

DESIGN AND IMPLEMENTATION OF OPTIMISTIC CONSTRUCTS

FOR LATENCY MASKING IN ONLINE VIDEO GAMES

Shayne Burgess and Michael Katchabaw
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada

N6A 5B7
sburges3@uwo.ca, katchab@csd.uwo.ca

KEYWORDS
Latency reduction, latency masking, optimistic execution,
software design patterns for games.

ABSTRACT

 To achieve interactive experiences comparable to offline
games, online video games played over the Internet must be
able to deal with performance issues caused by the
connection or infrastructure of the underlying network. A
particularly difficult issue faced by developers of online
games is that of latency. In many cases, the latency
encountered forces gameplay to be very frustrating and
breaks immersion for the player, providing an
unsatisfactory experience overall.

 Instead of directly attempting to reduce or eliminate
latency from our networks, our approach has been to reduce
or eliminate the effects of latency. Our earlier work in this
area introduced a framework based on the concept of
optimistic execution. In this paper, we discuss the design
and implementation of reusable software components based
on this framework that are capable of supporting optimistic
execution in a wide variety of online video games. This
paper also reports on experiences in using these
components in the development of a simple trading game to
validate their suitability for use in games. These
experiences have been quit positive, and demonstrate great
promise for future work in this area.

INTRODUCTION

 It has recently been projected that video games will see
the fastest growth amongst all entertainment markets
(PricewaterhouseCoopers LLP 2006). In particular, online
video games played over the Internet have been singled out
to be among the fastest growing segments within the video
game industry (PricewaterhouseCoopers LLP 2006), with
44% of frequent game players playing games online
(Entertainment Software Association 2006). As a result,
the delivery of high quality experiences to game players
will increasingly depend on the ability of game developers
to make online games that can cope with the uncertainties
and adversities in network performance that frequently
occur over the public Internet (Carlson et al. 2003). This,
unfortunately, is an exceedingly difficult task.

 A particularly challenging problem is that of network
latency (Blow 2004). Latency (also commonly referred to
as lag) is a time delay that occurs in passing messages
through a network. While steps can be taken to reduce
latency, it can never be completely eliminated, as a message
will always take a non-zero amount of time to propagate
through a network. When the network is heavily used to
the point of congestion, a frequent occurrence on the
Internet (Carlson et al. 2003), latency increases and
becomes unpredictable. This can cause disruptions to the
flow of an online game, leading to anything from minor
annoyance to a totally unplayable experience. Latency has
also been experimentally shown to impair player
experiences and affect the outcomes in multiplayer games
(Armitage 2001), which is highly undesirable.

 To address the problem of latency in online video games,
many solutions have been proposed. Unfortunately, none
of these solutions provide a comprehensive approach that is
applicable across all of the wide variety of gameplay
elements found in modern video games. While motion and
weapons usage can be handled, this is simply not sufficient
and rather limiting to the gameplay experiences that can be
provided to the player. Furthermore, some of these
approaches tend to either induce confusing gameplay or
introduce potential inconsistencies or time paradoxes that
can break immersion in the game quite easily (Blow 2004).
Consequently, a more general, flexible, and robust solution
to latency issues is necessary for online video games.

 To fill this need, our earlier work introduced New HOPE
(Hanna and Katchabaw 2005; Shelley and Katchabaw
2005), a framework for optimistic execution specifically
targeted at online video games. The basic premise behind
optimistic execution in this case is to allow certain game
activities to occur without checking with other parts of the
game first, provided that the outcomes of the activities are
predictable and recoverable, in case predictions turn out to
be incorrect once synchronization occurs. Optimistic
execution of such activities occurs in parallel with
confirmation of their outcomes, allowing the latency of
synchronization to be effectively masked from the player.

 Unfortunately, while this earlier work presented a
framework for optimism, it did not provide reusable
software components that could be used by developers in
building their own games that supported optimistic

execution. Instead, developers had to follow the framework
and build everything themselves, as it was not originally
thought that general purpose optimistic constructs were
feasible (Hanna and Katchabaw 2005).

 Our current work remedies this situation through the
introduction of reusable software components to provide
the necessary supports for optimistic execution for latency
masking. This was made possible through the design and
refinement of new software patterns for optimism, based on
our earlier work from (Hanna and Katchabaw 2005; Shelley
and Katchabaw 2005), and their implementation as a
collection of .NET managed objects. To validate the
effectiveness of these new patterns and software
components, and to demonstrate their usefulness, we have
developed a simple trading game, Space Traders, as a proof
of concept.

 The remainder of this paper is structured as follows. We
begin by discussing related work in this area, providing a
brief overview and analysis of each approach and
technique. We then describe the pattern-based design of
our new optimistic constructs and their implementation as
reusable software components. We then present our proof
of concept trading game, and discuss our experiences in
using our software components in its construction. Finally,
we conclude this paper with a summary and a discussion of
directions for future work.

RELATED WORK

 Our approach to optimistic execution is an evolution of
the first HOPE (Hopefully Optimistic Programming
Environment) project (Cowan 1995), originally designed
for non real-time applications. HOPE made exclusive use
of rollback to recover from situations in which incorrect
optimistic predictions were made. Unfortunately, the
exclusive use of rollback makes HOPE not suitable for
networked multiplayer games. A total rollback of activity
would effectively undo player actions and reactions, in
essence moving the game backwards in time, which is
highly undesirable in general. Game progression, simply
put, must always go forward in time.

 Dead reckoning, discussed in (Aronson 1997), is a classic
method that can be used for predicting and extrapolating the
behaviour of entities in a game world based on algorithms
and models of movement and physics in the game. The
work in (Bernier 2001) discusses similar prediction
techniques, specifically applied to the game Half-Life.
With accurate prediction, such methods can be quite
effective. When predictions are found to deviate from
reality, corrections are made that may cause a snap in
player position, as the old, incorrect position is updated
with the newly corrected position. This can cause serious
and noticeable problems, particularly in action-oriented
games (Pantel and Wolf 2002b). Smoothing algorithms can
be used to minimize this snapping effect, at the cost of
delayed synchronization of game states.

 There have been many extensions to dead reckoning and
client-side prediction techniques. The work in (Aggarwal

et al. 2004) and (Mauve 2000) is aimed at improving
accuracy in predictions, but does so at the cost of requiring
global synchronization or increased message traffic and
complexity. Context based reckoning, introduced in
(Schirra 2001), is a method in which natural language is
used to convey game activity instead of numeric and
geometric data traditionally used. This requires special
techniques to both identify and encode game events, and
other techniques to decode them for use. Context based
reckoning shows promise, but is complex and potentially
unreliable, particularly if errors occur in the encoding or
decoding phases.

 Presentation delay (Pantel and Wolf 2002a) is a technique
in which processing and presentation of game events in
local and remote entities are synchronized. This requires
that local events are delayed. While this can remove
inconsistency problems, a serious issue introduced by
latency in games, this comes at the cost of additional
delays; experimental results presented in (Pantel and Wolf
2002a) and further examined in (Pantel and Wolf 2002b)
indicate that this approach can produce unacceptable results
in time sensitive action-oriented games.

 Local perception filters were used in (Smed et al. 2004)
as a technique for implementing “bullet time” in
multiplayer games. These filters can also be used in a
game for masking latency by allowing temporal distortions
in the rendered view of the game. In essence, different
parts of the game world are allowed to be rendered at
different times, depending on the proximity and possibility
of interaction between the various entities in the world.
While showing improvements in certain gameplay
scenarios, local perception filters require that exact
communication delays are known, and exhibit disruptions
in the game when sudden changes to the game world occur
(such as when one player in a multiplayer game exits the
world).

 Server-side techniques for masking latency can be found
in (Fraser 2000) and (Bernier 2001) for Unreal Tournament
and Half-Life respectively. This approach to latency
compensation can be thought of as a step back in time.
Suppose a player invokes some action and this event is
forwarded to a game server for processing. The server
computes latency, and deduces the time at which this action
was invoked. The server then moves the state of the game
world back to this time to determine the effects of the
action, applies the action, and moves the state back to its
current condition. While this technique can be effective, it
does introduce other paradoxes into the game world that
can be difficult to handle and produce their own problems,
as discussed in (Fraser 2000) in detail.

 While several potential solutions to the problem of
latency in networked multiplayer games have been
proposed, each has its own drawbacks and limitations. In
particular, these approaches tend to focus on movement and
shooting aspects of first person shooters, and other similar
games. Some solve certain latency-related problems, but
do so at the risk of introducing new problems,

inconsistencies or paradoxes at the same time. Our
approach differs in that it is a more general and flexible
solution, capable of supporting more varied gameplay. In
following our approach, developers are forced into dealing
with the issues introduced while masking latency, and are
given appropriate tools to be able to address and resolve
these issues in a manner acceptable to the players of the
game. This is discussed further later in this paper.

OPTIMISTIC CONSTRUCTS FOR ONLINE VIDEO
GAMES

 In this section, we discuss the design and implementation
of our optimistic constructs to mask latency in online video
games. These constructs are derived from our earlier work
in (Hanna and Katchabaw 2005; Shelley and Katchabaw
2005), which has been refined to provide components that
are reusable in wide variety of games and gameplay
mechanics, and that can be easily implemented as a
portable class library to assist developers in creating online
games supporting optimistic execution.

Pattern-Based Design of Optimistic Constructs

 Our earlier work in (Shelley and Katchabaw 2005)
introduced an overall framework for optimistic execution in
games, loosely based on the concept of software patterns
(Gamma et al. 1995), but lacking much of the rigor and
detail traditionally used in such patterns. While this was
consistent with other software patterns developed for games
(Björk and Holopainen 2005), it only provided the main
concepts behind optimistic execution. This allowed
developers to create online games that made use of
optimistic execution, but only in an ad-hoc fashion, treating
each game as a separate application of the framework
pattern, effectively starting from scratch each time.

 To rectify this situation, a thorough and detailed set of
software patterns were developed to provide a set of
optimistic constructs for online video games. In doing so,
we were able to provide a set of reusable software
components for optimistic execution in online games that
are capable of effectively masking latency encountered
during execution.

 Figure 1 depicts the main elements of our new design.
This includes the following optimistic constructs: actions,
recovery modules, padding modules, synchronization
modules, and decision modules. These key elements are
discussed briefly in the remainder of this section. For full
details of the software patterns in the standard format
traditionally used by software patterns (Gamma et al.
1995), the reader is urged to consult (Burgess 2006).

Actions
 For the purposes of our work, a video game is driven by a
series of actions. These can be generated by player
characters, for example moving, shooting, and interacting
with objects or other characters; by non player characters,
in exhibiting similar behaviours to player characters; or by
other elements in the game world, handling non-character
driven activities. The results of actions change the state of

the game world and its inhabitants and consequently must
be propagated to all players of the game as necessary to
ensure that everyone has a consistent view of the game.
Otherwise, the inconsistencies in the game can lead to
player frustration, a loss of player immersion, and an
overall negative gameplay experience. Actions can be
handled and processed within a game in one of two ways,
optimistically or cautiously.

 If the results of an action are reasonably predictable, and
can be recovered from if necessary, optimistic execution is
the best approach. In this case, the predicted results of the
action are assumed to be true, and execution proceeds based
on this assumption while verification of the results proceeds
in the background. Since we are concerned with online
games, this verification process will likely entail network
communication and remote computation of some kind to
yield the actual results of the action. If the assumption is
later found to be correct, execution can continue, and the
latency of verifying the results of the action is effectively
hidden, since the game did not have to pause and wait
during this process. However, if the assumption is found to
be incorrect, the execution of the game since the
assumption was also incorrect, and the game will need to
execute a recovery to bring all parts of the game back into
an acceptable and consistent state. If recoveries are needed
only rarely and do not disrupt the flow or immersion of the
game, this approach can be quite effective in masking
latency.

 If the results of an action cannot be reasonably predicted,
or cannot be recovered from easily, it is better to process
the action in a cautious fashion, instead of proceeding
optimistically. This requires that the results of the action
are verified before the game proceeds with execution,
which makes latency in the required network
communication and remote computation potentially visible
to the player. However, this may be necessary to prevent
excessive recoveries or to avoid situations from which
recoveries are not possible, as these conditions could very
well be worse to the player than a more cautious execution.

The Recovery Module
 Recoveries are used to bring a game back into an
acceptable state following the denial of an optimistic
assumption. If a recovery is not carried out, the various
elements of the game will not be in agreement over the
outcome of the action that was processed optimistically,
and the resulting inconsistencies could have a very serious
impact on the game as a whole.

 Since multiple recoveries from a denied optimistic
assumption may be possible, a recovery selection procedure
must be followed to determine the best recovery to handle
the current situation. The selection of recovery method can
depend upon many factors. These include the original
action executed, the optimistic execution that was carried
out afterwards, as well as a variety of game and action
specific factors.

 After the execution of this recovery, the game is allowed
to proceed from this corrected state.

Figure 1: Optimistic Constructs for Online Video Games

The Padding Module
 Padding is used to add some form of distraction element
to the game to either mask a cautious execution or reduce
the amount of optimistic execution that occurs. Padding
can be as simple as an animation played to consume a small
amount of game time, or can be considerably more
complex, depending on the game in question. Padding can
be used in a wide variety of situations, but is particularly
useful when the recoverability or predictability of an action
is below a threshold of comfort and still somewhat
questionable as a result.

 Before employing padding, a decision process must be
followed to determine whether or not padding is
appropriate in the current situation within the game. After
reaching a decision that padding is necessary, it must also
be determined which methods of padding are appropriate in
this situation so that one can be selected accordingly.

(Multiple methods of padding should be provided to handle
different situations, and to allow for variety in the handling
of the same situation multiple times to avoid unwanted and
noticeable repetition.) The padding is then executed, and
optimistic or cautious processing continues upon the
completion of the padding. Either way, the distraction
element in the padding effectively masks the latency of
result computation and communication that is occurring in
parallel.

 It is important to note that padding may consume either a
part or all of the time that could have been spent executing
optimistically or pausing cautiously, depending on the
situation and the padding involved. (It is not a good idea
for padding to take longer than this, however, as this could
slow the pace of the game unnecessarily, be disruptive, and
lead to player frustration.) Furthermore, by employing
padding, recovery from optimistic execution is lessened if

the original assumption was incorrect, because the amount
of execution was itself lessened.

The Synchronization Module
 The synchronization module is used to provide
synchronization primitives for optimism. Synchronization
constraints can be added to an action to force execution to
wait before or after the action for the results of another
action or set of actions to be confirmed. This can be used
to prevent further optimistic execution from proceeding if
that execution would be difficult to recover from. Time
delays can also be used in this process if necessary. It is
important to note that recovery would still be necessary
upon denial for any optimistic execution up until this point,
however.

 For example, suppose the player picks up an object and
then attempts to use it. If the action of picking up the
object was executed optimistically, the act of using the
object likely needs to be synchronized to prevent the use of
an object that was not actually picked up, in case the
optimistic assumption was later denied. Otherwise, this
could introduce problematic inconsistencies and paradoxes
into the game.

The Decision Module
 This module is used to facilitate various decisions
governing the optimistic execution of a particular action.
This includes decisions on whether to execute
optimistically or cautiously, whether to employ padding or
not, and whether to force synchronization or not.
(Decisions as to which recovery to use when recovery is
necessary, or which padding to use when padding is
necessary, are up to those modules to make.)

 This decision making processes will weigh several game
and action specific factors against one another and derive
measures of recoverability and predictability; these
measures are then compared against thresholds to determine
how execution should proceed. Players should be given
input over the setting of these thresholds to tune gameplay
to their own preferences and tolerances, although the game
should have some input as well, according to observed
latency in the network. By allowing a choice between
optimistic and cautious execution at run-time, finer control
over optimism can be achieved, and a better play
experience can be provided to the player. (As warranted,
static decisions can be embedded for performance reasons,
to avoid overhead in the decision processes when optimism
clearly should or should not be used.)

Implementation of Optimistic Constructs

 The optimistic constructs described above were
implemented so that they could be reused in a wide variety
of games without having to re-implement the constructs
each time. The implementation was programmed in C#
using .NET managed objects. While this means that these
optimistic constructs can be used in any .NET-aware game
regardless of the language used in creating the game, this
does hamper their use in games that are not .NET-aware,
without the use of some kind of software wrapper. Given

the increase in use of .NET among developers, this is not
likely to be an issue.

 Most of the optimistic constructs discussed in the
previous section can be used and reused with no
modifications required, although since the implementation
is object-oriented, it is possible to specialize these
constructs if needed for particular games. Only three of the
constructs depicted in Figure 1 must contain game-specific
operations that cannot be carried out in a simple and
generic fashion. To handle these cases, our implementation
relies on a number of abstract classes that have to be
implemented before the constructs can be used. (This is a
common feature of many design patterns, and allows them
to be both reusable and flexible (Gamma et al. 1995).)
These abstract classes define the Recovery, Padding, and
Compare constructs.

 Recoveries and padding, by their very nature, are game-
specific and must be created by the game’s developers. To
do so, developers derive new classes containing
implementation details specific to their games from the
abstract classes provided by our class library. When a
recovery or padding is required, the appropriate initiation
method is invoked by the recovery or padding module
respectively, causing the game-specific code to be
executed. This game specific code could then do whatever
is necessary to either carry out a recovery or perform a
padding operation within the game. In this way, the generic
optimistic constructs provided by our class library can still
support optimistic handling of actions in a game-specific
fashion.

 Compare constructs are used to evaluate and compare
various Threshold objects used by the Decision Module in
making its decisions; these constructs can also be game-
specific. Consequently, developers will need to provide
appropriate comparison classes for game-specific
situations, again derived from the abstract classes provided
by our class library. Our class library also provides
concrete comparison constructs for common types used in
comparisons, to ease development.

 Once the required recovery, padding, and comparison
elements are implemented and provided, they seamlessly
integrate and work with the other optimistic constructs in
our class library.

PROOF OF CONCEPT: SPACE TRADERS

 As proof of concept, the Space Traders game was
developed using the optimistic constructs described in the
previous section.

Overview of Space Traders

 Space Traders is a simple trading game in which the
players travel the universe, visiting planets to buy and sell
resources to accumulate as much wealth as possible in the
process. Each planet that the players travel to in the game

has set prices for the various resources and set quantities of
each that the players can purchase. The prices of these
resources change as they are purchased by the players
visiting the planet. Traveling from planet to planet also
costs fuel which players must purchase as necessary. This
game was developed using Microsoft’s Visual Studio .NET,
and programmed in C#.

Figure 2: Screenshot of Space Traders Client

Figure 3: Screenshot of Space Traders Server

 Space Traders uses a client-server architecture;
screenshots from both the client and server are shown in
Figure 2 and Figure 3 respectively. The TCP transport
protocol is used for communication between the client and
the server. The server is responsible for maintaining the
game’s state and updating it according to player input data
received from the clients. This includes calculating new
price and resource availability, depending on the buying
and selling patterns of the players in the game. (In essence,

the more abundant a resource is, the lower its price will be,
and the scarcer a resource is, the higher its price will be.)
This updated game state is then sent back to the clients. At
the clients, updated game states related to the last player
input are rendered to the display as they are received.

Optimistic Execution in Space Traders

 In Space Traders, each player has three main actions they
can choose from: traveling from one planet to another,
buying resources at their current location, or selling
resources at their current location. As the player carries out
these actions, they obtain feedback on their outcomes. (As
mentioned earlier, clients also periodically receive updates
on resource prices and availability when changes occur at
their current location.)

 The travel action is always carried out in a cautious
fashion as the client requires a listing of resource prices and
availability at its new location before proceeding. Because
of the nature of this information, there are simply no
reasonable optimistic assumptions that can be made for this
action. Buy and sell actions, however, can be made
optimistically, under the assumption that the resource price
and availability information that the client has is still
current and up-to-date. This may or may not be a good
assumption for the client to make, as it turns out.

 The fluctuations in resource prices and availability
represent a potential source of inconsistencies in the game.
When making a transaction to buy or sell a particular
resource, it is in fact quite possible for both its price and
availability to change between the last update in
information received by the player’s client and the initiation
of the transaction, meaning that the player is conducting
business with an out-of-date view of the game world. This
is particularly the case when several players are visiting the
same world, conducting transactions at the same time, as
the handling of these transactions will cause such changes
to occur. If any buy or sell actions are carried out with
incorrect resource prices or availability, the optimistic
execution of these actions would be incorrect as well.

 A decision module is used to make an initial decision
about using optimism. If the results of a transaction are
predictable, because there are few other traders on the
planet to influence the price and availability of resources,
then transactions will proceed optimistically. Otherwise,
they will be carried out cautiously. (With too many traders
on the same planet, the possibility for resource price and
availability changes becomes unacceptably high and too
many incorrect optimistic assumptions will require
recoveries of some kind to correct.)

 If an assumption about the results of a transaction is
incorrect, a recovery process is initiated to correct the
situation in a fashion consistent with the rest of the game.
For example, suppose a poorly-timed change in price

caused a player to overpay for a resource in a transaction.
Suppose that the last update from the server to Player 1’s
client prices the resource water at $10 a unit, with 3 units
available for purchase, as shown in Figure 2. Now suppose
that while Player 1 is making a purchase decision, Player 2
sells an additional 6 units of water on the same planet,
causing the price of water to drop to $5 a unit. If Player 1
decides to purchase what they believe is all the water on the
planet before receiving an updated resource list, Player 1’s
client will mistakenly approve a purchase of 3 units of
water at $10 a unit, instead of the $5 a unit it actually cost.
Since the buy action executed by Player 1 is optimistic, the
player’s client will process the transaction and believe the
player has less money than they actually do because it is
unaware of the inconsistency between its resource list and
the actual list for the planet stored at the server. When the
optimistic execution of this buy action is found to be
incorrect, a recovery is taken to give the player their money
back and correct the mistaken optimistic assumption. This
can be done through a simple message, such as the one
depicted in Figure 4.

Figure 4: Screenshot of a Recovery Message in Space

Traders

 By having several possible messages to account for
incorrect resource price and availability assumptions during
buy and sell actions, several different recoveries are
possible. Naturally, seeing these messages pop up too
frequently for recovery purposes will begin to adversely
affect the player’s overall experience in the game. This is
why decisions to proceed optimistically should be made
carefully depending on the likelihood of success of the
actions in question.

 Padding and synchronization elements are also used
where appropriate within the game. For example, several
passing messages were developed as options for display
when a buy or sell action had to be processed cautiously
instead of optimistically, due to the number of other players
on the same planet at the same time. By the time the user
reads the message and clicks the “OK” button to dismiss
the message, it is likely that sufficient time has lapsed to
cover the cautious execution of the action with the server,
and the latency of communication is still effectively hidden.

 All optimistic execution described above is accomplished
using the reusable optimistic constructs described in the
previous section. No programming was required to support
this optimistic execution, except for providing appropriate
recovery, padding, and comparison mechanisms, and to link
the optimistic constructs into the rest of the game’s code.

 Experiences with using our optimistic constructs in
developing Space Traders were quite positive. The

constructs provided an excellent framework for building
optimism into the game, greatly facilitating and easing the
development process. Once complete, the optimistic
execution within the game worked as expected, masking the
latency of communication between clients and the server.
Initial experimentation has indicated that latencies up to
200ms can be hidden through the above use of optimistic
constructs, with little or no perceptible impact on gameplay.
More thorough and rigorous experimentation with a broader
player base is currently under way to further investigate the
latency masking capabilities of our optimistic constructs.

 Based on these results, it is expected that other developers
can use these optimistic constructs to add optimistic
execution to online video games successfully and easily.
Consequently, these constructs could prove quite useful to
reducing the effects of latency in games.

CONCLUSIONS AND FUTURE WORK

 Latency is a challenging problem to the development and
success of online video games. Our current work is aimed
at reducing or eliminating the effects of latency to produce
more enjoyable gaming experiences for players. Through
the optimistic constructs designed and implemented in this
work, an important and powerful tool is given to game
developers to integrate optimistic execution into their own
games. Our own experiences in using these constructs in
the development of a simple trading game, Space Traders,
have shown their usefulness, and demonstrate great promise
for the future.

 There are many possible directions for future work in this
area. These include the following:

• Further experimentation with our optimistic constructs

is clearly necessary. We need to fully investigate the
latency reduction benefits of optimism in a variety of
online games under a variety of network conditions, and
learn how to further tune the factors influencing
optimism decisions to improve performance.

• Further study is also required into the use of both nested

optimistic assumptions and feedback to tune the
decision processes used within the optimistic constructs,
as discussed in (Shelley and Katchabaw 2005). Neither
of these elements was used in the development of the
initial prototype of Space Traders, and so
implementation and experimentation efforts are
currently under way.

• Many of approaches to latency compensation discussed

earlier, including dead reckoning and so on, have
predictive elements that, in the end, make them similar
to the constructs used in optimistic execution that have
been discussed in this paper. Consequently, in the
future, we plan to use the optimistic constructs
introduced in this paper to re-implement these
approaches within this framework. Not only will this
provide further validation of this work, but it will also
demonstrate its power and flexibility.

REFERENCES

Aggarwal S., H. Banavar, A. Khandelwal, S. Mukherjee,

and S. Rangarajan. 2004. “Accuracy in Dead-
Reckoning Based Distributed Multi-Player Games”.
Proceedings of ACM SIGCOMM 2004 Workshops on
NetGames '04: Network and System Support for
Games. Portland, Oregon. (August).

Armitage G. 2001. “Sensitivity of Quake3 Players to
Network Latency”. Presented at the SIGCOMM
Internet Measurement Workshop. San Francisco,
California. (November).

Aronson J. 1997. “Dead Reckoning: Latency Hiding for
Networked Games.” Appeared in Gamasutra.
Available online from Gamasutra’s website at
http://www.gamasutra.com/features/19970919/aronson
_01.htm. (September).

Bernier Y. 2001. “Latency Compensating Methods in
Client/Server In-game Protocol Design and
Optimization.” Presented at the 2001 Game
Developers Conference. San Francisco, California.
(March).

Björk S. and J. Holopainen. 2005. Patterns in Game
Design. Charles River Media.

Blow J. 2004. “Miscellaneous Rants”. Appeared in Game
Developer Magazine. (May).

Burgess S. 2006. Patterns for Optimism for Reducing the
Effects of Latency in Networked Multiplayer Games.
Undergraduate Thesis, Department of Computer
Science, The University of Western Ontario. (March).

Carlson R., T. Dunigan, R. Hobby, H. Newman, J. Streck,
and M. Vouk. 2003. “Strategies & Issues: Measuring
End-to-End Internet Performance”. Appeared in
Network Magazine. (April).

Cowan C. 1995. “A Programming Model for Optimism”.
PhD Thesis. Department of Computer Science, The
University of Western Ontario. (February).

Entertainment Software Association. 2006. Essential Facts
about the Computer and Video Game Industry.
Entertainment Software Association Research Report.
(April).

Fraser J. 2000. “Zeroping Frequently Asked Questions”.
Accessible online at: http://zeroping.home.att.net.
(April).

Gamma E., R. Helm, R. Johnson, and J Vlissides. 1995.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Hanna R. and M. Katchabaw. 2005. “Bringing New
HOPE to Networked Games: Using Optimistic
Execution to Improve Quality of Service”. In the
Proceedings of the DiGRA 2005 Conference.
Vancouver, Canada. (June).

Pantel L. and L. Wolf. 2002a. “On the Impact of Delay on
Real-Time Multiplayer Games”. Proceedings of the
12th International Workshop on Network and
Operating Systems Support for Digital Audio and
Video. Miami, Florida. (May).

Pantel L. and L. Wolf. 2002b. “On the Suitability of Dead
Reckoning Schemes for Games”. Proceedings of the
First Workshop on Network and System Support for
Games. Bruanschweig, Germany. (April).

Mauve M. 2000. “How to Keep a Dead Man from
Shooting”. Lecture Notes in Computer Science; Vol.
1905. Proceedings of the 7th International Workshop
on Interactive Distributed Multimedia Systems and
Telecommunication Services. Enschede, Netherlands.
(October).

PricewaterhouseCoopers LLP. 2006. Global Entertainment
and Media Outlook: 2006-2010. PWC Report.

Schirra J. 2001 “Content-Based Reckoning for Internet
Games”. Proceedings of the Second International
Conference on Intelligent Games and Simulation
(GAME-ON 2001). London, England. (November).

Shelley G. and M. Katchabaw. 2005. “Patterns of
Optimism for Reducing the Effects of Latency in
Networked Multiplayer Games”. In the Proceedings of
the FuturePlay 2005 Conference. East Lansing,
Michigan. (October).

Smed J., H. Niinisalo, and H. Hakonen. 2004. “Realizing
Bullet Time Effect in Multiplayer Games with Local
Perception Filters”. Proceedings of ACM SIGCOMM
2004 Workshops on NetGames '04: Network and
System Support for Games. Portland, Oregon,
(August).

