
AUTOMATING CINEMATICS AND CUT-SCENES IN VIDEO GAMES
THROUGH SCRIPTING WITH ACTIVE PERFORMANCE OBJECTS

V. Bonduro and M. Katchabaw

Department of Computer Science
The University of Western Ontario

London, Ontario, Canada N6A 5B7
vbonduro@uwo.ca, katchab@csd.uwo.ca

KEYWORDS

Storytelling, automation, active performance objects, story
scripting, cut-scenes, cinematics, video games

ABSTRACT

 Storytelling is widely recognized as an important element of
modern video games. Unfortunately, it can be exceedingly
difficult for writers to directly author and integrate story content
into games on their own. Instead, they must rely on
programmers, artists, and other personnel on the development
team to implement their stories. This complicates the story
creation process needlessly, increases costs, reduces time
available for other tasks, and causes writers to lose creative
control over their works. As a result, tools and supports are
necessary to enable writers to generate story content for games
directly, without the need for outside assistance.

 This paper continues our earlier work that used specialized
story scripting elements to automate the production of
cinematics and cut-scenes for video games. These elements
allow writers to specify their stories in a well-defined, structured
format that can be acted out automatically by software. Our
current work goes beyond this earlier work to enable more
flexible, dynamic, and enriched performances through the use of
Active Performance Objects. This paper presents these
advancements, as well as our most recent experiences with
using this engine to recreate cinematics and cut-scenes from a
variety of existing commercial video games.

INTRODUCTION

 Storytelling can be one of the most important and compelling
aspects of modern video games (Bateman 2007; Glassner 2004;
Krawczyk and Novak 2006), and in some cases is regarded as
one of their most defining aspects (Davies 2007). As new
hardware and technologies create more opportunities for stories
in games, and shifts in player audiences increase the demand for
the inclusion of quality stories in games, the importance of
storytelling in games will only increase (Chandler 2007).

 While story creation is naturally the responsibility of writers
on the development team (Bateman 2007; Moreno-Gera et al.
2007), these writers traditionally must work with programmers,
artists, and others on the team to integrate story content into the
game being developed due to the complexity involved and

domain expertise required. This results in the traditional story
creation process depicted in Figure 1.

Figure 1: Traditional Story Creation Process

 This process, however, can be expensive in terms of budget
and scheduling resources for the programmers and artists
involved (Cutumisu et al. 2007), which is problematic
considering the limitations often in place in creating story
content for games (Bateman 2007). Furthermore, this
introduces a gap between storyteller and story implementation
(Cutumisu et al. 2007), in which mistakes, miscommunication,
and differences in opinions and vision can impact the creative
process and overall story quality as a result.

 For these reasons, a simpler, more streamlined story creation
process for games is necessary—a need recognized for some
time by industry practitioners (Bateman 2007; Cutumisu et al.
2007). Automating storytelling can alleviate these issues by
allowing writers to tell their stories in games with minimal
outside support required, if any. Following this approach, tools
and supports would allow writers to convey their stories in
natural language, graphically, or in some other simple form,
while automation prepares this story content for use with little
or no human intervention required, as shown in Figure 2.

Figure 2: An Automated Approach to Story Creation

 Aside from in-game storytelling embedded in gameplay,
cinematics and cut-scenes are two of the more common
techniques for storytelling in games, conveying story through
visuals and audio, typically presented much like a dramatic
piece (Krawczyk and Novak 2006). Our current work is a
continuation of our earlier work in this area towards the
development of a Reusable Scripting Engine designed
specifically for automating cinematics and cut-scenes in games
(McLaughlin and Katchabaw 2007; Zhang et al. 2007).

 Our earlier work primarily focused on the core elements of the
Reusable Scripting Engine, and scripting elements for
representing story. It was found in practice, however, that this
earlier work was not flexible or powerful enough to support
much of what is found in cinematics and cut-scenes in video
games. Such performances are more varied and dynamic, with
rich and active content, and so serious changes to our engine
were required to achieve higher levels of quality in our work.

 This paper introduces and discusses the details of our new
approach to automating storytelling, using Active Performance
Objects to address the issues discussed above, as well as the
refactoring of our Reusable Scripting Engine platform to
support this new approach. This paper also describes our most
recent experiences through using our new engine to recreate
cinematics and cut-scenes from a variety of commercial games.

 The remainder of this paper is organized as follows. We begin
by presenting related work in this area, both from research and
industrial perspectives. We then describe the design and engine
architecture of the approach to automated storytelling taken in
our own work. We then present the implementation of our
proof of concept system, the Reusable Scripting Engine, and
discuss our experiences from using this in recreating cinematics
and cut-scenes from a variety of commercial video games.
Finally, we conclude this paper with a summary and a
discussion of directions for future work.

RELATED WORK

 This section discusses relevant related work, both from
research and industrial perspectives. Unfortunately, work
towards automation to directly support writers in their
storytelling and story creation efforts for video games is
relatively scarce. Nevertheless, progress is being made, and
related work has many lessons to teach us, even if direct support
for writers is not being offered.

 One notable work is ScriptEase (Cutumisu et al. 2007), an
innovative pattern and template-driven approach, primarily
aimed at in-game storytelling and behaviour control of non-
player characters. In theory, the same framework could be
extended to support cinematic and cut-scene generation, but this
has not been done to date.

 Work towards the <e-Game> engine (Moreno-Gera et al.
2007) is also very promising. While primarily targeted at the
development of adventure games, the XML-based <e-Game>
language could be used to assist in the creation of cinematics
and cut-scenes. The language, however, is geared towards game

creation, and was not specifically designed with cinematic and
cut-scene creation in mind. (In fact, according to (Moreno-Gera
et al. 2007), it would appear that cinematics and cut-scenes are
intended to be handled using pre-rendered movies instead of
being acted out by the engine itself.)

 Interesting work also comes in the form of Bubble Dialogue
(Cunningham et al. 1992), developed primarily as a tool to
investigate communication and social skills, particularly in
educational settings. Bubble Dialogue, however, is intended to
be a stand-alone tool not suitable for embedded use in video
games, and it is questionable whether its interface, designed for
novices to easily construct stories, would be expressive, flexible,
and powerful enough for professional game writers.

 The Behavior Expression Animation Toolkit (BEAT) (Cassell
et al. 2001) is also relevant to story automation for games. Text
is input to the system to be spoken by an animated character.
As output, speech is generated, along with synchronized
nonverbal behaviours that appropriately match the text
according to rules based on human conversational patterns.
This system is quite powerful and flexible, but as noted in
(Cassell et al. 2001), lacks many of the elements necessary to
provide a complete performance on its own. It is designed,
however, to plug into other systems for this purpose, and so
could rely upon our own Reusable Scripting Engine for this
support. Likewise, our system could benefit by having
interesting and appropriate behavioral animations that are made
possible by BEAT, and not available in our current prototype.
The work is quite complementary.

 Work towards interactive storytelling in games, such as the
work in (El-Nasr 2007; Gordon et al. 2004; Mateas and Stern
2003) and other examples discussed in (Magerko 2007), is also
related, in that it involves story automation and story
representation. In this case, automation tends to involve the
synthesis of story emerging from the interactions between
player and non-player characters in the game, with artificial
intelligence controlling the non-player characters, according to
authored constraints on behaviour. Our work, on the other hand,
does not deal with interactivity, and so storytelling is driven
entirely by the originally authored story. As a result, story
representation for interactive stories can be significantly more
complex, as additional elements are required to support and
specify interactivity. This makes the process of story creation
for interactive stories more like programming and,
consequently, less friendly to writers with little or no
programming experience. Our approach, on the other hand,
avoids this complexity and burden on writers for cut-scenes and
cinematics, where interactivity in the story is not required.

 Other related work can be found in an interesting commercial
video game entitled The Movies (Lionhead Studios 2005).
While this game allows players to construct their own stories for
their own films, the general approach and interface might not be
the most productive or easiest one for writers to use in crafting
stories for use in other games.

 From an industrial perspective, as noted in (Cutumisu et al.
2007; Moreno-Gera et al. 2007), the video games industry has

adopted a variety of standard and custom languages to be used
in the development of games. These languages are used for
many purposes, including the scripting of cinematics and cut-
scenes. Unfortunately, while these languages improve and
simplify matters somewhat, they are still rather complex and
technical in nature. Consequently, writers still must rely upon at
least some programming talent to integrate their stories into
games (Cutumisu et al. 2007).

 While the literature in this area has made many interesting and
important contributions to storytelling in video games, much
work is still required to fully assist writers in the story creation
process.

DESIGN AND ENGINE ARCHITECTURE

 As shown earlier in Figure 2, our approach to the automation
of storytelling in video games is driven largely by a story script
which is written by a writer and then rendered and acted out
using a software engine, the Reusable Scripting Engine in our
case. The architecture of this engine and the flow of story
content through it are depicted in Figure 3, and discussed in the
sections that follow.

Writer

 The writer is the creator of story content for a game, and as
such is primarily responsible for the creation of a script that
captures this story, defining the setting and characters involved
in the story and complete with all of the dialogue and stage
directions required to enact the story. Fortunately, as shown in
Figure 1, writers must already script such story elements for
cinematics and cut-scenes constructed according to traditional
story creation processes (Bateman 2007), so the need for this
information is not a new imposition created by the automation.

Script

 For automation to be effective, stories must be scripted in a
precise and formal manner to avoid potential ambiguity and
confusion over the interpretation of the script by the software
automating its presentation. Consequently, there is a need to
provide a structured approach to scripting for storytelling within
video games for automation efforts to be successful.

 Instead of developing our own custom language for specifying
stories for games, as is frequently done in the literature in this

Reusable Scripting Engine

Writer Authoring
Tools

Script

User

Script
Reader

Director Stage
Manager

Renderer

Active Performance Objects

Set
Piece Actor Prop ...

 Figure 3: Reusable Scripting Engine Architecture

area, we turn to efforts towards standardization, led by the Text
Encoding Initiative (TEI). These efforts have developed an
XML-based specification for marking up various kinds of texts,
including performances and dramatic pieces (The TEI
Consortium 2008a). TEI guidelines provide an extensive set of
tags for structuring dramatic pieces and identifying all of the
elements listed above that must be defined for cinematics and
cut-scenes in video games.

 As discussed in (McLaughlin and Katchabaw 2007), however,
some extensions and modifications were needed to the base TEI
guidelines to adapt them for use in video game scripts, to
provide more formality and precision where it was needed, to
link game content and assets into story scripts, and to filter out
elements that were unnecessary in this context. A complete
discussion of the various scripting elements supported by our
Reusable Scripting Engine can be found in (Zhang et al. 2007).

 As an example, consider the story script excerpt in Figure 4.
This script is for a scene from the video game Trauma Center:
Second Opinion for the Nintendo Wii platform (Atlus 2006),
and is used in experimentation presented later in this paper.
This story script is interpreted as follows:

1. The scene begins by preparing the set for the scene, the

consultation room. Initially, lighting is set to a level of 0%,
indicating that the set will be dark to begin with. Stage
directions then begin playback of background music, set to
loop indefinitely. A lighting change occurs, to raise set
lighting to a level of 100%, to fully illuminate the set. This
is done over a period of 1 second. This is followed by a
pause of 2 seconds before the performance continues.

2. Dialogue then begins, with the narrator introducing the

scene.

3. Stage directions have the performance pause to wait for
input from the player, to ensure they have had the chance to
read the dialogue. Any input is acceptable to continue the
scene. A beep sound effect is then played to acknowledge
the input, as was done in the original game. The actor Mary
is then directed to quickly enter from stage right and stay on
the right half of the scene.

4. Mary then says her line in her default tone, since no tone

was specified. (The results of this can be found later in
Figure 5.) Since no voice-overs occurred in the original
game, none were included with this line of dialogue either.

5. At this point, the scene pauses as discussed in Step 3, and a

lighting change occurs to dim scenery lighting to 25%. The
lighting on Mary, however, is preserved, causing her to
stand out while the narrator introduces her in the next line
of dialogue.

6. The scene pauses once again as discussed above, and the
narrator completes the introduction of Mary. After this,
lighting is restored to normal levels, and the scene
continues appropriately.

Figure 4: Scripting Used to Recreate Standard Procedure Scene

from Trauma Center: Second Opinion

<scene id="standardProcedure"
 setID="consultationRoom"
 initialLightingLevel="0">
 <stageDirection>
 <musicPlayback id="bgMusic"
 loop="on"/>
 <lightingChange level="100"
 subject="scenery"
 duration="1"/>
 <pause duration="2"/>
 </stageDirection>
 <dialogue speaker="narrator">
 <line>- Hope Hospital,
 Consultation Room - </line>
 </dialogue>
 <stageDirection>
 <waitFor event="anyInput"/>
 <soundPlayback id="beep" />
 <movement castID="mary"
 type="enterHorizontal"
 startLocation="offRight"
 endLocation="onRight"
 speed="1000" />
 </stageDirection>
 <dialogue speaker="mary">
 <line>The patient has been
 moved to \nthe pre-op
 area.</line>
 </dialogue>
 <stageDirection>
 <waitFor event="anyInput"/>
 <soundPlayback id="beep" />
 <lightingChange level="25"
 subject="scenery"
 duration="1"/>
 <pause duration="1"/>
 </stageDirection>
 <dialogue speaker="narrator">
 <line>Mary Fulton, age 39: Hope
 Hospital's \nveteran
 surgical assistant.</line>
 </dialogue>
 <stageDirection>
 <waitFor event="anyInput"/>
 <soundPlayback id="beep" />
 </stageDirection>
 <dialogue speaker="narrator">
 <line>She's kind and well-
 liked, so nobody\n
 mentions she tends to
 ramble too much.</line>
 </dialogue>

Authoring Tools

 As one can imagine, XML is not the most natural or
convenient method of expression for writers to use in authoring
their stories. Requiring writers to produce stories with manually
embedded TEI tags needlessly complicates the process, and
imposes a barrier to story creation. To assist in the process of
working with TEI tags, there are numerous authoring tools
available that adhere to TEI guidelines for importing existing
works or writing them from scratch (The TEI Consortium
2008b). Several of these packages plug into existing word
processing software, or otherwise work with this software, to
ensure that writers can work with familiar tools and still take
advantage of the TEI guidelines. This can greatly facilitate the
story creation process, particularly when it comes to automation.

Script Reader

 As the name implies, the Script Reader module in the
Reusable Scripting Engine reads in the story script and
processes it to prepare it for use in the engine. This requires the
module to parse the XML representation of the script to find the
elements of the story, verify the correctness and completeness of
the script, and fill in any missing or assumed elements of the
story where possible.

 When the script is deemed ready for performance, the Script
Reader generates lists of all of the set pieces, actors, and props
involved in the performance, along with a stream of actions
from the script that carries out this performance. These actions
include dialogue, stage directions, and guidelines for managing
interactivity with the user. This information is then passed on to
the Director module to have the performance executed.

Director

 The primary role of the Director in the engine is to control the
flow of a performance. In doing so, the Director manages the
Script Reader and Stage Manager modules to oversee the entire
production and presentation of the cinematic or cut-scene. As
such, it handles internal object management and communication
tasks as required for the engine.

 The Director module is also responsible for managing any
interactions with the user of the engine, which, as discussed
below, could either be the player of the game in question or the
game itself, depending on the context. These interactions could
include interactivity control to regulate the flow of the cinematic
or cut-scene, as well as any other access required to the engine.

Stage Manager

 The Stage Manager module is responsible for ensuring that the
performance is carried out according to the directions of the
Director, including what to do, how to do it, and when to do it.
The Stage Manager also reports back to the Director on the
status of the production as it progresses.

 In our earlier work in (McLaughlin and Katchabaw 2007;
Zhang et al. 2007), the Stage Manager was directly responsible

for the coordination and rendering of all of the various elements
of the performance on its own. While this approach was simple
and straightforward, it also lacked the flexibility and expressive
power to deliver rich performances with a variety of active and
dynamic content, such as animations.

 To resolve this problem, the Stage Manager was redesigned so
that it was no longer directly responsible for the rendering of the
performance. Instead, these responsibilities were delegated to a
collection of Active Performance Objects and a dedicated
Renderer module, with the Stage Manager responsible for
managing the Active Performance Objects according to the
directions of the Director.

Active Performance Objects

 In our earlier work, set pieces, props, and actors only existed
as data contained within the Stage Manager. As necessary, the
Stage Manager consulted this data to carry out the performance.

 In our current work, each set piece, prop, and actor is
encapsulated by an Active Performance Object. Each such
object is now responsible for its own use and behaviour in the
context of the performance according to guidance from the
Stage Manager. Furthermore, each Active Performance Object
is responsible for managing and maintaining its own data,
current state, and associated assets, to ensure that it is ready for
rendering by the Renderer when the time to do so comes.

 If an Active Performance Object is dynamic and changes over
time, it contains its own thread of execution to assist in the
above tasks as necessary. Coordination between Active
Performance Objects is handled by the Director or Stage
Manager, depending on the coordination required.

 Through proper use of Active Performance Objects, a
performance can now contain a large collection of independent
or cooperating active elements that are all at work
simultaneously. This provides a considerable amount of power
and flexibility in constructing a rich and high quality
performance. For example, it is now possible through the use of
Active Performance Objects to have an animated set, with
multiple actors moving around in the background, while actors
in the foreground engaged in dialogue, complete with
voiceovers synced with facial animations. This type of rich
performance was simply not possible under our earlier engine.

Renderer

 The Renderer module in the Reusable Scripting Engine is
ultimately responsible for the rendering of the performance to
the user. It does so by iterating through and working with the
collection of Active Performance Objects and composing a
scene from these objects based on their current states in the
performance.

 To do its work, the Renderer also has its own thread of
execution. This allows it to work independently of the Active
Performance Objects to collect and push graphics and audio data
out to system devices when this data is required.

User

 As mentioned earlier, the user of the Reusable Scripting
Engine can either be the player of the game or the game itself,
or perhaps both at the same time. This, naturally, depends on
the context and the game in question.

 The player of the game can interact with the Director module
in the engine to pause or skip the performance, tune
performance options, and so on. The player also ultimately
watches the performance as it is rendered by the Renderer
module. The game itself is a user of the engine in that the game
may also need to control the flow of the performance, depending
on the situation. Furthermore, the game may also need to tune
performance options at various points during its life time.

ENGINE IMPLEMENTATION

 Based on the architecture discussed in the previous section, we
have implemented a prototype engine for Microsoft Windows
XP, written in C# using Microsoft Visual Studio 2005
Professional Edition, with .Net Framework 2.0. The prototype
has also been tested and runs perfectly on the various versions
of Microsoft Windows Vista.

 To enable script processing, Microsoft’s XML Software
Development Kit was used, as it provides easy to use and robust
XML processing and handling facilities when working in this
environment. For graphics and audio support, Microsoft
DirectX was used. This provided us with clean, standard, and
efficient support for both 2D and 3D graphics, as well as audio
support, all in a single package.

 Our engine implementation provides both a standalone
processor that can generate cinematics and cut-scenes on its
own, and a module that can be linked in with other code. These
options provide developers with flexibility in how they integrate
the engine into an existing game project.

 Our implementation choices are also compatible with
Microsoft’s XNA Game Studio Express, meaning that we can
target both the Windows platform and the Xbox 360 with our
engine. While we have primarily carried out development on
the Windows platform thus far, Xbox 360 support is currently
under investigation as well.

EXPERIENCES TO DATE

 Initial experimentation with our Reusable Scripting Engine in
(McLaughlin and Katchabaw 2007) involved recreating scenes
from movies and television shows such as the Princess Bride
(Goldman 1987) and The Simpsons (Stem 1993). To
demonstrate the engine’s suitability for use in video games, our
work in (Zhang et al. 2007) successfully applied our engine to
the game Trauma Center: Second Opinion, mentioned earlier in
this paper.

 To demonstrate and evaluate the capabilities of our new
engine architectures with Active Performance Objects, we
recreated cinematics and cut-scenes from a variety of different

commercial games, from various genres and platforms, using a
variety of artistic and presentation styles. In doing so, we were
able to provide a suitable test of our engine’s flexibility,
expressive power, and functionality. Our experiences with three
of these games are discussed in the sections below in detail.

Trauma Center: Second Opinion

 In our first experimentation with the new version of the
Reusable Scripting Engine, we started with the Trauma Center:
Second Opinion performance used in our earlier work, as
described above. This was done to ensure that the redesign of
our approach to use Active Performance Objects was successful
and did not impact the ability of the engine to carry out
performances. As expected, no problems whatsoever were
encountered in doing so.

 While this initial experimentation with Active Performance
Objects was successful, there was nothing in the performance
that was active that required their enhanced capabilities. As a
result, we extended and embellished our original Trauma
Center: Second Opinion performance, to provide a more
interesting test, as shown in the screen shot in Figure 5.

Figure 5: A Scene from a Performance from Trauma Center:

Second Opinion Using the Reusable Scripting Engine

 In the scene shown in Figure 5, we added a computer display
as a prop that did not appear in the original performance, as seen
in the middle of the figure. This display was animated with a
changing image and a flicker effect that changed its illumination
and that in the scene around it. These animations were
controlled by the Active Performance Object that encapsulated
the display prop.

 Improvements were also made to the dialogue area visible at
the bottom of Figure 5, improving its appearance, and adding an
animated dialogue icon indicating that the user could advance
through the performance. Additional dialogue rendering modes
were added to allow the user to force the complete rendering of
a line of dialogue before it was typed out character-by-character,
as was done in the original performance.

 All in all, the improved Reusable Scripting Engine handled
these tests quite well in executing this performance.

Metal Gear Solid

 While the Trauma Center: Second Opinion experiments were
successful, they barely started to test the capabilities of the
Active Performance Objects in the new engine. Consequently,
we reconstructed a scene from Konami’s Metal Gear Solid for
the Sony PlayStation (Konami 1998).

Figure 6: A Scene from a Performance from Metal Gear Solid

Using the Reusable Scripting Engine

 This scene is more complicated than the Trauma Center:
Second Opinion performance, with an animated set, animated
actors, voiceovers linked to dialogue, and so on, with each of
these elements encapsulated by Active Performance Objects.
As shown in the screen shot in Figure 6, the setting is the Codec
communication system in the game, which has an animated
signal indicator in the middle of the scene. The actors are both
animated in several ways. First, their images expand at the
beginning of the scene, as if they were in displays being turned
on. Second, their images flicker and scroll with static lines
throughout the scene, again to create the illusion as if they are
on some sort of display screen. Finally, their faces are animated
while delivering lines of dialogue, to make it look as if they are
speaking. Each line of dialogue delivered is linked to a
voiceover; this, together with the facial animation above,
provides a reasonably impressive performance.

 Constructing this scene also required the addition of new
rendering and playback modes. Unlike Trauma Center: Second
Opinion, whose cinematics and cut-scenes were driven by the
user advancing the performance, the performance in Metal Gear
Solid was intended to play out on its own, without interaction
from the user. If the user interacted with the performance,
however, it would switch to a user-driven mode. This also
necessitated the development of new handlers to support a wider
variety of interactions with the user.

 In the end, the Reusable Scripting Engine was able to recreate
the scene from Metal Gear Solid quite well, even though it is
substantially different from the Trauma Center: Second
Opinion scene. This demonstrates the flexibility and robustness
of our approach.

Chrono Trigger

 To further demonstrate the capabilities of the new Reusable
Scripting Engine and its Active Performance Objects, we
recreated a scene from Square Soft’s Chrono Trigger for the
Super Nintendo Entertainment System (Square Soft 1995). As
can be seen from the screen shot in Figure 7, this game used a
very different style and approach to story presentation in
comparison to the other performances examined so far.

Figure 7: A Scene from a Performance from Chrono Trigger

Using the Reusable Scripting Engine

 A major difference in the Chrono Trigger scene is that there
are now several animated actors involved in the scene, with all
of them animated or moving at once, making the performance
considerably more complex. The scene shown in Figure 7
contains eight such actors, although some are periodically
obscured by the dialogue area. Each actor is again encapsulated
by an Active Performance Object that manages its animation
and movement, and coordinates its activities with the Director
and Stage Manager in the engine, to ensure that the actors are
moving and are animated in unison as necessary.

 The range of movements required in the Chrono Trigger
performance necessitated the development of new stage
directions and new mechanisms for tracking and controlling
movements in the engine. Previous scenes were relatively
simple, with movement needs handled by simple directions such
as “Enter, stage right” and “Exit, stage left”. Chrono Trigger,
on the other hand, required arbitrary actor movements, and so
new methods were required to identify arbitrary movement
targets in a scene and new stage directions were required to
enable these movements to be scripted by the writer of the story.

 Despite the additional complexities introduced by the Chrono
Trigger story, the Reusable Scripting Engine was again able to
faithfully recreate the scenes in its own performances quite well.

CONCLUSIONS AND FUTURE WORK

 Storytelling is an important aspect of modern video games,
and plays a central role both in drawing in players initially and
in keeping them playing over the long term (Krawczyk and
Novak 2006). With the success or failure of games depending
on their story elements, it is becoming increasingly important to
provide tools and supports to allow writers to directly produce
story content for games, without requiring programming
background and expertise. This allows stories for games to be
crafted more efficiently and more effectively, easing the
development process and potentially increasing the quality of
the games as a result.

 Our current work in this area addresses this need for tools and
supports by providing a Reusable Scripting Engine that is
capable of producing high quality cinematics and cut-scenes for
a wide variety of video games based on scripts provided by
story writers. The use of Active Performance Objects in our
current work enables the use of dynamic and active content in
stories to create a richer experience for the user. Results from
using our prototype engine to date have been quite positive,
demonstrating the flexibility and expressive power of our
approach to automating storytelling.

 Possible directions for continued work in this area in the
future include the following:

• Recreating cinematics and cut-scenes from other video

games is still an important next step. This will not only
provide further validation of our approach and engine, but it
will also help to uncover further additions necessary to our
work.

• Support for 3D cinematics and cut-scenes is also necessary,

and is made possible through our use of DirectX. This will
require the addition or refinement of stage directions to
enable our scripting to work in a truly 3D space.
Fortunately, our recent experiences with the Reusable
Scripting Engine, in particular in the construction of the
Chrono Trigger performance, have given us insight into
storytelling in an open 2D space that might carry over into a
3D space as well.

• There is currently considerable interest in dynamic story

elements in video games that allow the flow of story to
change depending on in-game events. Our engine can and
should be extended to support these efforts.

• Our Reusable Scripting Engine should be ported through

XNA to the Xbox 360. This platform is attractive to
academic, independent, and hobbyist developers, and so
providing automated storytelling support would be very
beneficial to development efforts in this area.

REFERENCES

Atlus. 2006. Trauma Center: Second Opinion. Published by Atlus.
Bateman, C. 2007. Game Writing: Narrative Skills for Videogames.

Charles River Media.
Cassell, J., Vilhjalmsson, H. and Bickmore, T. 2001. BEAT: The

Behavior Expression Animation Toolkit. SIGGRAPH 2001
Conference. Los Angeles, California, (August).

Chandler, R. 2007. Game Writing Handbook. Charles River Media.
Cunningham, D., McMahon, H. and O’Neill, B. 1992. “Bubble

Dialogue: A New Tool for Instruction and Assessment”,
Educational Technology Research and Development, Volume 40,
Number 2.

Cutumisu, M., Onuczko, C., McNaughton, M., Roy, T.,
Schaeffer, J., Schumacher, A., Siegel, J., Szafron, D.,
Waugh, K., Carbonaro, M., Duff, H. and Gillis, S. 2007.
“ScriptEase: A Generative/Adaptive Programming Paradigm for
Game Scripting”. Science of Computer Programming, Volume: 67,
Issue: 1. (June).

Davies, M.. 2007. Designing Character-Based Console Games.
Charles River Media.

El-Nasr, M. 2007. Interaction, Narrative, and Drama Creating an
Adaptive Interactive Narrative using Performance Arts Theories.
Interaction Studies, Volume 8, Number 2.

Glassner, A. 2004. Interactive Storytelling: Techniques for 21st
Century Fiction. A K Peters Limited.

Goldman, W. 1987. The Princess Bride. 20th Century Fox.
(September).

Gordon, A., van Lent, M., van Velsen, M., Carpenter, M. and Jhala, A.
Branching Storylines in Virtual Reality Environments for
Leadership Development. 2004. Sixteenth Innovative Applications
of Artificial Intelligence Conference (IAAI-04), San Jose,
California, (July).

Konami Computer Entertainment Japan. 1998. Metal Gear Solid.
Published by Konami.

Krawczyk, M. and Novak, J. 2006. Game Development Essentials:
Game Story and Character Development. Thomson Delmar
Learning.

Lionhead Studios. 2005. The Movies. Activision.
Magerko, B. 2007. A Comparative Analysis of Story Representations

for Interactive Narrative Systems. Third Annual Artificial
Intelligence for Interactive Digital Entertainment Conference.
Marina del Rey, California. (June).

Mateas, M. and Stern, A. 2003. Facade: An Experiment in Building a
Fully-Realized Interactive Drama. Game Developer's Conference,
San Francisco, California, (March).

McLaughlin, M. and Katchabaw, M. 2007. “A Reusable Scripting
Engine for Automating Cinematics and Cut-Scenes in Video
Games”. Loading ... The Journal of the Canadian Game Studies
Association, Vol. 1, No. 1, (May).

Moreno-Gera, P., Sierra, J., Martínez-Ortizb, I. and Fernández-
Manjóna, B. 2007. “A Documental Approach to Adventure Game
Development”. Science of Computer Programming, Vol. 67, Issue
1. (June).

Square Soft. 1995. Chrono Trigger. Published by Square Soft.
Stern, D. 1993. “Duffless.” The Simpsons Episode 9F14. 20th

Century Fox Broadcasting Company. (February).
The TEI Consortium. 2008a. “TEI P5: Guidelines for Electronic Text

Encoding and Interchange.” Available at: http://www.tei-
c.org/Guidelines/P5. (Last accessed June).

The TEI Consortium. 2008b “TEI Tools”. Available at:
http://www.tei-c.org/Tools. (Last accessed June).

Zhang, W., McLaughlin, M., and Katchabaw, M. 2007. Story Scripting
for Automating Cinematics and Cut-Scenes in Video Games.
Proceedings of FuturePlay 2007. Toronto, Canada, (November).

