multiplayer games using synthetic players, we
conducted a series of tests and experiments using our prototype
synthetic player for Crossfire. Initial tests were conducted to
verify the synthetic player’s ability to play the game and

generate a workload, as well as the player’s other functionality
for monitoring, control, visualization, logging, and so on. After
the success of these tests, more thorough performance
experimentation was carried out.

 Experimentation was conducted in a closed lab environment,
making use of 31 workstations connected to the same 100MB
switched Ethernet network. Each workstation was powered by a
dual core 3.0 GHz Pentium D processor, with 2 GB of physical
memory, and Fedora Core 5 Linux as its operating system. One
of these workstations was designated to host the Crossfire server
for experimentation, while the others hosted synthetic players
configured to induce workload on the Crossfire server.

 Figure 2 shows performance results from one set of
experiments, designed to measure the responsiveness of the
Crossfire server as various numbers of synthetic players
generated workload. The workload in this case was harsher than
one would normally expect, consisting of continuous player
motion and conversation with minimal think time between
actions. This workload was used as the server proved
surprisingly resilient to less intense workloads even with 30
players connected and playing at once. (We are currently
investigating how performance holds up with even more
synthetic players under lighter workloads, however.)

0

400

800

1200

1600

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Synthetic Players

R
es

p
o

n
se

 T
im

e
(m

s)

Figure 2: Responsiveness of Crossfire under Increasing Load

 The results in Figure 2 were obtained by executing the target
number of synthetic players for 10 minutes, during which
internal monitoring modules sampled responsiveness every 5
seconds. Responsiveness was calculated as the time required
for the Crossfire server to respond to a simple query issued by
each synthetic player. Figure 2 presents the mean response time
across all samplings from all synthetic players in each 10 minute
play interval, along with error bars indicating the minimum and
maximum values observed at each load level.

 As can be seen from Figure 2, the Crossfire server appeared to
do a fairly good job of maintaining a consistent level of
performance for up to 21 synthetic players. Past this point,
however, response times started to rise dramatically, eventually

reaching an average of more than 400ms at 30 players. This
increase in response times is significant and likely more than
enough to both impair the ability of players to play the game
and affect the ultimate outcome of the game (Armitage 2001).
It is also important to note that the variability in response times
also increased substantially with more synthetic players in the
game, which could further frustrate and annoy human players,
had they been playing the game as well.

 From a qualitative perspective, we carefully watched the
graphical interfaces of the synthetic players as they played the
game. As the number of synthetic players in the game
increased, we observed a significant increase in the overall
delay and jumpiness of the players’ displays, especially as the
number of players approached 30. This was to be expected
considering the increase in response time and response time
variation that was measured quantitatively.

 In the end, our synthetic players were able to effectively
generate workload as instructed. Overall, our synthetic players
appear to be very well suited to support testing and
experimentation with networked multiplayer games as desired.

CONCLUSIONS AND FUTURE WORK

 As networked multiplayer games continue to grow in
popularity, it is becoming increasingly important to support
research and development efforts in this area to advance the
state-of-the-art in both design and technology. Doing so
presents many challenges, however, including the generation of
suitable workloads to experimentally verify and validate the
results of such efforts.

 Our current work is aimed at this challenge, providing
synthetic players to generate workloads for networked
multiplayer games. To this end, we have developed a
framework for synthetic players for this purpose, and
implemented prototype software based on this framework. In
doing so, a synthetic player for the Crossfire multiplayer
adventure game was successfully constructed. Experimentation
to date using our prototype software has been quite positive and
demonstrates great promise for our approach in the future.

 There are many possible directions for future work in this
area. These include the following:

• Continued experimentation with our synthetic Crossfire

player is necessary, particularly with a larger number of
players, and under various types of workloads.

• Further development of our synthetic Crossfire player is also
possible. This includes adding the option to disable interface
visualization elements to permit headless operation,
parameterization of personality and behavioural elements to
support a wider variety of player types, and extensions to
support the incredible variety of gameplay and interactions
available within Crossfire.

• Applying our framework to other networked multiplayer
games is also important, to help demonstrate its flexibility
and suitability in a variety of gameplay situations.

• In particular, applying our framework to a massively
multiplayer online game environment is of great interest.
This will introduce many challenges in terms of managing
and coordinating the large number of synthetic players, as
well as in organizing, processing, and analyzing the
potentially huge amount of data that can be collected in this
kind of scenario.

REFERENCES

Armitage G. 2001. “Sensitivity of Quake3 Players to Network

Latency”. Presented at the SIGCOMM Internet
Measurement Workshop. San Francisco, California.
(November).

Booth M. 2004. “The Official Counter-Strike Bot”. Presented
at the 2004 Game Developers Conference. San Francisco,
California. (March).

Carlson R., Dunigan T., Hobby R., Newman H., Streck J., and
Vouk M. 2003. “Strategies & Issues: Measuring End-to-
End Internet Performance”. Appeared in Network
Magazine. (April).

Craven D. 2006. Network Testbeds: A Method of Testing
Potentially Disruptive Technologies. MSc Reading Course,
Department of Computer Science, The University of
Western Ontario. (February).

Epic Games. 2004. Unreal Tournament 2004. Published by
Atari. (March).

Nielsen Media Research. 2007. PlayStation 2 Accounted for 42
Percent of Video Game Play in June, Nielsen Reports.
Nielsen News Release (July).

NPD Group. 2007. Online Gaming 2007: The Virtual
Landscape. NPD Special Report. (May).

PricewaterhouseCoopers LLP. 2007. Global Entertainment and
Media Outlook: 2007-2011. PWC Report.

Rabin S. 2002. AI Game Programming Wisdom. Charles River
Media.

Raja A. 2007. Design and Implementation of an AI Bot for the
Adventure Game Crossfire. MSc Directed Study Report,
Department of Computer Science, The University of
Western Ontario. (May).

Randar. 2007. Randar’s Bot Page. Available online at:
http://members.cox.net/randar. (Last accessed August).

Rouse R. 2005. Game Design Theory and Practice, Second
Edition. Wordware Publishing Inc.

van Waveren J. 2001. The Quake III Arena Bot. MSc Thesis,
Delft University of Technology. (June).

van Lent M., Laird J., Buckman J., Hartford J., Houchard S.,
Steinkraus K., Tedrake R. 1999. “Intelligent Agents in
Computer Games”. Appeared in the Proceedings of the
National Conference on Artificial Intelligence. Orlando,
Florida. (July).

Wedel M. et al. 2007. Crossfire – The Multiplayer Adventure
Game. (March).

