
 1

Taking Dependencies into Account in Grid
Resource Allocation

Sean. Norman, Michael Katchabaw, Hanan Lutfiyya
Department of ComputerScience

The University of Western Ontario
London,Ontario Canada

{snorman,katchab,hanan}@csd.uwo.ca

Abstract

This paper describes the current work on developing a generic framework and a
prototype for resource selection in a grid computing environment that addresses the
problems found in other work. Specifically, this work allows for customized
application-specific mapping strategies that provide information on the dependencies
that an application may have on certain resources or applications.

Keywords

[grid computing, resource management]

1. Introduction
Grid computing refers to the use and coordination of dispersed computing resources
that includes servers, workstations, desktops, storage, etc. The concepts inherent to
grid computing were initially used in numerically intensive scientific computing
applications e.g., [1]. Recently there has been the desire to develop grids for
commerce, based on the premise that a grid enables more efficient sharing and
utilisation of computing power and storage. It has been estimated that commercial
computing resources reach only 10% or 20% utilisation of their full potential [12],
while sitting idle much of the time. Such idle resources could be used for applications
that demand large computing power, as illustrated in the desktop realm with the
SETI@Home and Folding@Home projects [1]. IBM and Charles Schwab's
Advanced Technology Group recently announced that it was able to reduce the
processing time of an existing financial application from more than four minutes to 15
seconds by grid enabling it with the Globus Toolkit running RedHat Linux on IBM
xSeries 330 machines [15].

The allocation and scheduling of computing resources is known as resource
management, hereafter referred to as management. A job refers to the desired

 2

execution of an application ai that consists of a group of distributed components,
(which are essentially executable files) ai0,ai1, …,air , that work together to accomplish
a single goal. A resource configuration is defined as the allocation of computing
resources to an instance of ai, which is essentially one or more instantations of ai0,ai1,
…,air . An instantiation is referred to as a job.

Determining a resource configuration depends on criteria that includes the following:
(i) Requirements of the resources needed for an application; For example, an
application component may require a minimum amount of disk space, memory, CPU
speed, etc; (ii) The placement of application components with respect to each other.
For example, an application component may need to read heavily from a database
server. This suggests that the number of hops between the application component and
the database server is minimized; and (iii) System level requirements that refer to
requirements that are not necessarily associated with a specific application. For
example, two applications that consume a large amount of bandwidth would not
likely be deployed so they compete for the same network links.

Efficient management of resources also requires that it is possible to keep track of the
resource configuration for an instance of an application that is available to user of the
application and the management infrastructures. Some systems do allow applications
to keep track through scripts but this is not systematic. Having the infrastructure
maintain information on the resource configurations allows for a uniform interface
and provides support for balancing load.

To summarize, there are two requirements that is needed for a grid management
system: (i) The ability to use information about dependencies to place executables;
and (ii) The ability to keep track of the locations that an application component is
instantiated on.

This paper describes an application deployment framework and its relationship to
existing grid standards that addresses the requirements discussed in the previous
paragraph for enterprise grids. The paper is organized as follows: Section 2 describes
related work. Section 3 discusses the architectural framework of the proposed
resource management infrastructure. Section 4 discusses the implementation.
Section 5 provides a discussion of the framework. Conclusions are presented in
Section 6.

2. Related Work

Many projects have attempted to address the problem of resource selection. LSF [16],
LoadLever [10], NQE [5] and PBS [9] are older systems that process user jobs by
finding resources that have been identified either explicitly through a job control
language or implicitly by submitting a job to the queue associated with a set of

 3

particular resources [2]. One of the disadvantages of this approach is that it requires
users to be knowledgeable about specific system resources and requires manual
configuration of the queues, which does not lend itself to dynamic resource discovery.
The Globus [6], Legion [4] and Condor [11] projects provide infrastructures that
support dynamic resource discovery, resource allocation, job control and dynamic
resource monitoring. Legion provides a generic, default scheduler which can be
extended or replaced in order to take into account application-specific information.
The AppLeS framework [3] utilizes an application-centric approach whereby it is
more important to promote the performance of an individual application rather t han
optimize the use of system resources or maximize the throughput of a collection of
jobs [3]. Utilization of AppLeS is tedious because it requires each application to be
manually configured via the use of a graphical user interface. A general-purpose
resource selection framework, proposed in [2], defines a resource selection service for
locating grid resources that match application requirements. The framework extends
Condor matchmaking mechanisms to support both single and multiple resource
selections, and provides an open interface for loading application-specific mapping
modules to personalize the resource selector [2].

While these projects address some of the issues related to resource selection, only
AppLeS and the resource selection framework proposed in [2] allow for customized,
application-specific mapping strategies. Customized mapping strategies are necessary
to applications have dependencies on certain resources or applications.

However, one of the problems with the mapping strategy used in [2] is that it requires
the end-user to write a mapping module specific to that application. In order to
specify these types of mappings, the underlying framework must support both single
and multiple resource selection, much like the Condor extensions proposed in [2] or
Globus DUROC mechanisms [8].

Of the few projects that utilize application deployment mappings, none keep track of
the mappings for the purposes of managing current and future application
deployments. For example, a distributed application that requires high bandwidth
links between its nodes and has low latency requirements might need to be deployed
on nodes that are not running similar types of applications. Thus, the resources on
which applications are deployed become an important scheduling decision when
selecting resources for new application deployments. A framework that takes this
information into account may provide further management services, such as a service
that monitors application deployment and re-deploys the applications or parts of it
when performance degradation exceeds a specific threshold. A framework such as the
one proposed in [2] has the fundamental concepts that could support this type of idea,
but the fact that the framework is tightly integrated with Condor makes this
impossible; Condor assumes that a single job or sub-job utilizes an entire resource.
Thus, only one job can run on a single resource at any given time. Although it is
possible to specify that a job requires a certain number of resources, each of these
jobs or sub-jobs will fully utilize each of the resources, removing them from the pool

 4

of available resources (although pre-emption is possible).

3. Framework
The development of the framework was based on requirements that included the
following:

• It should be possible to support intelligent deployment decisions taking into
consideration resource availability, application dependencies, and system
level requirements.

• Information about an application’s resource configuration should be
maintained and an interface provided so that it is possible to retrieve this
information by management applications and the submitter of the job subject
to security constraints.

• Significant overhead on the grid or the applications executing within the grid
should not be incurred.

• The management infrastructure must be scalable to support large grid
environments.

• Constraints or restrictions should not be imposed on the grid or its
applications. At least from an architectural level, it should be portable and
platform-neutral.

• The framework must be flexible, configuration and easily extendible to make
it easy to deploy itself and be accommodated in existing systems, and to
permit future growth and development.

This section describes the framework of an application deployment system [13] that
receives a job request, finds the appropriate resources and deploys the application to
the appropriate resources. The framework is based on the assumption that web
services are used and is graphically depicted in Figure 1.

3.1 Job Client
This component is the interface to the application deployment system. It may on any
number of machines. The execution of an application requires the following
information: (i) Executables, and input and script files needed for the actual execution
of the application; (ii) Requirements of execution environment which is specified as
constraints on the type and amount of a specific resource. For example, an
application component, aij , may require that it executes under the Windows operating
system, that there is at least 1 GB of memory available, etc; Generally resources that
contraints may be placed on includes the architecture, operating system, mimimum
memory needed, and amount of disk space needed. This is close to what is allowed to
be specified using resource specification languages such as the Job Submission
Definition Language (JSDL).

For any two components of application ai, aij and aik, it should be possible to specify
the weight of the link. In this context, the weight is a measurement of the amount of
communication that is expected to take place between aij and aik . A lower weight

 5

Figure 1: Application Deployment Framework

 6

implies that the network latency between aij and aik should be as minimal as possible.
This is a new feature not currently found in existing resource specification languages.
To illustrate the usefulness of this information consider the following example
parallel applications. Parallel programs supporting Monte Carlo simulations are
organized such that the application components do not have to communicate with
each other. Thus, the placement of the application components does not need to take
into account network resources. On the other hand, parallel applications that solve a
large system of linear equations are tightly-coupled as well as compute and network
intensive.

This suggests that application components should be placed relatively close to each
other. It is not always the case that the desired resources are found. We allow for the
possibility of specifying alternative requirements for an execution environment. If it
is not possible to satisfy any of the alternative requirements then an error is returned
to the Job Client component indicating this.

An example job description file is found in Figure 2. In a job description file,
information about an application component’s deployment requirements is specified
in between a set of square brackets. The first line has the tag GROUP_ID that
uniquely identifies this application component from other application components in
the job description file. In the example found in Figure 2, the information in between
the first set of square brackets specifies two instances of a master component are
needed that execute on a Microsoft Windows-based machine. The line with the tag
TYPE refers to the type being executable being submitted. Job types include
windows executable, windows/command, java/jar, java/class, linux/shell, linux/binary,
solaris/shell, solaris/binary. The tag EXEC specifies a path to the executable file. An
optional second parameter specifies the relative path that the executable should be
deployed on the target job host. The tag CONSTRAINT specifies constraints on the
job hosts that this job will be deployed on. Attributes that can be used include job
host name, vendor, cpu load, free memory, idle time, etc; Multiple constraints are
specified in order to show that components can be deployed as long as one set of
constraints can be satisfied. For example, the first two sets of constraints described for
the application component, “MASTER 1”, will fail if the environment does not
contain Microsoft Windows 95 or 98 machines. The tag INPUT_ARG specifies
input arguments to pass to the executable when it starts. The tag INPUT_FILE
represents a path to an input file required by the executable. If there are multiple
input files then there are multiple lines with the INPUT_FILE tag. The tags,
MIN_DEPLOYMENTS and MAX_DEPLOYMENTS are used to specify the
minimum number and minimum number of job hosts needed.

 7

Figure 2: Sample Job Description File

The tag DIST specifies the maximum distance allowed between jobs running the
specified jobs. Each line is specified as follows: source group identifier, source job
number, destination group identifier, and destination job number. In the current
implementation, distance is defined as the number of hops. Future work will examine
other measures of distance.

3.2 Resource Manager
The Resource Manager component provides information about the available
computing resources. It maintains both static and dynamic information about
computing resources. Static information about a workstation includes the operating
system it is using, CPU speed, the subnetwork it is on, etc; Dynamic information
about a workstation includes the CPU utilization. Also maintained is information

[
GROUP_ID "MASTER1"
TYPE "windows/executable"
EXEC "/usr/gridapp/gridapp.exe"
INPUT_ARG "true" "300"
CONSTRAINTS "(&(jhosname=MicrosoftWindows)(jhosarch=i386))"
CONSTRAINTS "(&(jhosname=MicrosoftWindows
98)(jhosarch=i386))"
CONSTRAINTS "(&(jhosname=MicrosoftWindows
XP)(jhosarch=i386))"
MAX_DEPLOYMENTS "2"
MIN_DEPLOYMENTS "2"
DIST "GROUP1" "1" "GROUP1" "2" "1"
DIST "GROUP1" "1" "GROUP2" "1" "1"
DIST "GROUP1" "1" "GROUP2" "2" "1"
DIST "GROUP1" "2" "GROUP2" "1" "1"
DIST "GROUP1" "2" "GROUP2" "2" "1"
DIST "GROUP2" "1" "GROUP2" "2" "1"
]
[
GROUP_ID "MASTER2"
TYPE "linux/binary"
EXEC "/usr/gridapp/gridapp.bin"
INPUT_ARG "true" "300"
CONSTRAINTS "(&(jhosname=Linux)(jhosarch=i386))"
MAX_DEPLOYMENTS "2"
MIN_DEPLOYMENTS "2"
]
[
GROUP_ID "SLAVES"
TYPE "java/jar"
EXEC "/usr/gridapp/gridapp.jar"
INPUT_ARG "true" "300"
INPUT_FILE “/usr/gridapp/data/test.dat” “/data”
CONSTRAINTS "(&(jhosname=*)(jhosarch=i386))"
MAX DEPLOYMENTS "100"

 8

regarding the relationship between different subnetworks. The Resource Manager
allows proxies on behalf of computing resources to register static information about it
that is stored in a repository. Dynamic information may be collected using a variety
of monitoring tools. For example, CPU availability may be measured using an SNMP
agent while a network weather service may be used to monitor bandwidth utilization.

3.3 Scheduler
The Selector receives an application deployment request and deploys the application
files (e.g., executables, scripts) to the chosen computing resources. To do this, the
scheduler parses the application deployment request and makes a list of the
computing resources needed. It then submits a request to a resource manager that
specifies a list of required resources and the requirements of these computing
resources. The Resource Manager returns a list of available resources. This is
provided to the Resource Selector component. The choice of resources is not
necessarily based only on the application deployment request. It may also be based
on system policies. Once the selection of resources is completed and provided to the
Selector, the Scheduler then deploys the application components. The Scheduler
assigns job identifier numbers. The Scheduler maintains information about the
mapping of the application to the chosen computing resources. There is an interface
that can be used by the client and the Resource Selector for querying application
deployment and configuration information.

3.4 Resource Selector
This component is provided with a possible set of resources. It is a subcomponent of
the Resource Manager. This component selects from these resources. It is not
possible to evaluate every possible combination since this is expontential with respect
to the number of resources. We combine the use of a heuristic algorithm with the use
of policies to determine a reasonable set of resources. If there are no constraints
associated with communication then for each application component the first returned
resource is chosen for an application component is returned. Policies can be applied
to filter out resources. Examples include the following: (i) There may be access
control policies that do not allow the user to have access to a specific resource; (ii)
Another policy may have a limit on of applications allowed to execute on a specific
machine or use the same local area network. This eliminates resources from being
considered. Policies take the form if cond then actions. There is existing software
that can support the implementation of policies e.g., JESS[12].

3.5 Job Host
 The job host software consists of the following: (i) A proxy for registering the host
machine with a resource manager and provides resource usage information; and (ii) A
process that keeps track of the job. The start time and end time of a job is logged to a
database. The process may delay the start of a job. An interface is provided that
allows other management infrastructure components to get at this information.

 9

3.6 Interactions
This section briefly describes the interactions between the different components. An
example of a possible interaction is graphically depicted in Figure 3. A user submits
an application to the management infrastructure. This consists of a job description file
that refers to locations of the executables and input files. The request is passed to the
Scheduler. The Scheduler sends a request to the Resource Manager. For each
application component found in a group, the Resource Manager finds all the machines
that satisfy the constraints. The Resource Selector (a component of the Resource
Manager) makes the final selection based on the policies. The results are returned to
the Scheduler. The Scheduler then sends the executable and its input files to the
machines that were assigned to the executable. The results are returned to the
machine that the job was submitted from.

Figure 3: Interactions in Application Deployment

4. Implementation
An initial prototype has been developed. Each of the components of the
infrastructure (except the job client) consists of a servlet container, a repository and a
local service. The servlet container hosts the web service. This organization allows
for a good deal of flexibility in deploying the infrastructure. For example, the Job
Host servlet container, database server and local service can each run on the same
machine or be distributed amongst different machines. The same servlet container
and repository can be shared. All repositories used DB/2 while the Resource

 10

Manager’s repository used LDAP. The web service provides an interface to the
component logic.

5. Discussion
In this section we discuss the framework’s satisfaction of requirements identified
earlier as well as our current observations.

Support for Intelligent Deployment Decisions. The ability to support the selection
of resources based on resource usage, policy and application needs is supported
through the Resource Selector. The Resource Selector uses a rule-based engine to
implement policies. This allows for an approach to selecting resources based on
system requirements.

Support for Application’s Resource Configuration Maintenance. This is
supported by the Scheduler. The web service provides an interface that allows for the
retrieval of information about resource configurations.

Must be Scalable. More work needs to be done to validate that this is scalable.
Scalability will be achieved by having having multiple schedulers for different
domains. A user will submit a job to the “local” scheduler. If the “local” scheduler
cannot find all of the necessary resources within its domain, it then sends a request
for resources to neighboring schedulers. These in turn may forward the request to
other schedulers. Two issues need to be addressed: (i) How much forwarding should
be allowed? and (ii) It may be the case that there some local resources. The scheduler
needs to partition the application request appropriately so that it takes into account
application needs. For example, if for two components the number of hops should be
one and there are local resources to satisfy this, then the local scheduler will request
resources for the rest of the application .

Must be Flexible and Easy to Extend. This work relies on the use of web service
technology. The web service provides for a standard interface. Thus, different
domains may have different implementations of the different components of the
management architecture proposed in this paper. For example, different domains may
implement the scheduler based on the use of an existing scheduler.

The Resource Selector uses a rule-based engine to implement policies. A change in
policies can be mapped to new rules to be loaded by the rule-based engine. This
allows for a change in policies without recompiling the code. Additionally, this also
allows for different appraoches and languages to be provided to administrators for
specifying policies. The only requirement is that there is a mapping from the policy
that the administrators specify to the rules that can be read by a rule engine.

Adding resources is easy. When a new computing resource is available, the software
for registration can be put on that device. That device can then register with the
Resource Manager.

There are several limitations with respect to flexibility including the following: (i)
Currently, the job description language we have specifies the minimum and maximum

 11

number of deployments of an application. Ideally, the management system would
determine this number based on the performance requirements of the application; (ii)
Currently, results are returned to the host machine where the submission was made. It
should be possible to specify in the job description file a different target to return
results.

6. Conclusions
This paper demonstrates that it is possible to specify application dependencies and
use this information in selecting resources. The framework was presented.
Discussion included advantages of the presented framework and disadvantages.
Future work will address these disadvantages and look at placing the software in a
larger environment.

ACKNOWLEDGMENT

We would like to thank Natural Sciences and Engineering Research Council
{NSERC) of Canada. for their support.

References

1. Anderson, D., Cobb, J., Korpela, M., Lebofsky, M., and Werthimer, D.,
SETI@home: An Experiment in Public-Resource Computing. Communications of
the ACM, Volume 45, No 11.

2. Angulo, D., Foster, I., Liu, C. and Yang, L. Design and Evaluation of a Resource
Selection Framework for Grid Applications. Proc. of IEEE International
Symposium on High Performance Distributed Computing (HPDC-11), Edinburgh,
Scotland, July, 2002. <http://www.globus.org/research/papers/RS-hpdc.pdf>

3. Berman, F. and Wolski, R. The AppLeS project: A status report. Proc. of the 8th
NEC research Symposium, 1997.
<http://www.cs.ucsd.edu/groups/hpcl/apples/pubs/nec97.ps>

4. Chapin, S., Grimshaw, A., Karpovich, J. and Katramatos, D. The Legion
Resource Management System. Proc. of the 5th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP '99), in conjunction with the
International Parallel and Distributed Processing Symposium (IPDPS '99), April,
1999. <http://www.cs.virginia.edu/~legion/papers/legionrm.pdf>

5. Cray, R. Document number in-2153 2/97. Cray Research, 1997.
6. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W. and

Tuecke, S. A Resource Management Architecture for Metacomputing Systems.
Proc. Of the IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel
Processing, pp. 62-82, 1998.
<ftp://ftp.globus.org/pub/globus/papers/gram97.pdf>

 12

7. Foster, I. The Grid: A New Infrastructure for 21st Century Science. Physics
Today, Vol. 55, No. 2, pp. 42-47, February, 2002.
<http://crystal.uta.edu/~levine/class/spring2003/grid/Foster_phyiscs_today.pdf>

8. Globus Dynamically-Updated Request Online Coallocator (DUROC) v0.8,
Globus Alliance. http://www.globus.org/duroc/frames.html>

9. Henderson, R. and Tweten, D. Portable Batch System: External reference
specification. Ames Research Center, 1996.

10. IBM. IBM Load Leveler: User's Guide. Document number SH26-7226_00, IBM
Corporation. 1993.

11. Livny, M., Tannenbaum, T. and Thain, D. Condor and the Grid. in Fran Berman,
Anthony J.G. Hey, Geoffrey Fox, editors, Grid Computing: Making The Global
Infrastructure a Reality, John Wiley, 2003.
<http://media.wiley.com/product_data/excerpt/90/04708531/0470853190.pdf>

12. Marsan, C., Grid Vendors Target Corporate Applications, Network World Fusion,
January 2003.

13. Open Grid Services Infrastructure V1.0: Primer. OGSI Working Group, March
12th, 2004. <https://forge.gridforum.org/projects/ogsi-wg/docman/>.

14. Sandia National Laboratories, JESS, the Java Expert System Shell,
http://herzberg.ca.sandia.gov/jess.

15. Thomas, R., IBM and Schwab Tag Team on Linux Grid Computing, Linux
Electrons, January 2004.

16. Zhou, S., LSF: Load Sharing in Large-Scale Heterogeneous Distributed Systems.
Workshop on Cluster Computing, 1992.

