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Abstract - The rise in high speed networks has led to an 
increased interest in the development of grid computing 
frameworks; the ubiquity of the broadband Internet 
connection has fostered widespread development and 
adoption of peer-to-peer applications. These two 
technologies provide complementary solutions to the 
inherent problems associated with distributed 
computations. Various frameworks that combine these two 
technologies have been proposed and implemented, each 
with its own strengths and weaknesses.  In this paper, we 
propose and implement a P2P framework with an emphasis 
on resource management and job deployment to overcome 
the limitations of existing work. We believe that this will 
allow our framework to provide higher performance in a 
heterogeneous environment. We benchmark our framework 
and provide an analysis of the results. 
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1  Introduction 
 
High performance computing equipment can be an 

expensive commodity. The cost associated with purchasing 
and maintaining specialized equipment is prohibitively high 
for many researchers and institutions. The ability to share 
such equipment lowers the cost of overall ownership 
through better utilization and cost distribution. The Internet 
and grid technology have allowed many institutions to 
achieve such collaboration, and it has resulted in many 
success stories [14]. However, configuring and operating a 
grid is no easy task, and therein lays a problem [11]. 

In contrast, file sharing software that utilizes peer-to-peer 
(P2P) network technology is used by millions and generally 
has low barriers to participate. There is typically no cost 
associated with joining a P2P network and configuration is 
usually trivial. Much like a grid, P2P networks aggregate 
the resources of each user on the network and make them 
available to others. Examples like Kazaa [13] and Skype 
[16] have shown us that P2P networks can provide high 
scalability, in some cases into the millions of users. On the 
other hand, P2P networks suffer from problems of their 
own, including the volatile nature of P2P nodes, a lack of 
central authority, and participant based networks generally 
provide no guarantees on quality of service. 

Efforts have been made to utilize both grids' strength at 
sharing computational resources and P2P networks' 
scalability and ease of use. The goal is to build a system 

that provides the computational power of a large scale 
system with the easy access of a P2P network. In practice 
however, we are far away from a perfect solution. 

A traditional grid is made up of a fixed set of resources 
where jobs are submitted through a central coordinator. In a 
P2P environment, the available resources change with time, 
there is no central coordinator, and the variations of 
hardware and software configurations are innumerable. 
Furthermore, job submission and conflict resolution in a 
P2P environment must be decentralized. For example, in a 
grid environment, the central coordinator delegates the 
resources and starts jobs serially, usually through some type 
of job queueing mechanism. In a P2P environment, each 
submitter must find its own resources and attempt to start 
its own job on other peers. This introduces many 
challenging problems, such as the need for a reservation 
mechanism and resource usage enforcement. 

This paper looks at the problem of decentralized resource 
management. We examine the problem of resource location 
and allocation on a P2P computing framework in an effort 
to provide more effective use of the resources available. 
This issue has not been directly addressed by other works, 
particularly when the degree of resource contention is high 
(many users, relatively few resources). As the popularity of 
P2P computing increases and more platforms are 
developed, the need to understand the effects and benefits 
of resource management becomes increasingly important. 

Today there exist several different frameworks for end-
user resource computing, such as Alchemi [10], BOINC 
[1], OurGrid [2], Xgrid [3], OptimalGrid [5], MPICH-V 
[4], FT-MPI [6] and P2P-MPI [9].  Each of these 
frameworks focuses on a different problem aspect of 
distributed computing.  Some frameworks focus on 
security, others focus on ease of use, while others focus on 
fault tolerance. None of the work surveyed focused on 
resource management, particularly in a P2P environment, 
and several of the above frameworks were rather limited in 
terms of the types of applications supported.  A detailed 
survey of these technologies is discussed in [17].   

The Internet is very large and very diverse. Making the 
resources of Internet connected PCs available for general 
computing use is only half the problem; matching 
workloads to resources is another. Much work has been 
done in the area of effective resource matching in grid and 
cluster environments [8] [15]. However, in a decentralized 
P2P scenario, the problem is more complex. 

In this paper, we propose building a P2P framework with 
a unique job deployment mechanism to explore the 



potential performance gains of resource management. Other 
research is actively exploring related problems, such as 
security [2] and fault tolerance [5] [6]. Our proposed 
framework does not address these problems directly, but is 
flexible to incorporate these results in the future. 

Many grid and cluster technologies available today 
assume a fixed set of resources.  This assumption holds true 
for the traditional definition of grid and cluster, but with the 
increasing popularity of the Internet and the growth in P2P 
technology, it is inevitable that the computing frameworks 
of tomorrow will be built on these technologies. Managing 
and matching resources will become a dynamic problem 
with a high degree of importance. This paper hopes to 
demonstrate the importance of effective resource matching, 
and show what types of improvements can be expected. 

Our goal is not simply to build a framework capable of 
matching the resources required by a particular job, but to 
better balance the load of jobs across the network to 
maximize job throughput. Of the P2P computing 
technologies we surveyed, we found none adequately 
considered the particular requirements of jobs, resulting in 
overload conditions and sub-optimal scheduling. 

The remainder of this paper is organized as follows.  In 
Section 2, we present our framework model and discuss the 
problems it addresses compared to related work in this area. 
Section 3 presents an overview of our framework 
implementation. The implementation leads us into Section 
4, in which we present our experimental design and results 
to date. Our experimentation compares our framework to 
similar work in this area. In Section 5, we present our 
conclusions and discuss future work to be done in this area. 

2  Framework 
 
As mentioned earlier, matching resources to 

requirements is not new. Traditional grid technologies have 

being doing this for some time; however, the problem takes 
on a new dimension in a P2P environment. The first major 
difference is the distributed nature of resource location. In a 
traditional grid there is communication hierarchy that 
typically contains a resource coordinator. In a P2P 
environment, this tends not to be the case. 

The second major difference (and perhaps the most 
important) is the nature of P2P networks. Grids often 
contain dedicated hardware that is used exclusively for 
processing grid jobs. The number of computers, or 
resources, attached to the grid hopefully exceeds the 
demands of the users. In a P2P environment, generally 
speaking, each computer (or resource) is associated with 
exactly one user, creating a one-to-one ratio between 
resources and users. To make such an environment work, 
resources must be assigned to more than a single job at 
once. This further differentiates our work from other work 
in this area, and introduces several challenges to managing 
resources in this environment. 

2.1  Framework Structure 
The defining feature of our framework compared to those 

briefly discussed earlier in this paper is that our framework 
has fine grained resource management. Our strategy allows 
for resources to be allocated and shared between jobs to 
take full advantages of the resources in the network. The 
Resource Manager’s task is to monitor the status of the 
local resources, issue and enforce reservations, and enforce 
process resource demands by executing processes. The 
major components of our framework design are shown in 
Figure 1 and discussed in the sections below.  Further 
details on the framework’s design can be found in [17]. 

2.1.1  Jobs 
A job is made up of one or more worker processes. A 

worker process is the smallest unit of execution that can be 

Figure 1.  P2P Framework with Resource Management 



handed off to a remote peer. Worker processes are 
distributed amongst peers in the framework, consuming 
their resources. Figure 1 depicts two types of jobs, a local 
job and remote job. A local job, from an end-user 
perspective, is a job that is started from their own local 
peer. A remote job is started on a peer that is not their own, 
but must interact with their peer in order to spawn worker 
processes and gain access to its resources. 

2.1.2  Computing Framework 
This component contains the general functions of a P2P 

framework participant. While this encompasses significant 
functionality [7], for this paper, it primarily contains the 
logic for application level protocols as well as facilities for 
job control and file transfer.  If the user were to submit a 
job, this component would handle that interaction from the 
user, send the necessary communications over the P2P 
network, and start the job if/when possible. 

2.1.3  P2P Infrastructure 
This component contains the low-level communications 

implementation. It contains the logic for routing P2P 
messages, joining and leaving the network, and marshaling 
messages. This component could be an off-the-shelf P2P 
middleware or a custom written library. 

2.1.4  Resources 
For our purposes, resources are anything that can be 

consumed by or used to support the execution of a process. 
Some of these resources may be local to the host on which 
the process is executed (such as CPU cycles, memory, disk 
space, and specialized software), while others may be 
external, such as the characteristics of the network.  

2.1.5  Resource Manager 
This component contains the logic for the resource 

management operations. This component is discussed in 
more detail in Section 2.2. Briefly put, it provides resource 
monitoring, reservation creation, reservation verification, 
and job monitoring. 

2.1.6  Job Submission Process 
Users always interact directly with the Computing 

Framework component. To submit a job, the Computing 
Framework component receives the user's input parameters 
(executable files, data files, number of worker processes 
required, resource needs, etc.), then the search for peers on 
which to run worker processes begins. The Computing 
Framework component generates request messages and 
sends them to remote peers via the P2P Infrastructure. The 
procedure for locating peers and routing request messages 
could use message flooding or a more organized approach, 
depending on the infrastructure in question. 

Remote peers receive messages (requests) from the 
network via the P2P Infrastructure.  If a reservation request 
message is received, the Computing Framework component 
asks the Resource Manager to grant or refuse it based on 

the availability of resources. The reservation is valid only 
for a certain period of time to prevent dead-locking of the 
framework. The Resource Manager's response is then 
returned to the requesting peer via the P2P Infrastructure. 

If the required resources cannot be located before the 
reservations expire, the job submission is aborted and 
restarted later in the hope that more resources will become 
available. Whether the job is restarted automatically or 
manually (by the user) is an implementation decision. 

Once required resources are successfully reserved, the 
Computing Framework dispatches the necessary messages 
and files to remote peers. This operation is typically 
handled by the Computing Framework component. Once 
the files are transferred, execution is started by the 
Resource Manager. This enables the Resource Manager to 
monitor resource usage by the worker processes. 

2.1.7  Errors and Exceptions 
As with any distributed system, faults and failures are 

inevitable. To tolerate peer failures, our framework allows 
the user to specify a number of replications per peer.  For 
example, the user could start a job requiring four worker 
processes and could request two replications. The 
framework would then locate the resources for seven 
processes (the peer that submits the job is never replicated) 
and execute the job on them such that each of the worker 
processes is run on two hosts. So long as at least one replica 
of each process survives, the job can proceed. If all replicas 
of a process fail, then the job aborts and the user must 
restart it. The only process not replicated is the coordinator 
process, the process run on the peer that submitted the job. 

As mentioned before, when the user submits a job, the 
framework attempts to locate the resources on the network. 
In the event that the resources cannot be located at that time 
(because either not enough peers are connected to the 
network or the resources are utilized) then the submission is 
aborted. Depending on the implementation of the 
framework, the job is automatically restarted at a later time 
or the user is notified and the job must be restarted 
manually. The distributed nature of our framework means 
that a global queueing system is not practical. Much like 
with P2P file sharing applications, if a file that the user is 
searching for cannot be found, the user must search for it 
again at a later time. 

2.2  Resource Manager Design 
The Resource Manager itself consists of three main sub-

components. A graphical depiction of these sub-
components is presented in Figure 2. 

2.2.1  Resource Monitor 
The Resource Monitor subcomponent's purpose is to 

determine what resources the system is able to provide and 
what the user chooses to provide. The Resource Manager 
polls the system on demand, as well as keeping cumulative 
statistics (such as uptime, failure rates, etc.), to provide 
accurate resource availability information. (Alternatively,  it  



 Resource Manager

Reservation Manager

Resource Usage
Enforcement Resource Monitor

Worker
Process

Worker
Process

Worker
Process

 
Figure 2.  Details of the Resource Manager Component 

 
is possible to periodically collect data from the system to 
reduce overhead at the expense of accuracy.) The 
Reservation Manager consults this information before 
issuing a reservation. 

2.2.2  Reservation Manager 
The Reservation Manager subcomponent's task is to 

issue, store and validate reservations.  When a remote peer 
requests resources from the local peer, the reservation 
manager, using information from the Resource Monitor, 
determines if the resources can be provided. If so, the 
reservation is granted and saved. Prior to actually executing 
the job, our framework consults the Reservation Manager to 
see if the reservation has expired. If it has not, then the 
Reservation Manager marks the reservation for that job as 
started. If the reservation has expired the requesting peer is 
notified and the job is rejected. 

Since our framework is designed to run on end user 
computers, it is worth discussing limiting resource access. 
A desktop user may not want to contribute all of their 
physical memory, CPU time, or other resources to the 
framework. It is the Reservation Manager's job to take these 
contribution limits into account when issuing a reservation. 
A favor based system (or something similar) would need to 
be employed in order to keep users from abusing the 
system, as well as encouraging users to contribute more 
resources (in an attempt to gain more in return). This aspect 
of usability is currently under investigation.  

2.2.3  Resource Usage Enforcement 
The Resource Usage Enforcement subcomponent ensures 

that a process only uses the resources that have been 
allocated to it by the framework. If the process tries to 
allocate more memory or exceeds its allotted CPU quanta, 
then steps are taken to correct the situation (such as job 
termination or process throttling or suspension). If the 
underlying operating system were to support advanced 
resource management techniques, including resource 
restriction, much of the role of this component could be 
delegated to the operating system. This would free the 
Resource Manager from the burden of constantly 
monitoring all the worker processes. 

3  Implementation 
 
Given the scope and complexity of creating an entire P2P 

type framework from scratch, we chose to implement our 
framework described in the previous section using an 
existing P2P infrastructure. This freed us from the burden 
of re-implementing components whose operations are 
generally the same between systems (file transfer, job 
control, and so on). This also enabled us to focus more on 
our specific problem area. 

To this end, we used P2P-MPI [9] to provide the 
Computing Framework component shown in Figure 1 while 
JXTA [12] provided the P2P Infrastructure. Our 
implementation efforts focused on adding Resource 
Manager facilities to these base framework components in 
Java. The original assumption in P2P-MPI was that all 
peers on the network would have the same, or similar, 
hardware and software configurations and it would not 
matter which processes were run on which hosts. This is not 
a good assumption given the amount of hardware and 
software variability between hosts on the Internet. Our 
needs required us to modify this infrastructure so that users 
could specify how much of a particular resource a job 
would require, and allow the framework to match and 
reserve those resources. 

3.1  Resource Manager Implementation 
Developing the Resource Manager for this work involved 

the implementation of the Resource Monitor, Reservation 
Manager, and Resource Usage Enforcement subcomponents 
as discussed in the previous section.  The implementation of 
each of these subcomponents is outlined below; further 
details can be found in [17]. 

3.1.1  Resource Monitor Implementation 
As discussed in Section 2.2.1, the purpose of the 

Resource Monitor subcomponent is to track resource 
availability on the local peer.  Since our implementation 
was written in Java, this required gathering as much data as 
possible through the Java Virtual Machine (for example, 
memory usage and so on).  If resource data was not 
available through the JVM, simple platform-independent 
benchmarks were used to provide estimates of available 
resources instead (for example, with idle CPU capacity).   

3.1.2  Reservation Manager Implementation 
To support resource reservations, the Reservation 

Manager subcomponent was implemented with facilities for 
processing, storing, checking, and expiring resource 
reservations for jobs. When a new reservation request is 
received, the existing set of reservations is consulted, along 
with the set of available contributed resources on the local 
peer, to determine if the new reservation can be supported 
or not.  If it can be supported, the reservation request is 
accepted, and the Reservation Manager records the unique 
job ID, the resources held by the reservation, and the 
reservation's expiry time. 



If a sufficient number of resources are not found after the 
search time elapses, then the job is aborted and restarted at 
a later time (in the hope that the necessary resources would 
become available). Reservations on remote peers expire if 
the job is not started within a given time, thereby freeing 
the resources for use by other peers and avoiding deadlock.  
Sufficient time must be provided, however, to allow the 
search for resources in the P2P network to complete; 
otherwise, there could be an excessive number of 
unnecessary expirations. 

3.1.3  Resource Usage Enforcement Implementation 
The Resource Usage Enforcement subcomponent in our 

current prototype takes an honor system approach in which 
we assume that jobs submitted to the framework will not 
use more of a particular resource than they requested. It is 
possible for a worker process to receive more than the 
requested amount of resources if those resources are 
otherwise idle or unused, but it must not attempt to exceed 
its reservation otherwise. We essentially provide a lower-
bound on the resources that will be available for a process. 

The rationale behind this approach is the fact that at this 
time, the popular commercial and consumer operating 
systems do not provide the mechanisms required to allow 
hard limits on process resource usage. Implementing a full 
sandbox model, in which execution of a process can be 
fully controlled by our framework, was beyond the scope of 
our initial prototyping efforts. Virtualization technologies 
might facilitate this, at the cost of increasing the complexity 
for the average user to use the framework. This issue is 
currently under further investigation, however.  

For our current prototype, we chose to limit our resource 
management to CPU and memory (available physical, total 
physical, and available virtual). We felt that this subset 
would sufficiently demonstrate the benefits of resource 
management while not being overly complex for initial 
prototyping and experimentation.  

3.2  Protocol Augmentation 
To support resource matching and reservation, the 

discovery and job deployment processes that are part of the 
Computing Framework P2P-MPI required modification so 
that before accepting work, the Resource Manager would 
be consulted.  This required the insertion of two additional 
steps in the processes. The first step required that peers 
considered resource availability during discovery so that a 
peer would only be available to job deployment if it had the 
necessary resources to handle the needs of the given task. If 
so, then communication proceeded to the second step; 
resource reservation. The peer reserves the resources 
required for the particular task until the job starts or the 
reservation expires. Furthermore, the execution preamble 
communication was also modified. If the reservation on the 
remote peer had expired, it would return a denied message 
and the process would not be executed. It would then be up 
to the submitter to abort and try submitting the job again. 

To ensure that a user was never denied access to their 
own (local) peer, in this initial prototype we allowed a job 

to start locally without a reservation. This was necessary 
from both a technical and a usability perspective.  
Technically speaking, the local process (which is always 
MPI Rank 0) actually locates the remaining resources 
required to run the job. If this local job were not started 
(due to insufficient resources), then no matter how many 
resources were free on the network, it could not access 
them.  From a usability perspective if a user were not able 
to start a job because all their resources were used by the 
other users, there would be little incentive to participate in 
the network.  Upon completion of a Resource Usage 
Enforcement subcomponent capable of imposing hard 
resource limits on processes, as discussed in Section 3.1.3, 
we will be able to effectively isolate local processes from 
worker processes from remote peers to avoid interference 
issues from a resource management perspective. 

4  Experimentation and Experiences 
 
To validate our prototype implementation and to evaluate 

the performance improvements from proper resource 
matching and resource management in a P2P computing 
environment, a series of experiments have been conducted.  
The results presented in this section are only a sampling of 
the experiments conducted to date.  Further details and 
analyses can be found in [17]. 

4.1  Experimental Testbed 
To support initial experimentation, we constructed a 

mixed network with several Intel-based low capacity and 
high capacity machines running Linux 2.6.x and a separate 
Sun UltraSparc IIi system running Solaris 8 to act as a 
Rendezvous Server for the P2P network.  All systems used 
the same revision of Java 1.5.  This resulted in the network 
configuration shown in Figure 3. 

 

 
Figure 3.  Experimental Testbed 

 
This provides a heterogeneous network of machines 

similar to what one might find in a public computing 
initiative, and gives a suitable starting point for 
experimentation and validation of our prototype. 



4.2  Experimental Results 
To demonstrate the effectiveness of our prototype 

system, we will present results from experimentation with 
two different applications.  For comparison purposes, we 
executed the same experiments using the original P2P-MPI 
and our new system with resource management that uses 
P2P-MPI as its Computing Framework, which we call RM-
P2P-MPI for the purposes of experimentation (for Resource 
Managed P2P-MPI).  This will allow the simplest and most 
direct opportunity for showing any performance benefits 
from resource matching and resource management in our 
prototype system. 

4.2.1  Integer Sorting Results 
As an initial experiment, we used a Java implementation 

of the distributed NSA Integer Sort benchmark as the 
sample workload. The implementation was provided by the 
authors of P2P-MPI as a sample program. We used two 
data sets for experimentation, a small set of 8.6 million 
integers, and a larger set of 33.5 million integers.  We also 
used two different numbers of worker processes to perform 
the actual sorting procedure, 4 and 8.  This resulted in four 
main experimental configurations.  In each experiment, 
each of the four low capacity peers and four high capacity 
peers shown in Figure 3 submitted the integer sort job 
sequentially five times, to simulate multiple jobs being 
submitted to the system by its users.  Experiments were 
then replicated five times to assess error and statistical 
confidence. 

Figures 4 and 5 compare the average sum of run time 
(time to complete the experimental workload) and overhead 
time (time to deploy the workload over the P2P network) 
over all replications for low capacity and high capacity 
peers respectively.  (We present the results for low and high 
capacity peers separately because of the large difference in 
performance between them.)  In almost every case, we see 
an improvement (decrease) in total time to process the 
entire workload.  In the case where no improvement was 
seen, the total times were approximately the same.  Due to 
the relatively low resource contention in that case, there is 
less advantage in resource management efforts as there is 
little opportunity for a workload imbalance. 
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4.2.2  Prime Number Search Results 
This set of experiments is quite similar to those discussed 

in Section 4.2.1; only the workload process was changed. 
Instead of using the integer sort sample program, we used 
our own simple prime number search application. We did 
this to explore the performance of our framework on a 
communication-bound job (as opposed to CPU-bound). We 
chose to write our own workload process because we could 
not find a suitable off-the-shelf benchmark. We wanted a 
process that utilized the CPU and the communication 
aspects of our framework; consequently, our prime number 
search algorithm was made quite naïve, in an effort to have 
as much communication as possible. Each worker would 
ask the master peer (the peer that submitted the job) for a 
new number to inspect until all the numbers were checked.  
Each peer did a brute force check to determine if the 
number was prime or not. The ratio of work to the degree of 
communication was significantly less than in the previous 
experiments, which resulted in a different set of resource 
requirements requested during job submission than with the 
integer sort application. 

We kept the work loads relatively small in the interest of 
completing our experiments in a timely fashion. The small 
data set involved finding all the prime numbers between 1 
and 1,000, while the large data set range was from 1 to 
10,000.  We used either 4 or 8 worker processes to perform 
the prime search, once again resulting in four main 
experiment configurations.  In each experiment, each of the 
peers again submitted the prime search job sequentially five 
times to produce the overall workload processed by the 
system.  Five replications were also made of each 
experiment. 

In Figures 6 and 7 we observe an improvement in all 
experiments. As with the experiments in Section 4.2.1, our 
resource managed framework was able to outperform the 
original, unmanaged P2P-MPI. Here we see that the 
overhead/wait times are not as great since the resource 
requirements are less. Essentially, the peers did not need to 
search or wait as long to reserve the resources required for 
the job.  The performance improvement for this experiment 
is smaller than we found with the experiments in Section 
4.2.1. This is not surprising, given that the workload is less 
demanding   on   the   peers’   resources.  If  the  framework 



0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI

4 Workers, Small Data
Set

8 Workers, Small Data
Set

4 Workers, Large Data
Set

8 Workers, Large Data
Set

A
ve

ra
ge

 T
im

e 
(S

ec
on

ds
)

Run Time Overhead Time  
Figure 6.  Prime Search Low Capacity Peer Summary 

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI RM-P2P-
MPI

P2P-MPI

4 Workers, Small Data
Set

8 Workers, Small Data
Set

4 Workers, Large Data
Set

8 Workers, Large Data
Set

A
ve

ra
ge

 T
im

e 
(S

ec
on

ds
)

Run Time Overhead Time  
Figure 7.  Prime Search High Capacity Peer Summary 

becomes unbalanced with this workload, the impact is less 
given that the jobs are network-bound, spending most of 
their time waiting for communications. 

5  Conclusions and Future Work 
 
This paper has looked at two aspects of P2P computing: 

the need for decentralized resource allocation and the 
performance benefits of effective resource management.  In 
both cases, we have found positive results. Our prototype 
implementation has shown that resource management is 
possible in a decentralized environment. Our experimental 
results have shown that not only is it worth while, but 
necessary in a high load environment, such as a P2P 
computing framework. 

Further developments in the area of distributed 
computing should consider the potential benefits of 
integrating a resource management mechanism to better 
serve their users. As the scale of P2P computing initiatives 
increases, this will become a more prominent issue. 

In the future, there are many potential directions for 
continued work in this area.  Naturally, work must be done 
on resource enforcement to police process resource usage to 
move our system from experimental environments to 
production usage.  Issues of security and fairness need to be 
fully investigated to prevent abuses, whether they are 
accidental or intentional.  Lastly, it is important to study job 
migration and job re-deployment to allow workloads to be 

adjusted and balanced after initial deployment, to further 
increase the overall performance of the P2P network. 
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