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ABSTRACT 
 
   Artificial intelligence is an important aspect to nearly every 
modern video game.  Providing this, however, is all too often an 
arduous task, even for the most expert developers.  The 
behaviours of non-player characters in a game are typically 
defined and guided by a large collection of parameters; it is 
usually quite difficult to determine the best values for these 
parameters to achieve the desired behaviour considering the 
state of the game and the player involved in playing it.  Some 
form of adaptation to adjust and tune these behavioural 
parameters would be extremely useful in addressing this 
problem. 
 
   This paper examines the use of genetic algorithms to adapt 
and refine character behaviours in video games.  In doing so, 
non-player characters can be evolved to a fitness level 
appropriate to the game and its player, providing a more 
enjoyable experience in the end.  This paper discusses our 
approach to using genetic algorithms, and describes a prototype 
system built using the Unreal Engine that implements this 
approach in its non-player characters.  This paper also presents 
experimental results from using this prototype system; to date, 
these results have been quite positive, demonstrating great 
promise for the future. 
 
INTRODUCTION 
 
   In recent years, artificial intelligence has increasingly become 
one of the most critical factors in determining the success or 
failure of a video game (Tozour 2002).  This trend is expected to 
continue, with some saying that the key to more entertaining, 
enjoyable, and immersive games in the future lies in the 
artificial intelligence contained within them (Bourg and 
Seemann 2004).   
 
   Unfortunately, developing the artificial intelligence for a game 
is one of the most challenging tasks a programmer can 
undertake (Rabin 2002).  Indeed, creating non-player characters 
that behave in a believable and realistic fashion, while working 
in the game to provide an appropriate challenge to the player, is 
incredibly difficult (Baillie-de Byl 2004).  Such characters are 

typically defined and guided by a large collection of behavioural 
parameters whose interactions and dependencies can be 
complex and difficult to predict (Laramée 2002; Sweetser 2004; 
Thomas 2006).  Configuring all of these parameters for game 
characters manually is a tedious, expensive (in terms of time and 
money), and potentially error prone process.  Consequently, an 
approach is necessary to automate behavioural parameter 
configuration, to adapt and refine character behaviours as 
necessary for a game. 
 
   Our current work explores this problem through the use of 
genetic algorithms to develop non-player characters.  This is 
done by using evolutionary processes to adapt behavioural 
parameters of the characters to a level of fitness suitable for the 
game context and player in question.  Doing so has the potential 
to provide the player with a more enjoyable and appropriately 
challenging experience, without the problems and costs that are 
usually associated with the manual tuning and configuration of 
these behavioural parameters (Laramée 2002; Sweetser 2004; 
Thomas 2006).  With evolution and adaptation already 
identified as highly important directions to the future of artificial 
intelligence for non-player characters in video games (Bourg 
and Seemann 2004), now is the time to study and explore this 
area further. 
 
   To this end, we have developed a mutator module for Epic’s 
Unreal Engine (Epic Games 2005) that applies genetic 
algorithms to its non-player characters, also known as bots.  
This mutator enables Unreal bots to evolve as the game is 
played to adapt to their surroundings, the rules of the game, and 
the opponents they are facing.  Our mutator module was then 
used in a series of experiments conducted using Unreal 
Tournament 2004 (Digital Extremes 2004) to investigate and 
determine the effects of the genetic processes put in place within 
the bots. 
 
   This paper presents the results of our current and on-going 
work in this area.  We begin by providing background 
information on genetic algorithms and evolutionary computing, 
as well as a discussion of related work in this area.  We then 
describe our approach to genetic algorithms to evolve character 
behaviours, and introduce our proof of concept system using the 
Unreal Engine.  We then present experimental results from 
using this prototype to date, and discuss our experiences in 
using it so far.  We then conclude this paper with a summary 
and a discussion of potential directions for continued research 
and development in the future. 



BACKGROUND AND RELATED WORK 
 
   Genetic algorithms have been used in numerous contexts for 
quite some time, including artificial intelligence, as discussed in 
(Russell and Norvig 2003).  Genetic algorithms have also been 
examined in the particular context of artificial intelligence for 
video games, including (Baillie-de Byl 2004; Bourg and 
Seemann 2004; Buckland 2002; Laramée 2002; Sweetser 2004) 
and several others, although much of this attention is relatively 
recent. 
 
A Brief Overview of Genetic Algorithms 
 
   The essence of a genetic algorithm is much the same across 
domains:  computational problems are encoded in such a way 
that natural evolutionary processes can be applied to them to 
produce optimal or near-optimal solutions (Laramée 2002).  The 
general flow of the process is depicted in Figure 1, and 
discussed in the sections that follow. 
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Figure 1:  The Flow of a Genetic Algorithm 

Problem Encoding 
 
   To use genetic algorithms to solve a problem, we must think 
of our problems from a genetics perspective.  For our purposes, 
genetics concentrates on the transmission of traits from parents 
to offspring (Baillie-de Byl 2004).  These traits are determined 
by the genes present in the chromosomes of the entities in 
question.  In the end, these traits define the various 
characteristics and capabilities of an individual. 
 
   When dealing with genetic algorithms, we encode problems in 
this fashion, defining the various traits of a problem and its 
solutions through the use of genes.  Typically, genes tend to be 
data variables containing values representing the traits in 
question, although it is possible for them to be elements of logic 
or code instead (Laramée 2002).   
 
Population Initialization 
 
   To begin the process, we need a population of individuals, 
with each individual a potential candidate for solving the 
problem at hand.  Each individual is defined by generating the 
collection of genes that determine its various traits.  This can be 
done using some form of random process, or by some more 
informed process that creates individuals that should be 
inherently better suited to solving the problem at hand than a 
randomly generated one.   
 
   The latter of these options, however, must be used with care, 
as it could create a population that lacks the genetic diversity to 
contain the best solution to the problem, as sometimes the best 
solution comes from the most unlikely of candidates.  With care 
though, a more informed population generation process can lead 
to a more efficient execution overall, in some cases. 
 
Evaluation 
 
   The evaluation process determines which individuals in the 
population are the most successful.  Typically, this is done 
through the application of a fitness function that assigns a score 
to each individual in the population.  The closer an individual is 
to solving the problem, the higher its assigned fitness score.  
Naturally, the fitness function is very problem specific, and the 
overall success of the genetic algorithm is heavily dependent on 
the selection of an appropriate fitness function (Sweetser 2004). 
 
Selection 
 
   After a fitness score has been assigned to each individual in 
the population, a mechanism is needed to select which 
individuals will become parents and reproduce to create 
offspring for the next generation of the population.  There are 
many approaches to this selection process, as discussed in the 
literature listed earlier in this section. 
 
Evolution 
 
   During reproduction, each parent transmits a portion of their 
genetic material to their offspring.  The process is not simply 
one of copying, but usually involves other activities, most 



importantly crossover and mutation (Laramée 2002).  Crossover 
involves mixing gene components from the chromosomes of 
each parent so that the resulting offspring has a combination of 
traits from the parents involved in its creation.  Mutation is a 
random change to a gene that creates variation in the offspring 
so that, in some respects, the offspring can be unlike its parents.  
This prevents stagnation and premature convergence in a 
population, but care must also be taken to avoid too many 
changes that make the genetic algorithm too random and too 
inefficient (Sweetser 2004). 
 
Population Replacement 
 
   When a new generation of individuals has been created as 
described above, they enter the population, potentially 
displacing and replacing individuals from previous generations.  
Depending on the genetic algorithm in question, this may be a 
total replacement of all individuals, or some select individuals 
from previous generations may be allowed to survive.  Once the 
new population has been assembled, the process repeats.  After 
sufficient repetitions, the population will evolve and a suitable 
solution to the problem will hopefully be found amongst the 
population during evaluation. 
 
Related Work 
 
   As mentioned earlier, genetic algorithms have been applied to 
artificial intelligence for video games in the literature before, 
including (Baillie-de Byl 2004; Bourg and Seemann 2004; 
Buckland 2002; Laramée 2002; Sweetser 2004).  While this 
work has done an excellent job of introducing genetic 
algorithms in this context, applications of genetic algorithms in 
this work have been quite limited to rather simplistic characters 
and scenarios, without examining games of a commercial scope 
or magnitude.  It is also unclear how much experimentation was 
conducted in this work, as presentation of results was also rather 
sparse for the most part. 
 
   Further work in this area has examined more advanced genetic 
algorithms for game artificial intelligence, including (Buckland 
2004; Laramée 2004; Thomas 2004; Thomas 2006).  While 
presenting some rather interesting and practically useful 
techniques, this work is again limited in terms of its proof of 
concept and experimental results.   
 
   More rigorous application of genetic algorithms to video 
games is starting to appear in the literature, however, with 
(Spronck and Ponsen 2008) being a notable example.  This work 
uses genetic algorithms to generate strategies for real-time 
strategy games.  While there are many caveats to this work, as 
described in (Spronck and Ponsen 2008), the work is quite 
promising and demonstrates the potential for using genetic 
algorithms in this area. 
 
   There has also been interesting applications of genetic 
algorithms in commercial video games, as discussed in 
(Sweetser 2004), including Cloak, Dagger, and DNA, the 
Creature series, Return Fire II, and Sigma.  Spore, developed by 
Maxis for Electronic Arts and expected to be released in late 
2008, also makes use of genetic algorithms and evolutionary 

computing in a variety of ways.  Unfortunately, the extent to 
which these approaches have been used in these and other 
commercial games, as well as their ultimate success, is unclear. 
 
   Consequently, while there has been considerable discussion on 
using genetic algorithms for artificial intelligence in video 
games, there is also considerable room for additional research, 
development, and experimentation to explore this area further. 
 
OUR USE OF GENETIC ALGORITHMS 
 
   In our current work, we are studying the use of genetic 
algorithms to evolve character behaviours in video games.  
Consequently, our population will consist of non-player 
characters with their traits and characteristics encoded as the 
genes used during evolution. 
 
Using the Unreal Engine as a Research Platform 
 
   Instead of creating our own simple game or game scenarios to 
explore genetic algorithms in this way, we instead chose to use a 
commercial game system as our research platform.  This allows 
us to focus on issues and experiments related to genetic 
algorithms, as opposed to the construction of the game itself and 
its characters.  For this purpose, we chose to use Epic’s Unreal 
Engine (Epic Games 2005).  The Unreal Engine is a fairly 
popular engine among developers and hobbyists, providing a 
reasonably large collection of games suitable for study.  This, 
and our own prior experience with the Unreal Engine, made it 
an ideal candidate for use in our current work. 
 
   Since we were using the Unreal Engine in this work, our 
system for genetic evolution was developed using UnrealScript.  
While a C or C++ approach is preferable to provide support 
across a variety of games and game engines in the long term, 
most game engines used in industry do not provide code-level 
access to their engines or only do so in a cost-prohibitive 
fashion, including the Unreal Engine.  UnrealScript fortunately 
provided all the access that was required for our current work.  
 
   Adding genetic evolution to the Unreal Engine involved 
manipulations of its non-player characters, known as bots, as 
well as its game rules, as shown in Figure 2.  Each Unreal game 
type has a Game Info object that defines the game in question.  
Among other things, this object contains a collection of game 
rules defining various aspects of how the game is played, and a 
collection of mutators.  Mutators, in essence, allow 
modifications to a game and gameplay at run-time while 
keeping the core elements and game rules intact.   
 
   In our case, we developed a Genetic Evolution Mutator to 
bootstrap the genetic evolution code within the Unreal Engine.  
Upon loading, this mutator instantiates a collection of Evolution 
Rules and adds them to the list of game rules in the engine to 
control the evolutionary process depending on the configuration 
of the mutator.  This mutator also modifies the Pawn class from 
which all Unreal bots are derived, to remove its reference to the 
default artificial intelligence controller and replace it with one to 
a new bot controller that contains a genetic algorithm.  Making 
this change forces all newly constructed Unreal bots  to  use  the  



new controller instead of the default one.  This new controller 
determines the behaviour of the bots making use of the 
controller, and consults the Evolution Rules to control the 
genetic evolution of the bots to refine and adapt their behaviour.  
In doing things in this fashion, we do not need to make changes 
to the core of the Unreal Engine code, and only need to deploy 
our mutator to enable genetic evolution in the Unreal bots. 
 
Using Genetic Algorithms in Unreal Tournament 2004 
 
   In adding to and modifying the Unreal Engine as described in 
the previous section, we can now use genetic algorithms in 
Unreal-based games.  The selection of chromosomes, genes, 
fitness functions, selection criteria, and other elements of 
genetic algorithms as discussed earlier in this paper, however, is 
dependent on the particular game making use of this engine. 
 
   For our purposes, we used Unreal Tournament 2004 (Digital 
Extremes 2004), as it is one of the most popular Unreal-based 
games, and it was readily available at our disposal.  Unreal 
Tournament 2004 is a first-person shooter game that supports a 
wide variety of different game types and sets of game rules, 
individual and team-based games, and single player, 
multiplayer, and spectator modes of play.  (In spectator mode, 
games can be played with no human players, and the game’s 
display is used to observe the game’s progress.)  Consequently, 
there are many gameplay options provided within this game, 
enabling a wide variety of experimentation with genetic 
algorithms using just this single package. 
 
Problem Encoding 
 
   Since Unreal Tournament 2004 is a first person shooter, 
gameplay primarily revolves around killing other players (both 

humans and bots) while trying to stay alive yourself.  
Consequently, most player activity focuses around completing 
these objectives, as well as collecting items that facilitate these 
objectives (such as weapons, ammunition, health packs, armor, 
and so on).  Some game types supported by Unreal Tournament 
2004 have additional objectives as well, such as capturing a flag 
from your opponent’s base, controlling critical points in the 
game world, and so on.  These gameplay objectives represent 
the problem that we are trying to solving using genetic 
algorithms.   
 
   The bots in the game form the population, and their various 
characteristics and traits collectively form the chromosomes and 
individually can be considered the genes for our genetic 
algorithm.  Since we are primarily interested in refining the 
behaviour of these bots, we focus on traits that influence a bot’s 
decision making processes and have an impact on the outcome 
of the game, as opposed to traits that only affect their visual 
appearance or voice within the game.  As a result, we consider 
the following traits of Unreal bots in the set of genes and 
chromosomes within our genetic algorithm: 
 
• Accuracy:  Determines how good a bot is at hitting its 

target when shooting at it. 
• Alertness:  Determines how aware a bot is of changes to 

their surroundings. 
• Aggression:  Determines how engaged a bot is during 

combat and how they react to combat. 
• Jumpiness:  Determines how much a bot will use jumping, 

especially as an evasive maneuver. 
• Strafe Ability:  Determines how much a bot will use 

strafing, especially as an evasive maneuver.   
• Combat Style:  Determines how a bot engages in combat, 

either up close or far away, or somewhere in between. 
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Figure 2:  Additions and Modifications to the Unreal Engine to Support Genetic Algorithms 



• Reaction Time:  Determines how quickly a bot responds to 
changes to their surroundings. 

• Favourite Weapon:  Determines which weapon a bot will 
prefer to use, given the choice. 

• Retreat Threshold:  Determines how likely a bot is to 
disengage from combat when facing a stronger opponent. 

• Pickup Threshold:  Determines how likely a bot is to seek 
out a better weapon than the one it is currently using. 

• Stakeout Threshold:  Determines how long a bot will 
continue to hunt for an opponent outside its field of vision. 

 
   There are other traits that a bot possesses, but their effects are 
not documented, and so they are currently being studied further 
before inclusion within our genetic algorithm.  Our mutator can 
be configured at run-time to determine which traits to include or 
exclude from evolution, as shown in Figure 3, providing a great 
deal of flexibility and control over the process. 
 
Population Initialization 
 
   The initial population of bots to use in our genetic algorithm is 
generated through a random selection from all of the available 
bots within the game.  This, of course, is a subset of all of the 
bots that are possible through a completely random assignment 
of all trait values.   
 
   This population initialization decision was made as a great 
number of the bots possible in the game are extremely 
ineffective at playing the game well, and these bots needed to be 
culled for efficiency reasons.  Since additional arbitrary bots can 
be easily added to the bot roster for the game, there can still be 
as much diversity as needed in the initial population used by the 
genetic algorithm. 

Evaluation 
 
   For evaluation purposes, we have defined a number of fitness 
functions, primarily aimed at assessing a bot’s success in killing 
its opponents and/or avoiding its own death.  These include the 
following: 
 
• Gross Kills:  Fitness is determined by the total number of 

opponents killed during the game.  This will favour bots 
that tend to kill opponents, regardless of the consequences. 

• Deaths:  Fitness is determined by the number of times the 
bot was killed during the game.  This will favour bots that 
are survivalists, regardless of how many opponents they kill 
in the end. 

• Net Kills:   Fitness is determined by the total number of 
opponents killed, minus the number of deaths incurred in 
doing so.  This will favour more balanced and cautious 
bots. 

• Kill/Death Ratio:  Fitness is determined by a weighted ratio 
of kills to deaths.  This is calculated so as to favour killing 
activity during the game, although this can be easily tuned.  
This fitness function was introduced as an improvement 
over the Net Kills fitness function, as this function would 
rate a bot with 0 kills and 0 deaths the same as a bot with 10 
kills and 10 deaths, even though the latter was more 
actively participating in the game. 

 
  It is not obvious which fitness function results in bots that 
provide the most enjoyable experience to the player.  
Furthermore, it is unclear how well these functions apply to 
games with objectives beyond a simple kill-or-be-killed 
deathmatch, or when team play is involved.  Experimentation is 
needed to study these issues and explore them further.   

Figure 3:  Configuration Screen for Genetic Evolution Mutator 



Selection 
 
   A number of methods, as described in (Baillie-de Byl 2004), 
have been defined for selecting bots to be parents to generate 
offspring in our genetic algorithm.  Each of these selection 
methods makes use of either the raw fitness score from the 
evaluation process, or a fitness ratio, which is the individual’s 
fitness divided by the population’s total fitness.  These methods 
include the following: 
 
• Stochastic Roulette:  Each potential parent from the 

population is allocated a portion of a circular roulette 
wheel, the size of which represents its fitness ratio. A parent 
is selected for mating by conceptually spinning the wheel 
and picking the parent on which the wheel stops.  The fitter 
parents have a bigger portion of the roulette wheel and so 
have a better chance of being selected to produce offspring. 

• Remainder Stochastic:  A parent is selected for mating 
based on its fitness ratio, converted to an integer on a scale 
from 0 to 100. This value determines the number of times 
the potential parent is allowed to mate. 

• Ranking Mating:  In this simple approach, potential parents 
are ordered based on their fitness; parents near the top of 
the order are selected to produce offspring more times than 
those lower down.  A cut-off point can be configured with 
this method, below which bots are not allowed to mate due 
to their poor performance during evaluation. 

 
   As with traits and fitness functions, the selection method used 
in our genetic algorithm can be adjusted by configuring our 
mutator, as shown in Figure 3. 
 
Evolution 
 
   The genetic algorithm used in this work employs both 
crossover and mutation in creating offspring from parents 
selected using one of the above methods.  Crossover is 
accomplished by swapping segments of chromosomes from 
parents using a random process when constructing offspring.  
Mutations occur randomly in offspring, with the offspring 
receiving traits that were not from one of their parents, but were 
instead randomly generated.  The probability of mutation 
occurring is again a parameter configurable in our Unreal 
mutator. 
 
Population Replacement 
 
   In our genetic algorithm, population replacement is again 
configurable in our mutator.  By default, the entire population is 
replaced by offspring after evolution has occurred.  Options 
exist, however, to keep bots selected either by fitness or 
randomly from one generation to the next. 
 
EXPERIMENTAL RESULTS AND EXPERIENCES 
 
   Using the Unreal-based prototype system described in the 
previous section, a series of experiments was conducted to study 
the use of genetic algorithms in evolving bot behaviour in 
Unreal Tournament 2004.  This section presents highlights of 

results from this experimentation, and discusses some of the 
observations made and insights gained in the process. 
 
Experimental Environment 
 
   Our experimental environment consisted of a lab of 20 
workstations, allowing us to conduct multiple experiments in 
parallel.  Each test system in the lab was a dual-core 3.0GHz 
Pentium D system, with 2GB RAM, a 250GB hard drive, and an 
ATI X800 graphics accelerator card.  The operating system in 
this case was Microsoft Windows XP SP2.  As such, the test 
systems greatly exceeded the recommended system 
requirements for Unreal Tournament 2004. 
 
Deathmatch Experiments 
 
   In this experimentation, we studied our prototype system with 
bots playing a standard deathmatch game.  The game was set in 
one of the largest levels provided in Unreal Tournament 2004, 
Tokara Forest, to allow the largest possible number of bots in 
the game at once.   
 
   In total, 32 bots were allowed in the game, split into two 
groups of 16 bots each.  The first group of bots made use of the 
genetic algorithm as described in the previous section to evolve 
over time.  The second group of bots was a fixed control group 
that did not evolve over time.  Both groups were selected 
randomly at the beginning of each repetition of the experiment; 
there were five repetitions in total, providing five different 
starting points for evolution against five different control 
groups. 
 
   All bots were configured to be of a “masterful skill” level.  
The genetic algorithm was configured to allow all of the traits 
discussed earlier to be affected by evolution, with a 0.2% 
chance of mutation.  Fitness was calculated using the Kill/Death 
Ratio, and parent selection was done using the Stochastic 
Roulette method. 
 
   The game itself was configured to run until either 20 minutes 
had elapsed, or a target kill level of 100 kills was achieved by 
one of the bots.  The experiment was then configured to repeat 
through 25 generations of evolved bots, with evolution 
occurring after each game was completed and before a new 
game was started. 
 
   Figure 4 presents results from this set of experiments, plotting 
the fitness difference between the evolving bot population and 
the control population through each generation of evolved bots.  
This fitness difference was calculated as the mean evolved bot 
fitness minus the mean control bot fitness across all replications 
of the experiment.  As the bots using the genetic algorithm 
evolved, the fitness difference increased, indicating that the 
evolved bots improved against the control group over time.  To 
make this trend easier to see, Figure 5 sums the fitness 
differences from Figure 4 into fifths.  (The first bar in the graph 
in Figure 5 is the sum of the first five fitness differences from 
Figure 4, and so on.)  From Figure 5, an improvement in 
evolved bot fitness is quite apparent over time. 
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Figure 4:  Fitness Differences Between Evolved and Control 

Bots in Deathmatch Play 
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Figure 5:  Fitness Differences Between Evolved and Control 

Bots in Deathmatch Play, Summed into Fifths 
 
Team Deathmatch Experiments 
 
   Following the success of the pure deathmatch experimentation 
as described above, we conducted a similar set of experiments 
except that the bots were organized into teams.  While the best 
overall team score determines the victor in this type of game, 
the best strategy for success is to largely play the same as a pure 
deathmatch, with a few exceptions (Suit et al. 2007). 
 
  Consequently, our team deathmatch experiments were 
conducted with the same configuration as our pure deathmatch 
experiments, except that the evolved bots formed one team and 
the control bots formed the other.  The teams then competed 
against one another following the same rules as before.  Figure 6 
presents the fitness differences measured in this case. 
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Figure 6:  Fitness Differences Between Evolved and Control 

Bots in Team Deathmatch Play 

   Once again, the evolved bots demonstrated an improved 
fitness over time compared to the control group.  This trend is 
readily apparent in Figure 7, which sums the fitness differences 
from Figure 6 into fifths.   
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Figure 7:  Fitness Differences Between Evolved and Control 

Bots in Team Deathmatch Play, Summed into Fifths 
 
   As indicated in (Suit et al. 2007), taking the same strategy in 
the team deathmatch as used in a pure deathmatch was a 
reasonably successful approach.  A more highly tuned fitness 
function to take into consideration some of the exceptions to this 
strategy in team play is under development, and might produce 
even better results in the future. 
 
Other Observations and Comments 
 
   Experimentation in both of the above cases showed little 
improvement in evolved bot performance past 25 or 30 
generations.  At that point in time there was simply not much 
genetic diversity left in the population. 
 
   To assess the general playing ability of the evolved bots once 
evolution showed little additional improvement, we played 
additional games with the fully evolved bots.  In one scenario, 
we pitted the fully evolved bots against the same control group 
in a different Unreal Tournament 2004 level.  In another 
scenario, we pitted the fully evolved bots against an entirely 
different control group in the same level in which evolution took 
place.  In both cases, there was still a difference in fitness 
between the evolved and control groups, indicating that 
evolution still retained some of its benefits, but the difference 
was between 10 to 30% smaller than before, depending on the 
scenario.  This suggests that evolution in this case is at least 
somewhat dependent on the context. 
 
   So, while bots can be evolved during game production using 
genetic algorithms for efficiency reasons, these bots will still 
require further online adaptation to become better suited to the 
individual player of the game.  Improvements in fitness were 
observed after 10 to 15 generations, which might be acceptable 
to some players, but could be too long for others.  As a result, 
we may need to accelerate the evolution process, perhaps by 
having multiple generations of bots in each game played, as 
opposed to only one generation per game.  This possibility 
needs to be explored in further experimentation, as forcing 
evolution prematurely might not result in the improvements in 
bot performance desired. 



   It was also observed during experimentation that evolved bots 
almost universally maximized their accuracy trait.  This makes 
sense, since improved accuracy in shooting at opponents only 
has benefits to the bots, without any negative consequences.  
While this might challenge a player, it could do so in a way that 
is rather frustrating, as a bot could succeed by making nearly 
impossible shots in a super-human fashion, while a human 
player could not possibly do the same regardless of their skill.  
Consequently, we are currently conducting further experiments 
that do not allow the accuracy trait to be adjusted, forcing bots 
to improve in other ways that could produce more rewarding 
gameplay to the player.  Initial results are quite promising. 
 
CONCLUDING REMARKS 
 
   With artificial intelligence becoming increasingly critical to 
the success of modern video games, it is important to study 
methods of improving non-player character behaviour in games 
to produce a more rewarding experience for the player.  Our 
current work represents an important step in this direction, using 
genetic algorithms to evolve and adapt character behaviours. 
 
   This paper presents the results from our work, describing an 
Unreal-based prototype system for genetic evolution of Unreal 
bots, and presenting experiments conducted using Unreal 
Tournament 2004 to assess the suitability of genetic algorithms 
to improve game artificial intelligence.  Results to date have 
been quite promising, encouraging further research in this area. 
 
  There are several possible directions for continued research in 
the future, including the following: 
 
• Additional experimentation is clearly beneficial to further 

research in this area.  The experiments presented in this 
paper only scratch the surface of what can be done using 
our prototype system.  There are still many configuration 
options to be explored more fully, including the traits used 
during evolution, the fitness functions used, and the method 
used to select parents for generating offspring. 

 
• User testing during experimentation is also important.  So 

far, the success of evolved bots has been measured only in 
terms of their fitness.  In the end, it is important to also 
determine if the evolved bots deliver a more enjoyable and 
satisfying experience to a human player. 

 
• It is also important to study the use of our prototype system 

in other Unreal-based games.  This may include porting our 
system to Epic’s Unreal Engine 3.0, the most recent version 
of the engine in release. 

 
• Applying our approach to games based on other game 

engines would also be interesting, and would provide 
additional platforms for further research, development, and 
experimentation in this area. 
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