
Resource Matching in a Peer-to-Peer
Computational Framework

D. Santoni and M. Katchabaw
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada N6A 5B7

Abstract - The rise in high speed networks has led to an
increased interest in the development of grid computing
frameworks; the ubiquity of the broadband Internet
connection has fostered widespread development and
adoption of peer-to-peer applications. These two
technologies provide complementary solutions to the
inherent problems associated with distributed
computations. Various frameworks that combine these two
technologies have been proposed and implemented, each
with its own strengths and weaknesses. In this paper, we
propose and implement a P2P framework with an emphasis
on resource management and job deployment to overcome
the limitations of existing work. We believe that this will
allow our framework to provide higher performance in a
heterogeneous environment. We benchmark our framework
and provide an analysis of the results.

Keywords: P2P, MPI, grid, cluster, resource management,

1 Introduction

High performance computing equipment can be an

expensive commodity. The cost associated with purchasing
and maintaining specialized equipment is prohibitively high
for many researchers and institutions. The ability to share
such equipment lowers the cost of overall ownership
through better utilization and cost distribution. The Internet
and grid technology have allowed many institutions to
achieve such collaboration, and it has resulted in many
success stories [14]. However, configuring and operating a
grid is no easy task, and therein lays a problem [11].

In contrast, file sharing software that utilizes peer-to-peer
(P2P) network technology is used by millions and generally
has low barriers to participate. There is typically no cost
associated with joining a P2P network and configuration is
usually trivial. Much like a grid, P2P networks aggregate
the resources of each user on the network and make them
available to others. Examples like Kazaa [13] and Skype
[16] have shown us that P2P networks can provide high
scalability, in some cases into the millions of users. On the
other hand, P2P networks suffer from problems of their
own, including the volatile nature of P2P nodes, a lack of
central authority, and participant based networks generally
provide no guarantees on quality of service.

Efforts have been made to utilize both grids' strength at
sharing computational resources and P2P networks'
scalability and ease of use. The goal is to build a system

that provides the computational power of a large scale
system with the easy access of a P2P network. In practice
however, we are far away from a perfect solution.

A traditional grid is made up of a fixed set of resources
where jobs are submitted through a central coordinator. In a
P2P environment, the available resources change with time,
there is no central coordinator, and the variations of
hardware and software configurations are innumerable.
Furthermore, job submission and conflict resolution in a
P2P environment must be decentralized. For example, in a
grid environment, the central coordinator delegates the
resources and starts jobs serially, usually through some type
of job queueing mechanism. In a P2P environment, each
submitter must find its own resources and attempt to start
its own job on other peers. This introduces many
challenging problems, such as the need for a reservation
mechanism and resource usage enforcement.

This paper looks at the problem of decentralized resource
management. We examine the problem of resource location
and allocation on a P2P computing framework in an effort
to provide more effective use of the resources available.
This issue has not been directly addressed by other works,
particularly when the degree of resource contention is high
(many users, relatively few resources). As the popularity of
P2P computing increases and more platforms are
developed, the need to understand the effects and benefits
of resource management becomes increasingly important.

Today there exist several different frameworks for end-
user resource computing, such as Alchemi [10], BOINC
[1], OurGrid [2], Xgrid [3], OptimalGrid [5], MPICH-V
[4], FT-MPI [6] and P2P-MPI [9]. Each of these
frameworks focuses on a different problem aspect of
distributed computing. Some frameworks focus on
security, others focus on ease of use, while others focus on
fault tolerance. None of the work surveyed focused on
resource management, particularly in a P2P environment,
and several of the above frameworks were rather limited in
terms of the types of applications supported. A detailed
survey of these technologies is discussed in [17].

The Internet is very large and very diverse. Making the
resources of Internet connected PCs available for general
computing use is only half the problem; matching
workloads to resources is another. Much work has been
done in the area of effective resource matching in grid and
cluster environments [8] [15]. However, in a decentralized
P2P scenario, the problem is more complex.

In this paper, we propose building a P2P framework with
a unique job deployment mechanism to explore the

potential performance gains of resource management. Other
research is actively exploring related problems, such as
security [2] and fault tolerance [5] [6]. Our proposed
framework does not address these problems directly, but is
flexible to incorporate these results in the future.

Many grid and cluster technologies available today
assume a fixed set of resources. This assumption holds true
for the traditional definition of grid and cluster, but with the
increasing popularity of the Internet and the growth in P2P
technology, it is inevitable that the computing frameworks
of tomorrow will be built on these technologies. Managing
and matching resources will become a dynamic problem
with a high degree of importance. This paper hopes to
demonstrate the importance of effective resource matching,
and show what types of improvements can be expected.

Our goal is not simply to build a framework capable of
matching the resources required by a particular job, but to
better balance the load of jobs across the network to
maximize job throughput. Of the P2P computing
technologies we surveyed, we found none adequately
considered the particular requirements of jobs, resulting in
overload conditions and sub-optimal scheduling.

The remainder of this paper is organized as follows. In
Section 2, we present our framework model and discuss the
problems it addresses compared to related work in this area.
Section 3 presents an overview of our framework
implementation. The implementation leads us into Section
4, in which we present our experimental design and results
to date. Our experimentation compares our framework to
similar work in this area. In Section 5, we present our
conclusions and discuss future work to be done in this area.

2 Framework

As mentioned earlier, matching resources to

requirements is not new. Traditional grid technologies have

being doing this for some time; however, the problem takes
on a new dimension in a P2P environment. The first major
difference is the distributed nature of resource location. In a
traditional grid there is communication hierarchy that
typically contains a resource coordinator. In a P2P
environment, this tends not to be the case.

The second major difference (and perhaps the most
important) is the nature of P2P networks. Grids often
contain dedicated hardware that is used exclusively for
processing grid jobs. The number of computers, or
resources, attached to the grid hopefully exceeds the
demands of the users. In a P2P environment, generally
speaking, each computer (or resource) is associated with
exactly one user, creating a one-to-one ratio between
resources and users. To make such an environment work,
resources must be assigned to more than a single job at
once. This further differentiates our work from other work
in this area, and introduces several challenges to managing
resources in this environment.

2.1 Framework Structure
The defining feature of our framework compared to those

briefly discussed earlier in this paper is that our framework
has fine grained resource management. Our strategy allows
for resources to be allocated and shared between jobs to
take full advantages of the resources in the network. The
Resource Manager’s task is to monitor the status of the
local resources, issue and enforce reservations, and enforce
process resource demands by executing processes. The
major components of our framework design are shown in
Figure 1 and discussed in the sections below. Further
details on the framework’s design can be found in [17].

2.1.1 Jobs
A job is made up of one or more worker processes. A

worker process is the smallest unit of execution that can be

Figure 1. P2P Framework with Resource Management

handed off to a remote peer. Worker processes are
distributed amongst peers in the framework, consuming
their resources. Figure 1 depicts two types of jobs, a local
job and remote job. A local job, from an end-user
perspective, is a job that is started from their own local
peer. A remote job is started on a peer that is not their own,
but must interact with their peer in order to spawn worker
processes and gain access to its resources.

2.1.2 Computing Framework
This component contains the general functions of a P2P

framework participant. While this encompasses significant
functionality [7], for this paper, it primarily contains the
logic for application level protocols as well as facilities for
job control and file transfer. If the user were to submit a
job, this component would handle that interaction from the
user, send the necessary communications over the P2P
network, and start the job if/when possible.

2.1.3 P2P Infrastructure
This component contains the low-level communications

implementation. It contains the logic for routing P2P
messages, joining and leaving the network, and marshaling
messages. This component could be an off-the-shelf P2P
middleware or a custom written library.

2.1.4 Resources
For our purposes, resources are anything that can be

consumed by or used to support the execution of a process.
Some of these resources may be local to the host on which
the process is executed (such as CPU cycles, memory, disk
space, and specialized software), while others may be
external, such as the characteristics of the network.

2.1.5 Resource Manager
This component contains the logic for the resource

management operations. This component is discussed in
more detail in Section 2.2. Briefly put, it provides resource
monitoring, reservation creation, reservation verification,
and job monitoring.

2.1.6 Job Submission Process
Users always interact directly with the Computing

Framework component. To submit a job, the Computing
Framework component receives the user's input parameters
(executable files, data files, number of worker processes
required, resource needs, etc.), then the search for peers on
which to run worker processes begins. The Computing
Framework component generates request messages and
sends them to remote peers via the P2P Infrastructure. The
procedure for locating peers and routing request messages
could use message flooding or a more organized approach,
depending on the infrastructure in question.

Remote peers receive messages (requests) from the
network via the P2P Infrastructure. If a reservation request
message is received, the Computing Framework component
asks the Resource Manager to grant or refuse it based on

the availability of resources. The reservation is valid only
for a certain period of time to prevent dead-locking of the
framework. The Resource Manager's response is then
returned to the requesting peer via the P2P Infrastructure.

If the required resources cannot be located before the
reservations expire, the job submission is aborted and
restarted later in the hope that more resources will become
available. Whether the job is restarted automatically or
manually (by the user) is an implementation decision.

Once required resources are successfully reserved, the
Computing Framework dispatches the necessary messages
and files to remote peers. This operation is typically
handled by the Computing Framework component. Once
the files are transferred, execution is started by the
Resource Manager. This enables the Resource Manager to
monitor resource usage by the worker processes.

2.1.7 Errors and Exceptions
As with any distributed system, faults and failures are

inevitable. To tolerate peer failures, our framework allows
the user to specify a number of replications per peer. For
example, the user could start a job requiring four worker
processes and could request two replications. The
framework would then locate the resources for seven
processes (the peer that submits the job is never replicated)
and execute the job on them such that each of the worker
processes is run on two hosts. So long as at least one replica
of each process survives, the job can proceed. If all replicas
of a process fail, then the job aborts and the user must
restart it. The only process not replicated is the coordinator
process, the process run on the peer that submitted the job.

As mentioned before, when the user submits a job, the
framework attempts to locate the resources on the network.
In the event that the resources cannot be located at that time
(because either not enough peers are connected to the
network or the resources are utilized) then the submission is
aborted. Depending on the implementation of the
framework, the job is automatically restarted at a later time
or the user is notified and the job must be restarted
manually. The distributed nature of our framework means
that a global queueing system is not practical. Much like
with P2P file sharing applications, if a file that the user is
searching for cannot be found, the user must search for it
again at a later time.

2.2 Resource Manager Design
The Resource Manager itself consists of three main sub-

components. A graphical depiction of these sub-
components is presented in Figure 2.

2.2.1 Resource Monitor
The Resource Monitor subcomponent's purpose is to

determine what resources the system is able to provide and
what the user chooses to provide. The Resource Manager
polls the system on demand, as well as keeping cumulative
statistics (such as uptime, failure rates, etc.), to provide
accurate resource availability information. (Alternatively, it

 Resource Manager

Reservation Manager

Resource Usage
Enforcement Resource Monitor

Worker
Process

Worker
Process

Worker
Process

Figure 2. Details of the Resource Manager Component

is possible to periodically collect data from the system to
reduce overhead at the expense of accuracy.) The
Reservation Manager consults this information before
issuing a reservation.

2.2.2 Reservation Manager
The Reservation Manager subcomponent's task is to

issue, store and validate reservations. When a remote peer
requests resources from the local peer, the reservation
manager, using information from the Resource Monitor,
determines if the resources can be provided. If so, the
reservation is granted and saved. Prior to actually executing
the job, our framework consults the Reservation Manager to
see if the reservation has expired. If it has not, then the
Reservation Manager marks the reservation for that job as
started. If the reservation has expired the requesting peer is
notified and the job is rejected.

Since our framework is designed to run on end user
computers, it is worth discussing limiting resource access.
A desktop user may not want to contribute all of their
physical memory, CPU time, or other resources to the
framework. It is the Reservation Manager's job to take these
contribution limits into account when issuing a reservation.
A favor based system (or something similar) would need to
be employed in order to keep users from abusing the
system, as well as encouraging users to contribute more
resources (in an attempt to gain more in return). This aspect
of usability is currently under investigation.

2.2.3 Resource Usage Enforcement
The Resource Usage Enforcement subcomponent ensures

that a process only uses the resources that have been
allocated to it by the framework. If the process tries to
allocate more memory or exceeds its allotted CPU quanta,
then steps are taken to correct the situation (such as job
termination or process throttling or suspension). If the
underlying operating system were to support advanced
resource management techniques, including resource
restriction, much of the role of this component could be
delegated to the operating system. This would free the
Resource Manager from the burden of constantly
monitoring all the worker processes.

3 Implementation

Given the scope and complexity of creating an entire P2P

type framework from scratch, we chose to implement our
framework described in the previous section using an
existing P2P infrastructure. This freed us from the burden
of re-implementing components whose operations are
generally the same between systems (file transfer, job
control, and so on). This also enabled us to focus more on
our specific problem area.

To this end, we used P2P-MPI [9] to provide the
Computing Framework component shown in Figure 1 while
JXTA [12] provided the P2P Infrastructure. Our
implementation efforts focused on adding Resource
Manager facilities to these base framework components in
Java. The original assumption in P2P-MPI was that all
peers on the network would have the same, or similar,
hardware and software configurations and it would not
matter which processes were run on which hosts. This is not
a good assumption given the amount of hardware and
software variability between hosts on the Internet. Our
needs required us to modify this infrastructure so that users
could specify how much of a particular resource a job
would require, and allow the framework to match and
reserve those resources.

3.1 Resource Manager Implementation
Developing the Resource Manager for this work involved

the implementation of the Resource Monitor, Reservation
Manager, and Resource Usage Enforcement subcomponents
as discussed in the previous section. The implementation of
each of these subcomponents is outlined below; further
details can be found in [17].

3.1.1 Resource Monitor Implementation
As discussed in Section 2.2.1, the purpose of the

Resource Monitor subcomponent is to track resource
availability on the local peer. Since our implementation
was written in Java, this required gathering as much data as
possible through the Java Virtual Machine (for example,
memory usage and so on). If resource data was not
available through the JVM, simple platform-independent
benchmarks were used to provide estimates of available
resources instead (for example, with idle CPU capacity).

3.1.2 Reservation Manager Implementation
To support resource reservations, the Reservation

Manager subcomponent was implemented with facilities for
processing, storing, checking, and expiring resource
reservations for jobs. When a new reservation request is
received, the existing set of reservations is consulted, along
with the set of available contributed resources on the local
peer, to determine if the new reservation can be supported
or not. If it can be supported, the reservation request is
accepted, and the Reservation Manager records the unique
job ID, the resources held by the reservation, and the
reservation's expiry time.

If a sufficient number of resources are not found after the
search time elapses, then the job is aborted and restarted at
a later time (in the hope that the necessary resources would
become available). Reservations on remote peers expire if
the job is not started within a given time, thereby freeing
the resources for use by other peers and avoiding deadlock.
Sufficient time must be provided, however, to allow the
search for resources in the P2P network to complete;
otherwise, there could be an excessive number of
unnecessary expirations.

3.1.3 Resource Usage Enforcement Implementation
The Resource Usage Enforcement subcomponent in our

current prototype takes an honor system approach in which
we assume that jobs submitted to the framework will not
use more of a particular resource than they requested. It is
possible for a worker process to receive more than the
requested amount of resources if those resources are
otherwise idle or unused, but it must not attempt to exceed
its reservation otherwise. We essentially provide a lower-
bound on the resources that will be available for a process.

The rationale behind this approach is the fact that at this
time, the popular commercial and consumer operating
systems do not provide the mechanisms required to allow
hard limits on process resource usage. Implementing a full
sandbox model, in which execution of a process can be
fully controlled by our framework, was beyond the scope of
our initial prototyping efforts. Virtualization technologies
might facilitate this, at the cost of increasing the complexity
for the average user to use the framework. This issue is
currently under further investigation, however.

For our current prototype, we chose to limit our resource
management to CPU and memory (available physical, total
physical, and available virtual). We felt that this subset
would sufficiently demonstrate the benefits of resource
management while not being overly complex for initial
prototyping and experimentation.

3.2 Protocol Augmentation
To support resource matching and reservation, the

discovery and job deployment processes that are part of the
Computing Framework P2P-MPI required modification so
that before accepting work, the Resource Manager would
be consulted. This required the insertion of two additional
steps in the processes. The first step required that peers
considered resource availability during discovery so that a
peer would only be available to job deployment if it had the
necessary resources to handle the needs of the given task. If
so, then communication proceeded to the second step;
resource reservation. The peer reserves the resources
required for the particular task until the job starts or the
reservation expires. Furthermore, the execution preamble
communication was also modified. If the reservation on the
remote peer had expired, it would return a denied message
and the process would not be executed. It would then be up
to the submitter to abort and try submitting the job again.

To ensure that a user was never denied access to their
own (local) peer, in this initial prototype we allowed a job

to start locally without a reservation. This was necessary
from both a technical and a usability perspective.
Technically speaking, the local process (which is always
MPI Rank 0) actually locates the remaining resources
required to run the job. If this local job were not started
(due to insufficient resources), then no matter how many
resources were free on the network, it could not access
them. From a usability perspective if a user were not able
to start a job because all their resources were used by the
other users, there would be little incentive to participate in
the network. Upon completion of a Resource Usage
Enforcement subcomponent capable of imposing hard
resource limits on processes, as discussed in Section 3.1.3,
we will be able to effectively isolate local processes from
worker processes from remote peers to avoid interference
issues from a resource management perspective.

4 Experimentation and Experiences

To validate our prototype implementation and to evaluate

the performance improvements from proper resource
matching and resource management in a P2P computing
environment, a series of experiments have been conducted.
The results presented in this section are only a sampling of
the experiments conducted to date. Further details and
analyses can be found in [17].

4.1 Experimental Testbed
To support initial experimentation, we constructed a

mixed network with several Intel-based low capacity and
high capacity machines running Linux 2.6.x and a separate
Sun UltraSparc IIi system running Solaris 8 to act as a
Rendezvous Server for the P2P network. All systems used
the same revision of Java 1.5. This resulted in the network
configuration shown in Figure 3.

Figure 3. Experimental Testbed

This provides a heterogeneous network of machines

similar to what one might find in a public computing
initiative, and gives a suitable starting point for
experimentation and validation of our prototype.

4.2 Experimental Results
To demonstrate the effectiveness of our prototype

system, we will present results from experimentation with
two different applications. For comparison purposes, we
executed the same experiments using the original P2P-MPI
and our new system with resource management that uses
P2P-MPI as its Computing Framework, which we call RM-
P2P-MPI for the purposes of experimentation (for Resource
Managed P2P-MPI). This will allow the simplest and most
direct opportunity for showing any performance benefits
from resource matching and resource management in our
prototype system.

4.2.1 Integer Sorting Results
As an initial experiment, we used a Java implementation

of the distributed NSA Integer Sort benchmark as the
sample workload. The implementation was provided by the
authors of P2P-MPI as a sample program. We used two
data sets for experimentation, a small set of 8.6 million
integers, and a larger set of 33.5 million integers. We also
used two different numbers of worker processes to perform
the actual sorting procedure, 4 and 8. This resulted in four
main experimental configurations. In each experiment,
each of the four low capacity peers and four high capacity
peers shown in Figure 3 submitted the integer sort job
sequentially five times, to simulate multiple jobs being
submitted to the system by its users. Experiments were
then replicated five times to assess error and statistical
confidence.

Figures 4 and 5 compare the average sum of run time
(time to complete the experimental workload) and overhead
time (time to deploy the workload over the P2P network)
over all replications for low capacity and high capacity
peers respectively. (We present the results for low and high
capacity peers separately because of the large difference in
performance between them.) In almost every case, we see
an improvement (decrease) in total time to process the
entire workload. In the case where no improvement was
seen, the total times were approximately the same. Due to
the relatively low resource contention in that case, there is
less advantage in resource management efforts as there is
little opportunity for a workload imbalance.

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

18000.0

RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI

4 Workers, Small Data
Set

8 Workers, Small Data
Set

4 Workers, Large Data
Set

8 Workers, Large Data
Set

A
ve

ra
ge

 T
im

e
(S

ec
on

ds
)

Run Time Overhead Time
Figure 4. Integer Sort Low Capacity Peer Summary

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI

4 Workers, Small Data
Set

8 Workers, Small Data
Set

4 Workers, Large Data
Set

8 Workers, Large Data
Set

A
ve

ra
ge

 T
im

e
(S

ec
on

ds
)

Run Time Overhead Time
Figure 5. Integer Sort High Capacity Peer Summary

4.2.2 Prime Number Search Results
This set of experiments is quite similar to those discussed

in Section 4.2.1; only the workload process was changed.
Instead of using the integer sort sample program, we used
our own simple prime number search application. We did
this to explore the performance of our framework on a
communication-bound job (as opposed to CPU-bound). We
chose to write our own workload process because we could
not find a suitable off-the-shelf benchmark. We wanted a
process that utilized the CPU and the communication
aspects of our framework; consequently, our prime number
search algorithm was made quite naïve, in an effort to have
as much communication as possible. Each worker would
ask the master peer (the peer that submitted the job) for a
new number to inspect until all the numbers were checked.
Each peer did a brute force check to determine if the
number was prime or not. The ratio of work to the degree of
communication was significantly less than in the previous
experiments, which resulted in a different set of resource
requirements requested during job submission than with the
integer sort application.

We kept the work loads relatively small in the interest of
completing our experiments in a timely fashion. The small
data set involved finding all the prime numbers between 1
and 1,000, while the large data set range was from 1 to
10,000. We used either 4 or 8 worker processes to perform
the prime search, once again resulting in four main
experiment configurations. In each experiment, each of the
peers again submitted the prime search job sequentially five
times to produce the overall workload processed by the
system. Five replications were also made of each
experiment.

In Figures 6 and 7 we observe an improvement in all
experiments. As with the experiments in Section 4.2.1, our
resource managed framework was able to outperform the
original, unmanaged P2P-MPI. Here we see that the
overhead/wait times are not as great since the resource
requirements are less. Essentially, the peers did not need to
search or wait as long to reserve the resources required for
the job. The performance improvement for this experiment
is smaller than we found with the experiments in Section
4.2.1. This is not surprising, given that the workload is less
demanding on the peers’ resources. If the framework

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI

4 Workers, Small Data
Set

8 Workers, Small Data
Set

4 Workers, Large Data
Set

8 Workers, Large Data
Set

A
ve

ra
ge

 T
im

e
(S

ec
on

ds
)

Run Time Overhead Time
Figure 6. Prime Search Low Capacity Peer Summary

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI

4 Workers, Small Data
Set

8 Workers, Small Data
Set

4 Workers, Large Data
Set

8 Workers, Large Data
Set

A
ve

ra
ge

 T
im

e
(S

ec
on

ds
)

Run Time Overhead Time
Figure 7. Prime Search High Capacity Peer Summary

becomes unbalanced with this workload, the impact is less
given that the jobs are network-bound, spending most of
their time waiting for communications.

5 Conclusions and Future Work

This paper has looked at two aspects of P2P computing:

the need for decentralized resource allocation and the
performance benefits of effective resource management. In
both cases, we have found positive results. Our prototype
implementation has shown that resource management is
possible in a decentralized environment. Our experimental
results have shown that not only is it worth while, but
necessary in a high load environment, such as a P2P
computing framework.

Further developments in the area of distributed
computing should consider the potential benefits of
integrating a resource management mechanism to better
serve their users. As the scale of P2P computing initiatives
increases, this will become a more prominent issue.

In the future, there are many potential directions for
continued work in this area. Naturally, work must be done
on resource enforcement to police process resource usage to
move our system from experimental environments to
production usage. Issues of security and fairness need to be
fully investigated to prevent abuses, whether they are
accidental or intentional. Lastly, it is important to study job
migration and job re-deployment to allow workloads to be

adjusted and balanced after initial deployment, to further
increase the overall performance of the P2P network.

References

[1] D. Anderson. Boinc: A System for Public-resource Computing
and Storage. GRID '04: Proceedings of the Fifth IEEE/ACM
International Workshop on GridComputing, Washington, DC,
USA, 2004.
[2] N. Andrade, L. Costa, G. Germóglio, and W. Cirne. Peer-to-
peer Grid Computing with the OurGrid Community. Proceedings
of the 23rd Brazilian Symposium on Computer Networks | IV
Special Tools Session, May 2005.
[3] Apple Computer Inc. XGrid Guide, March 2004.
http://www.apple.com/acg/xgrid/.
[4] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali,
G. Fedak, C. Germain, T. Herault, P. Lemarinier,
O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. Mpich-v:
Toward a Scalable Fault Tolerant MPI for Volatile Nodes.
Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, Los Alamitos, CA, USA, 2002.
[5] G. Deen, T. Lehman, and J. Kaufman. The Almaden
OptimalGrid Project. Active Middleware Services, 2003.
[6] G. Fagg and J. Dongarra. FT-MPI: Fault Tolerant MPI,
Supporting Dynamic Applications in a Dynamic World.
Proceedings of the 7th European PVM/MPI Users' Group Meeting
on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, London, UK, 2000.
[7] I. Foster. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Proceedings of the 7th Intl. Euro-Par Conference
Manchester on Parallel Processing, 2001.
[8] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and
A. Roy. A Distributed Resource Management Architecture that
Supports Advance Reservations and Co-allocation. Proceedings of
the Seventh IWQoS, 1999.
[9] S. Genaud and C. Rattanapoka. A Peer-to-peer Framework for
Robust Execution of Message Passing Parallel Programs.
EuroPVM/MPI 2005, volume 3666 of LNCS, September 2005.
[10] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. High
Performance Computing: Paradigm and Infrastructure, Chapter
Peer-to-Peer Grid Computing and a .NET-based Alchemi
Framework. 2004.
[11] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauv. Faults in
Grids: Why are They So Bad and What Can be Done About It?
Proceedings of the Fourth International Workshop on Grid
Computing, Washington, DC, USA, 2003.
[12] Sun Microsystems. jxta.org, October 2005.
http://www.jxta.org.
[13] Sharman Networks. Kazaa, July 2005. http://www.kazaa.com.
[14] S. Norman. Grid Computing: A Survey of Technologies,
Reading Course Paper, Department of Computer Science, The
University of Western Ontario. September 2004.
[15] Rajesh Raman, Miron Livny, and Marvin Solomon. Policy
Driven Heterogeneous Resource Co-allocation with
Gangmatching. Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing,
Washington, DC, USA, 2003.
[16] Skype Technologies S.A. Skype | Free Internet telephony that
just works, May 2005. http://www.skype.com.
[17] D. Santoni. Resource Matching in a Peer-to-Peer
Computational Framework. Master’s Thesis. Department of
Computer Science, The University of Western Ontario.
July 2006.

